1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China 2. Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China 3. Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Overall response rate for on-target lesions: 90% (9/10)
[201]
T-VEC (HSV-1)
GM-CSF
Ipilimumab
Unresectable stage IIIB–IV melanoma
Objective response rate: 50%
[202]
T-VEC (HSV-1)
GM-CSF
Ipilimumab
Advanced melanoma
Objective response rate: 39% (combination therapy) versus 18% (ipilimumab alone)
[203]
Combinations with CAR T cell therapies
OAd-BiTE (Adenovirus)
EGFR-targeting-BiTE
CAR-T cell targeting the FR-a
Solid tumors (SKOV3, HCT116, and Panc-1 cell)
Median survival: all animals survived until the experimental endpoint of 41 days (CAR-T cells and OAd-BiTE) versus 20 days (OAd-BiTE alone) or 38 days (CAR-T cells alone)
[204]
OAd-TNFa-IL2 (Adenovirus)
TNF-a and IL-2
Mesothelin-redirected CAR-T cell
Pancreatic cancer (BxPC-3, Capan-2, and AsPC-1 cell line, AsPC-1 tumor xenograft model)
Survival rate: 73% (GD2.CAR-T cells and Ad5D24.RANTES.IL15) vs. 44% (GD2.CAR-T cells and Ad5D24) at day 45
[206]
CAd12_PDL1 (Adenovirus)
PD-L1-antibody, IL-12p70
HER2.CAR-T cell
HNSCC xenograft model
Median survival: more than 100 days (CAd12_PDL-1+ CAR-T) vs. 21 or 24 days (control group)
[207]
CAd-VECPDL1 (Adenovirus)
PD-L1mini-body
HER2.CAR-T cell
Solid tumor cell lines (PC-3, A549, HepG2)
Median survival: 110 days (twofold longer than mice treated with a single agent)
[208]
Tab.3
1
DN Khalil, EL Smith, RJ Brentjens, JD Wolchok. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13(5): 273–290 https://doi.org/10.1038/nrclinonc.2016.25
pmid: 26977780
2
Y Yang. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015; 125(9): 3335–3337 https://doi.org/10.1172/JCI83871
pmid: 26325031
3
HL Kaufman, FJ Kohlhapp, A Zloza. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015; 14(9): 642–662 https://doi.org/10.1038/nrd4663
pmid: 26323545
F Yu, X Wang, ZS Guo, DL Bartlett, SM Gottschalk, XT Song. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014; 22(1): 102–111 https://doi.org/10.1038/mt.2013.240
pmid: 24135899
6
P Wang, X Li, J Wang, D Gao, Y Li, H Li, Y Chu, Z Zhang, H Liu, G Jiang, Z Cheng, S Wang, J Dong, B Feng, LS Chard, NR Lemoine, Y Wang. Re-designing interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun 2017; 8(1): 1395 https://doi.org/10.1038/s41467-017-01385-8
pmid: 29123084
7
A Samson, KJ Scott, D Taggart, EJ West, E Wilson, GJ Nuovo, S Thomson, R Corns, RK Mathew, MJ Fuller, TJ Kottke, JM Thompson, EJ Ilett, JV Cockle, P van Hille, G Sivakumar, ES Polson, SJ Turnbull, ES Appleton, G Migneco, AS Rose, MC Coffey, DA Beirne, FJ Collinson, C Ralph, D Alan Anthoney, CJ Twelves, AJ Furness, SA Quezada, H Wurdak, F Errington-Mais, H Pandha, KJ Harrington, PJ Selby, RG Vile, SD Griffin, LF Stead, SC Short, AA Melcher. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med 2018; 10(422): eaam7577 https://doi.org/10.1126/scitranslmed.aam7577
pmid: 29298869
8
K Geletneky, J Hajda, AL Angelova, B Leuchs, D Capper, AJ Bartsch, J-O Neumann, T Schöning, J Hüsing, B Beelte, I Kiprianova, M Roscher, R Bhat, A von Deimling, W Brück, A Just, V Frehtman, S Löbhard, E Terletskaia-Ladwig, J Fry, K Jochims, V Daniel, O Krebs, M Dahm, B Huber, A Unterberg, J Rommelaere. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther 2017; 25(12): 2620–2634 https://doi.org/10.1016/j.ymthe.2017.08.016
9
D Zamarin, RB Holmgaard, SK Subudhi, JS Park, M Mansour, P Palese, T Merghoub, JD Wolchok, JP Allison. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6(226): 226ra32 https://doi.org/10.1126/scitranslmed.3008095
pmid: 24598590
10
MC Bourgeois-Daigneault, DG Roy, AS Aitken, N El Sayes, NT Martin, O Varette, T Falls, LE St-Germain, A Pelin, BD Lichty, DF Stojdl, G Ungerechts, JS Diallo, JC Bell. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med 2018; 10(422): eaao1641 https://doi.org/10.1126/scitranslmed.aao1641
pmid: 29298865
11
FF Lang, C Conrad, C Gomez-Manzano, WKA Yung, R Sawaya, JS Weinberg, SS Prabhu, G Rao, GN Fuller, KD Aldape, J Gumin, LM Vence, I Wistuba, J Rodriguez-Canales, PA Villalobos, CMF Dirven, S Tejada, RD Valle, MM Alonso, B Ewald, JJ Peterkin, F Tufaro, J Fueyo. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 2018; 36(14): 1419–1427 https://doi.org/10.1200/JCO.2017.75.8219
pmid: 29432077
12
VT Packiam, DL Lamm, DA Barocas, A Trainer, B Fand, RL Davis 3rd, W Clark, M Kroeger, I Dumbadze, K Chamie, AK Kader, D Curran, J Gutheil, A Kuan, AW Yeung, GD Steinberg. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Urol Oncol 2018; 36(10): 440–447 https://doi.org/10.1016/j.urolonc.2017.07.005
pmid: 28755959
13
LK Mell, KT Brumund, GA Daniels, SJ Advani, K Zakeri, ME Wright, SJ Onyeama, RA Weisman, PR Sanghvi, PJ Martin, AA Szalay. Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clin Cancer Res 2017; 23(19): 5696–5702 https://doi.org/10.1158/1078-0432.CCR-16-3232
pmid: 28679776
14
J Heo, T Reid, L Ruo, CJ Breitbach, S Rose, M Bloomston, M Cho, HY Lim, HC Chung, CW Kim, J Burke, R Lencioni, T Hickman, A Moon, YS Lee, MK Kim, M Daneshmand, K Dubois, L Longpre, M Ngo, C Rooney, JC Bell, BG Rhee, R Patt, TH Hwang, DH Kirn. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19(3): 329–336 https://doi.org/10.1038/nm.3089
pmid: 23396206
15
HL Kaufman, SD Bines. OPTIM trial: a phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 2010; 6(6): 941–949 https://doi.org/10.2217/fon.10.66
pmid: 20528232
16
H Kasuya, Y Kodera, A Nakao, K Yamamura, T Gewen, W Zhiwen, Y Hotta, S Yamada, T Fujii, S Fukuda, N Tsurumaru, T Kuwahara, T Kikumori, Y Koide, Y Fujimoto, T Nakashima, Y Hirooka, H Shiku, M Tanaka, K Takesako, T Kondo, B Aleksic, H Kawashima, H Goto, Y Nishiyama. Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepatogastroenterology 2014; 61(131): 599–605
pmid: 26176043
17
JP Nüesch, J Lacroix, A Marchini, J Rommelaere. Molecular pathways: rodent parvoviruses--mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 2012; 18(13): 3516–3523 https://doi.org/10.1158/1078-0432.CCR-11-2325
pmid: 22566376
18
AM Noonan, MR Farren, SM Geyer, Y Huang, S Tahiri, D Ahn, S Mikhail, KK Ciombor, S Pant, S Aparo, J Sexton, JL Marshall, TA Mace, CS Wu, B El-Rayes, CD Timmers, J Zwiebel, GB Lesinski, MA Villalona-Calero, TS Bekaii-Saab. Randomized phase 2 trial of the oncolytic virus Pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther 2016; 24(6): 1150–1158 https://doi.org/10.1038/mt.2016.66
pmid: 27039845
19
D Mahalingam, C Fountzilas, J Moseley, N Noronha, H Tran, R Chakrabarty, G Selvaggi, M Coffey, B Thompson, J Sarantopoulos. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother Pharmacol 2017; 79(4): 697–703 https://doi.org/10.1007/s00280-017-3260-6
pmid: 28289863
20
S Tayeb, Z Zakay-Rones, A Panet. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother 2015; 4: 49–62
pmid: 27512670
21
A Dispenzieri, C Tong, B LaPlant, MQ Lacy, K Laumann, D Dingli, Y Zhou, MJ Federspiel, MA Gertz, S Hayman, F Buadi, M O’Connor, VJ Lowe, KW Peng, SJ Russell. Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 2017; 31(12): 2791–2798 https://doi.org/10.1038/leu.2017.120
pmid: 28439108
AL Angelova, M Barf, K Geletneky, A Unterberg, J Rommelaere. Immunotherapeutic potential of oncolytic H-1 parvovirus: hints of glioblastoma microenvironment conversion towards immunogenicity. Viruses 2017; 9(12): 382 https://doi.org/10.3390/v9120382
pmid: 29244745
26
P Msaouel, M Opyrchal, A Dispenzieri, KW Peng, MJ Federspiel, SJ Russell, E Galanis. Clinical trials with oncolytic measles virus: current status and future prospects. Curr Cancer Drug Targets 2018; 18(2): 177–187 https://doi.org/10.2174/1568009617666170222125035
pmid: 28228086
NM Durham, K Mulgrew, K McGlinchey, NR Monks, H Ji, R Herbst, J Suzich, SA Hammond, EJ Kelly. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol Ther 2017; 25(8): 1917–1932 https://doi.org/10.1016/j.ymthe.2017.05.006
pmid: 28578991
29
MC Brown, EY Dobrikova, MI Dobrikov, RW Walton, SL Gemberling, SK Nair, A Desjardins, JH Sampson, HS Friedman, AH Friedman, DS Tyler, DD Bigner, M Gromeier. Oncolytic polio virotherapy of cancer. Cancer 2014; 120(21): 3277–3286 https://doi.org/10.1002/cncr.28862
pmid: 24939611
30
S Bradley, AD Jakes, K Harrington, H Pandha, A Melcher, F Errington-Mais. Applications of coxsackievirus A21 in oncology. Oncolytic Virother 2014; 3: 47–55 https://doi.org/10.2147/OV.S56322
pmid: 27512662
31
T Bourhill, Y Mori, DE Rancourt, M Shmulevitz, RN Johnston. Going (Reo)Viral: factors promoting successful reoviral oncolytic infection. Viruses 2018; 10(8): 421 https://doi.org/10.3390/v10080421
pmid: 30103501
32
EF Wheelock, JH Dingle. Observations on the repeated administration of viruses to a patient with acute leukemia. A preliminary report. N Engl J Med 1964; 271(13): 645–651 https://doi.org/10.1056/NEJM196409242711302
pmid: 14170843
A Howells, G Marelli, NR Lemoine, Y Wang. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol 2017; 7(195): 195 https://doi.org/10.3389/fonc.2017.00195
pmid: 28944214
IR Eissa, I Bustos-Villalobos, T Ichinose, S Matsumura, Y Naoe, N Miyajima, D Morimoto, N Mukoyama, W Zhiwen, M Tanaka, H Hasegawa, S Sumigama, B Aleksic, Y Kodera, H Kasuya. The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers (Basel) 2018; 10(10): 356 https://doi.org/10.3390/cancers10100356
pmid: 30261620
38
RL Martuza, A Malick, JM Markert, KL Ruffner, DM Coen. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252(5007): 854–856 https://doi.org/10.1126/science.1851332
pmid: 1851332
MC Bourgeois-Daigneault, LE St-Germain, DG Roy, A Pelin, AS Aitken, R Arulanandam, T Falls, V Garcia, JS Diallo, JC Bell. Combination of paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res 2016; 18(1): 83 https://doi.org/10.1186/s13058-016-0744-y
pmid: 27503504
44
M Garofalo, H Saari, P Somersalo, D Crescenti, L Kuryk, L Aksela, C Capasso, M Madetoja, K Koskinen, T Oksanen, A Mäkitie, M Jalasvuori, V Cerullo, P Ciana, M Yliperttula. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release 2018; 283: 223–234 https://doi.org/10.1016/j.jconrel.2018.05.015
pmid: 29864473
45
E Binz, S Berchtold, J Beil, M Schell, C Geisler, I Smirnow, UM Lauer. Chemovirotherapy of pancreatic adenocarcinoma by combining oncolytic vaccinia virus GLV-1h68 with nab-paclitaxel plus gemcitabine. Mol Ther Oncolytics 2017; 6: 10–21 https://doi.org/10.1016/j.omto.2017.04.001
pmid: 28607950
46
MJ Wilkinson, HG Smith, G McEntee, J Kyula-Currie, TD Pencavel, DC Mansfield, AA Khan, V Roulstone, AJ Hayes, KJ Harrington. Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 2016; 7(49): 81208–81222 https://doi.org/10.18632/oncotarget.12820
pmid: 27783991
47
SM O’Cathail, TD Pokrovska, TS Maughan, KD Fisher, LW Seymour, MA Hawkins. Combining oncolytic adenovirus with radiation—a paradigm for the future of radiosensitization. Front Oncol 2017; 7: 153 https://doi.org/10.3389/fonc.2017.00153
pmid: 28791251
48
BA McKenzie, FJ Zemp, A Pisklakova, A Narendran, G McFadden, X Lun, RS Kenchappa, EU Kurz, PA Forsyth. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells. Neuro-oncol 2015; 17(8): 1086–1094 https://doi.org/10.1093/neuonc/nou359
pmid: 25605818
49
MH Dornan, R Krishnan, AM Macklin, M Selman, N El Sayes, HH Son, C Davis, A Chen, K Keillor, PJ Le, C Moi, P Ou, C Pardin, CR Canez, F Le Boeuf, JC Bell, JC Smith, JS Diallo, CN Boddy. First-in-class small molecule potentiators of cancer virotherapy. Sci Rep 2016; 6(1): 26786 https://doi.org/10.1038/srep26786
pmid: 27226390
KR Kelly, CM Espitia, W Zhao, K Wu, V Visconte, F Anwer, CM Calton, JS Carew, ST Nawrocki. Oncolytic reovirus sensitizes multiple myeloma cells to anti-PD-L1 therapy. Leukemia 2018; 32(1): 230–233 https://doi.org/10.1038/leu.2017.272
pmid: 28832023
54
C Achard, A Surendran, ME Wedge, G Ungerechts, J Bell, CS Ilkow. Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 2018; 31: 17–24 https://doi.org/10.1016/j.ebiom.2018.04.020
pmid: 29724655
C Geiss, Z Kis, B Leuchs, M Frank-Stöhr, JR Schlehofer, J Rommelaere, C Dinsart, J Lacroix. Preclinical testing of an oncolytic parvovirus: standard protoparvovirus H-1PV efficiently induces osteosarcoma cell lysis in vitro. Viruses 2017; 9(10): 301 https://doi.org/10.3390/v9100301
pmid: 29039746
57
L Vidal, HS Pandha, TA Yap, CL White, K Twigger, RG Vile, A Melcher, M Coffey, KJ Harrington, JS DeBono. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 2008; 14(21): 7127–7137 https://doi.org/10.1158/1078-0432.CCR-08-0524
pmid: 18981012
58
NE Annels, D Mansfield, M Arif, C Ballesteros-Merino, GR Simpson, M Denyer, SS Sandhu, AA Melcher, KJ Harrington, B Davies, G Au, M Grose, I Bagwan, B Fox, R Vile, H Mostafid, D Shafren, HS Pandha. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res 2019; 25(19): 5818–5831 https://doi.org/10.1158/1078-0432.CCR-18-4022
pmid: 31273010
59
NE Annels, D Mansfield, M Arif, C Ballesteros-Merino, GR Simpson, M Denyer, SS Sandhu, AA Melcher, KJ Harrington, B Davies, G Au, M Grose, I Bagwan, B Fox, R Vile, H Mostafid, D Shafren, HS Pandha. Viral targeting of non-muscle-invasive bladder cancer and priming of antitumor immunity following intravesical coxsackievirus A21. Clin Cancer Res 2019 Aug. 14. [Epub ahead of print] doi: 10.1158/1078-0432.CCR-18-4022 https://doi.org/10.1158/1078-0432.CCR-18-4022
60
RHI Andtbacka, BD Curti, H Kaufman, GA Daniels, JJ Nemunaitis, LE Spitler, S Hallmeyer, J Lutzky, SM Schultz, ED Whitman, K Zhou, R Karpathy, JI Weisberg, M Grose, D Shafren. Final data from CALM: a phase II study of coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol 2015; 33(15_suppl): 9030 https://doi.org/10.1200/jco.2015.33.15_suppl.9030
61
AL Angelova, M Witzens-Harig, AS Galabov, J Rommelaere. The oncolytic virotherapy era in cancer management: prospects of applying H-1 parvovirus to treat blood and solid cancers. Front Oncol 2017; 7: 93 https://doi.org/10.3389/fonc.2017.00093
pmid: 28553616
62
KA Garant, M Shmulevitz, L Pan, RM Daigle, DG Ahn, SA Gujar, PWK Lee. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016; 35(6): 771–782 https://doi.org/10.1038/onc.2015.136
pmid: 25961930
63
DW Sborov, GJ Nuovo, A Stiff, T Mace, GB Lesinski, DM Benson Jr, YA Efebera, AE Rosko, F Pichiorri, MR Grever, CC Hofmeister. A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin Cancer Res 2014; 20(23): 5946–5955 https://doi.org/10.1158/1078-0432.CCR-14-1404
pmid: 25294913
64
D Mahalingam, S Goel, S Aparo, S Patel Arora, N Noronha, H Tran, R Chakrabarty, G Selvaggi, A Gutierrez, M Coffey, ST Nawrocki, G Nuovo, MM Mita. A phase II study of Pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel) 2018; 10(6): 160 https://doi.org/10.3390/cancers10060160
pmid: 29799479
65
E Galanis, SN Markovic, VJ Suman, GJ Nuovo, RG Vile, TJ Kottke, WK Nevala, MA Thompson, JE Lewis, KM Rumilla, V Roulstone, K Harrington, GP Linette, WJ Maples, M Coffey, J Zwiebel, K Kendra. Phase II trial of intravenous administration of Reolysin(®) (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol Ther 2012; 20(10): 1998–2003 https://doi.org/10.1038/mt.2012.146
pmid: 22871663
66
A Stiff, E Caserta, DW Sborov, GJ Nuovo, X Mo, SY Schlotter, A Canella, E Smith, J Badway, M Old, AC Jaime-Ramirez, P Yan, DM Benson, JC Byrd, R Baiocchi, B Kaur, CC Hofmeister, F Pichiorri. Histone deacetylase inhibitors enhance the therapeutic potential of reovirus in multiple myeloma. Mol Cancer Ther 2016; 15(5):830–841 https://doi.org/10.1158/1535-7163
pmid: . MCT-15-0240-T26809490
67
M Ramachandran, D Yu, M Dyczynski, S Baskaran, L Zhang, A Lulla, V Lulla, S Saul, S Nelander, A Dimberg, A Merits, J Leja-Jarblad, M. EssandSafe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic Semliki Forest Virus. Clin Cancer Res 2017; 23(6): 1519–1530 https://doi.org/10.1158/1078-0432.CCR-16-0925
68
JI Quetglas, S Labiano, MA Aznar, E Bolaños, A Azpilikueta, I Rodriguez, E Casales, AR Sánchez-Paulete, V Segura, C Smerdou, I Melero. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res 2015; 3(5): 449–454 https://doi.org/10.1158/2326-6066.CIR-14-0216
pmid: 25691326
69
PY Huang, JH Guo, LH Hwang. Oncolytic Sindbis virus targets tumors defective in the interferon response and induces significant bystander antitumor immunity in vivo. Mol Ther 2012; 20(2): 298–305 https://doi.org/10.1038/mt.2011.245
70
Y Lin, H Zhang, J Liang, K Li, W Zhu, L Fu, F Wang, X Zheng, H Shi, S Wu, X Xiao, L Chen, L Tang, M Yan, X Yang, Y Tan, P Qiu, Y Huang, W Yin, X Su, H Hu, J Hu, G Yan. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A 2014; 111(42): E4504–E4512 https://doi.org/10.1073/pnas.1408759111
71
C Hu, Y Liu, Y Lin, JK Liang, WW Zhong, K Li, WT Huang, DJ Wang, GM Yan, WB Zhu, JG Qiu, X Gao. Intravenous injections of the oncolytic virus M1 as a novel therapy for muscle-invasive bladder cancer. Cell Death Dis 2018; 9(3): 274 https://doi.org/10.1038/s41419-018-0325-3
pmid: 29449555
72
J Liang, L Guo, K Li, X Xiao, W Zhu, X Zheng, J Hu, H Zhang, J Cai, Y Yu, Y Tan, C Li, X Liu, C Hu, Y Liu, P Qiu, X Su, S He, Y Lin, G Yan. Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nat Commun 2018; 9(1): 1524 https://doi.org/10.1038/s41467-018-03913-6
pmid: 29670091
73
H Zhang, Y Lin, K Li, J Liang, X Xiao, J Cai, Y Tan, F Xing, J Mai, Y Li, W Chen, L Sheng, J Gu, W Zhu, W Yin, P Qiu, X Su, B Lu, X Tian, J Liu, W Lu, Y Dou, Y Huang, B Hu, Z Kang, G Gao, Z Mao, SY Cheng, L Lu, XT Bai, S Gong, G Yan, J Hu. Naturally existing oncolytic virus M1 is nonpathogenic for the nonhuman primates after multiple rounds of repeated intravenous injections. Hum Gene Ther 2016; 27(9): 700–711 https://doi.org/10.1089/hum.2016.038
pmid: 27296553
74
H Zhang, K Li, Y Lin, F Xing, X Xiao, J Cai, W Zhu, J Liang, Y Tan, L Fu, F Wang, W Yin, B Lu, P Qiu, X Su, S Gong, X Bai, J Hu, G Yan. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci Transl Med 2017; 9(404): eaam7996 https://doi.org/10.1126/scitranslmed.aam7996
pmid: 28835517
75
X Xiao, J Liang, C Huang, K Li, F Xing, W Zhu, Z Lin, W Xu, G Wu, J Zhang, X Lin, Y Tan, J Cai, J Hu, X Chen, Y Huang, Z Qin, P Qiu, X Su, L Chen, Y Lin, H Zhang, G Yan. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nat Commun 2018; 9(1): 4342 https://doi.org/10.1038/s41467-018-06771-4
pmid: 30337542
J Maroun, M Muñoz-Alía, A Ammayappan, A Schulze, KW Peng, S Russell. Designing and building oncolytic viruses. Future Virol 2017; 12(4):193–213 https://doi.org/10.2217/fvl-2016-0129
pmid: 29387140
78
SR Jhawar, A Thandoni, PK Bommareddy, S Hassan, FJ Kohlhapp, S Goyal, JM Schenkel, AW Silk, A Zloza. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7: 202 https://doi.org/10.3389/fonc.2017.00202
pmid: 28955655
79
PK Bommareddy, M Shettigar, HL Kaufman. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 2018; 18(8): 498–513 https://doi.org/10.1038/s41577-018-0014-6
pmid: 29743717
AA Stepanenko, VP Chekhonin. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257: 40–51 https://doi.org/10.1016/j.virusres.2018.08.012
pmid: 30125593
82
PM Foreman, GK Friedman, KA Cassady, JM Markert. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics 2017; 14(2): 333–344 https://doi.org/10.1007/s13311-017-0516-0
pmid: 28265902
83
D Betancourt, JC Ramos, GN Barber. Retargeting oncolytic vesicular stomatitis virus to human T-cell lymphotropic virus type 1-associated adult T-cell leukemia. J Virol 2015; 89(23): 11786–11800 https://doi.org/10.1128/JVI.01356-15
pmid: 26378177
84
V Leoni, A Vannini, V Gatta, J Rambaldi, M Sanapo, C Barboni, A Zaghini, P Nanni, PL Lollini, C Casiraghi, G Campadelli-Fiume. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 2018; 14(8): e1007209 https://doi.org/10.1371/journal.ppat.1007209
pmid: 30080893
85
L Menotti, A Cerretani, H Hengel, G Campadelli-Fiume. Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 2008; 82(20): 10153–10161 https://doi.org/10.1128/JVI.01133-08
pmid: 18684832
86
F Alessandrini, L Menotti, E Avitabile, I Appolloni, D Ceresa, D Marubbi, G Campadelli-Fiume, P Malatesta. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019; 38(23): 4467–4479 https://doi.org/10.1038/s41388-019-0737-2
pmid: 30755732
87
T Shibata, H Uchida, T Shiroyama, Y Okubo, T Suzuki, H Ikeda, M Yamaguchi, Y Miyagawa, T Fukuhara, JB Cohen, JC Glorioso, T Watabe, H Hamada, H Tahara. Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 2016; 23(6): 479–488 https://doi.org/10.1038/gt.2016.17
pmid: 26905369
88
H Uchida, M Marzulli, K Nakano, WF Goins, J Chan, CS Hong, L Mazzacurati, JY Yoo, A Haseley, H Nakashima, H Baek, H Kwon, I Kumagai, M Kuroki, B Kaur, EA Chiocca, P Grandi, JB Cohen, JC Glorioso. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21(3): 561–569 https://doi.org/10.1038/mt.2012.211
pmid: 23070115
FJ Kohlhapp, HL Kaufman. Molecular pathways: mechanism of action for Talimogene Laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 2016; 22(5): 1048–1054 https://doi.org/10.1158/1078-0432.CCR-15-2667
pmid: 26719429
92
N Martínez-Vélez, E Xipell, B Vera, A Acanda de la Rocha, M Zalacain, L Marrodán, M Gonzalez-Huarriz, G Toledo, M Cascallo, R Alemany, A Patiño, MM Alonso. The oncolytic adenovirus VCN-01 as therapeutic approach against pediatric osteosarcoma. Clin Cancer Res 2016; 22(9): 2217–2225 https://doi.org/10.1158/1078-0432.CCR-15-1899
pmid: 26603261
93
KA Garant, M Shmulevitz, L Pan, RM Daigle, DG Ahn, SA Gujar, PW Lee. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016; 35(6): 771–782 https://doi.org/10.1038/onc.2015.136
pmid: 25961930
94
WH Lin, SH Yeh, WJ Yang, KH Yeh, T Fujiwara, A Nii, SS Chang, PJ Chen. Telomerase-specific oncolytic adenoviral therapy for orthotopic hepatocellular carcinoma in HBx transgenic mice. Int J Cancer 2013; 132(6): 1451–1462 https://doi.org/10.1002/ijc.27770
pmid: 22886913
95
JM Li, KC Kao, LF Li, TM Yang, CP Wu, YM Horng, WW Jia, CT Yang. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10(1): 241 https://doi.org/10.1186/1743-422X-10-241
pmid: 23876001
96
T Fujiwara, Y Shirakawa, S Kagawa. Telomerase-specific oncolytic virotherapy for human gastrointestinal cancer. Expert Rev Anticancer Ther 2011; 11(4): 525–532 https://doi.org/10.1586/era.10.200
pmid: 21504319
97
J Hardcastle, K Kurozumi, EA Chiocca, B Kaur. Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 2007; 7(2): 181–189 https://doi.org/10.2174/156800907780058880
pmid: 17346110
98
W Zhang, K Ge, Q Zhao, X Zhuang, Z Deng, L Liu, J Li, Y Zhang, Y Dong, Y Zhang, S Zhang, B Liu. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 2015; 6(24): 20345–20355 https://doi.org/10.18632/oncotarget.3884
pmid: 25972362
99
M Taki, S Kagawa, M Nishizaki, H Mizuguchi, T Hayakawa, S Kyo, K Nagai, Y Urata, N Tanaka, T Fujiwara. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (‘Telomelysin-RGD’). Oncogene 2005; 24(19): 3130–3140 https://doi.org/10.1038/sj.onc.1208460
pmid: 15735729
100
P Huang, H Kaku, J Chen, Y Kashiwakura, T Saika, Y Nasu, Y Urata, T Fujiwara, M Watanabe, H Kumon. Potent antitumor effects of combined therapy with a telomerase-specific, replication-competent adenovirus (OBP-301) and IL-2 in a mouse model of renal cell carcinoma. Cancer Gene Ther 2010; 17(7): 484–491 https://doi.org/10.1038/cgt.2010.5
pmid: 20168351
101
M Shayestehpour, S Moghim, V Salimi, S Jalilvand, J Yavarian, B Romani, T Mokhtari-Azad. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy. Virus Res 2017; 240: 207–214 https://doi.org/10.1016/j.virusres.2017.08.016
pmid: 28867494
102
MF Leber, MA Baertsch, SC Anker, L Henkel, HM Singh, S Bossow, CE Engeland, R Barkley, B Hoyler, J Albert, C Springfeld, D Jäger, C von Kalle, G Ungerechts. Enhanced control of oncolytic measles virus using microRNA target sites. Mol Ther Oncolytics 2018; 9: 30–40 https://doi.org/10.1016/j.omto.2018.04.002
pmid: 29988512
103
MF Leber, S Bossow, VH Leonard, K Zaoui, C Grossardt, M Frenzke, T Miest, S Sawall, R Cattaneo, C von Kalle, G Ungerechts. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19(6): 1097–1106 https://doi.org/10.1038/mt.2011.55
pmid: 21468006
104
JA McCart, JM Ward, J Lee, Y Hu, HR Alexander, SK Libutti, B Moss, DL Bartlett. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 2001; 61(24): 8751–8757
pmid: 11751395
R Kanai, C Zaupa, D Sgubin, SJ Antoszczyk, RL Martuza, H Wakimoto, SD Rabkin. Effect of g34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J Virol 2012; 86(8): 4420–4431 https://doi.org/10.1128/JVI.00017-12
pmid: 22345479
107
EA McKie, AR MacLean, AD Lewis, G Cruickshank, R Rampling, SC Barnett, PGE Kennedy, SM Brown. Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours—evaluation of a potentially effective clinical therapy. Br J Cancer 1996; 74(5): 745–752 https://doi.org/10.1038/bjc.1996.431
pmid: 8795577
108
DH Kirn, SH Thorne. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009; 9(1): 64–71 https://doi.org/10.1038/nrc2545
pmid: 19104515
A Jefferson, VE Cadet, A Hielscher. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95(3): 407–416 https://doi.org/10.1016/j.critrevonc.2015.04.001
pmid: 25900073
111
UM Lauer, M Schell, J Beil, S Berchtold, U Koppenhöfer, J Glatzle, A Königsrainer, R Möhle, D Nann, F Fend, C Pfannenberg, M Bitzer, NP Malek. Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin Cancer Res 2018; 24(18): 4388–4398 https://doi.org/10.1158/1078-0432.CCR-18-0244
pmid: 29773661
112
DB Johnson, I Puzanov, MC Kelley. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7(6): 611–619 https://doi.org/10.2217/imt.15.35
pmid: 26098919
113
C Grigg, Z Blake, R Gartrell, A Sacher, B Taback, Y Saenger. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol 2016; 43(6): 638–646 https://doi.org/10.1053/j.seminoncol.2016.10.005
pmid: 28061981
114
SJ Masoud, JB Hu, GM Beasley, JH 4th Stewart, PJ Mosca. Efficacy of Talimogene Laherparepvec (T-VEC) therapy in patients with in-transit melanoma metastasis decreases with increasing lesion size. Ann Surg Oncol 2019; 26(13): 4633–4641 https://doi.org/10.1245/s10434-019-07691-3
115
Z Zhu, MJ Gorman, LD McKenzie, JN Chai, CG Hubert, BC Prager, E Fernandez, JM Richner, R Zhang, C Shan, E Tycksen, X Wang, PY Shi, MS Diamond, JN Rich, MG Chheda. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med 2017; 214(10): 2843–2857 https://doi.org/10.1084/jem.20171093
pmid: 28874392
C Shan, AE Muruato, BTD Nunes, H Luo, X Xie, DBA Medeiros, M Wakamiya, RB Tesh, AD Barrett, T Wang, SC Weaver, PFC Vasconcelos, SL Rossi, PY Shi. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med 2017; 23(6): 763–767 https://doi.org/10.1038/nm.4322
pmid: 28394328
119
Q Chen, J Wu, Q Ye, F Ma, Q Zhu, Y Wu, C Shan, X Xie, D Li, X Zhan, C Li, XF Li, X Qin, T Zhao, H Wu, PY Shi, J Man, CF Qin. Treatment of human glioblastoma with a live attenuated Zika virus vaccine candidate. MBio 2018; 9(5): e01683–18 https://doi.org/10.1128/mBio.01683-18
pmid: 30228241
HJ Zeh, S Downs-Canner, JA McCart, ZS Guo, UN Rao, L Ramalingam, SH Thorne, HL Jones, P Kalinski, E Wieckowski, ME O’Malley, M Daneshmand, K Hu, JC Bell, TH Hwang, A Moon, CJ Breitbach, DH Kirn, DL Bartlett. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2015; 23(1): 202–214 https://doi.org/10.1038/mt.2014.194
pmid: 25292189
122
CJ Breitbach, NS De Silva, TJ Falls, U Aladl, L Evgin, J Paterson, YY Sun, DG Roy, JL Rintoul, M Daneshmand, K Parato, MM Stanford, BD Lichty, A Fenster, D Kirn, H Atkins, JC Bell. Targeting tumor vasculature with an oncolytic virus. Mol Ther 2011; 19(5): 886–894 https://doi.org/10.1038/mt.2011.26
123
CJ Breitbach, R Arulanandam, N De Silva, SH Thorne, R Patt, M Daneshmand, A Moon, C Ilkow, J Burke, TH Hwang, J Heo, M Cho, H Chen, FA Angarita, C Addison, JA McCart, JC Bell, DH Kirn. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res 2013; 73(4): 1265–1275 https://doi.org/10.1158/0008-5472.CAN-12-2687
pmid: 23393196
124
O Hamid, B Hoffner, E Gasal, J Hong, RD Carvajal. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol Immunother 2017; 66(10): 1249–1264 https://doi.org/10.1007/s00262-017-2025-8
pmid: 28712033
125
JJ Cody, DR Hurst. Promising oncolytic agents for metastatic breast cancer treatment. Oncolytic Virother 2015; 4: 63–73
pmid: 27512671
126
TM Pearl, JM Markert, KA Cassady, MG Ghonime. Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors. Mol Ther Oncolytics 2019; 13: 14–21 https://doi.org/10.1016/j.omto.2019.03.001
pmid: 30997392
127
JC Roth, KA Cassady, JJ Cody, JN Parker, KH Price, JM Coleman, JO Peggins, PE Noker, NW Powers, SD Grimes, SL Carroll, GY Gillespie, RJ Whitley, JM Markert. Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to aotus nonhuman primates. Hum Gene Ther Clin Dev 2014; 25(1): 16–27 https://doi.org/10.1089/humc.2013.201
pmid: 24649838
128
DM Patel, PM Foreman, LB Nabors, KO Riley, GY Gillespie, JM Markert. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev 2016; 27(2): 69–78 https://doi.org/10.1089/humc.2016.031
pmid: 27314913
129
Y Wu, J He, Y An, X Wang, Y Liu, S Yan, X Ye, J Qi, S Zhu, Q Yu, J Yin, D Li, W Wang. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. J Pharmacol Sci 2016; 132(1): 24–30 https://doi.org/10.1016/j.jphs.2016.03.012
pmid: 27174862
130
K Hock, J Laengle, I Kuznetsova, A Egorov, B Hegedus, B Dome, T Wekerle, M Sachet, M Bergmann. Oncolytic influenza A virus expressing interleukin-15 decreases tumor growth invivo. Surgery 2017; 161(3): 735–746 https://doi.org/10.1016/j.surg.2016.08.045
pmid: 27776794
131
J Puskas, D Skrombolas, A Sedlacek, E Lord, M Sullivan, J Frelinger. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 2011; 133(2): 206–220 https://doi.org/10.1111/j.1365-2567.2011.03428.x
pmid: 21426339
132
Z Liu, Y Ge, H Wang, C Ma, M Feist, S Ju, ZS Guo, DL Bartlett. Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2. Nat Commun 2018; 9(1): 4682 https://doi.org/10.1038/s41467-018-06954-z
pmid: 30410056
133
K Autio, A Knuuttila, A Kipar, S Pesonen, K Guse, S Parviainen, M Rajamäki, O Laitinen-Vapaavuori, M Vähä-Koskela, A Kanerva, A Hemminki. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles. Mol Ther Oncolytics 2014; 1: 14002 https://doi.org/10.1038/mto.2014.2
pmid: 27119092
134
JH Huang, SN Zhang, KJ Choi, IK Choi, JH Kim, MG Lee, H Kim, CO Yun. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol Ther 2010; 18(2): 264–274 https://doi.org/10.1038/mt.2009.205
pmid: 19738604
135
AE Moran, M Kovacsovics-Bankowski, AD Weinberg. The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol 2013; 25(2): 230–237 https://doi.org/10.1016/j.coi.2013.01.004
pmid: 23414607
136
E Eriksson, I Milenova, J Wenthe, M Stahle, J Leja-Jarblad, G Ullenhag, A Dimberg, R Moreno, R Alemany, A. LoskogShaping the tumor stroma and sparking immune activation by CD40 and 4–1BB signaling induced by an armed oncolytic virus. Clin Cancer Res 2017; 23(19): 5846–5857 https://doi.org/10.1158/1078-0432.CCR-17-0285
SA Navarro, E Carrillo, C Griñán-Lisón, A Martín, M Perán, JA Marchal, H Boulaiz. Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 2016; 26(9): 1095–1104 https://doi.org/10.1080/13543776.2016.1211640
pmid: 27424657
139
W Zhu, H Zhang, Y Shi, M Song, B Zhu, L Wei. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 2013; 14(11): 1016–1023 https://doi.org/10.4161/cbt.26043
pmid: 24025362
140
J Hu, H Wang, J Gu, X Liu, X Zhou. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50(10): 1018–1027 https://doi.org/10.1093/abbs/gmy096
pmid: 30137199
141
S Chen, YQ Li, XZ Yin, SZ Li, YL Zhu, YY Fan, WJ Li, YL Cui, J Zhao, X Li, QG Zhang, NY Jin. Recombinant adenoviruses expressing apoptin suppress the growth of MCF7 breast cancer cells and affect cell autophagy. Oncol Rep 2019; 41(5): 2818–2832 https://doi.org/10.3892/or.2019.7077
pmid: 30896879
142
W Zhou, S Dai, H Zhu, Z Song, Y Cai, JB Lee, Z Li, X Hu, B Fang, C He, X Huang. Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer. Gene Ther 2017; 24(4): 199–207 https://doi.org/10.1038/gt.2017.2
pmid: 28075429
143
L Liu, W Wu, G Zhu, L Liu, G Guan, X Li, N Jin, B Chi. Therapeutic efficacy of an hTERT promoter-driven oncolytic adenovirus that expresses apoptin in gastric carcinoma. Int J Mol Med 2012; 30(4): 747–754 https://doi.org/10.3892/ijmm.2012.1077
pmid: 22842823
S Chalikonda, MH Kivlen, ME O’Malley, XD Eric Dong, JA McCart, MC Gorry, XY Yin, CK Brown, HJ Zeh 3rd, ZS Guo, DL Bartlett. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 2008; 15(2): 115–125 https://doi.org/10.1038/sj.cgt.7701110
pmid: 18084242
147
JD Dias, I Liikanen, K Guse, J Foloppe, M Sloniecka, I Diaconu, V Rantanen, M Eriksson, T Hakkarainen, M Lusky, P Erbs, S Escutenaire, A Kanerva, S Pesonen, V Cerullo, A Hemminki. Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1. Clin Cancer Res 2010; 16(9): 2540–2549 https://doi.org/10.1158/1078-0432.CCR-09-2974
pmid: 20388844
148
J Foloppe, J Kempf, N Futin, J Kintz, P Cordier, C Pichon, A Findeli, F Vorburger, E Quemeneur, P Erbs. The enhanced tumor specificity of TG6002, an armed oncolytic vaccinia virus deleted in two genes involved in nucleotide metabolism. Mol Ther Oncolytics 2019; 14: 1–14 https://doi.org/10.1016/j.omto.2019.03.005
pmid: 31011628
149
P Erbs, E Regulier, J Kintz, P Leroy, Y Poitevin, F Exinger, R Jund, M Mehtali. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60(14): 3813–3822
pmid: 10919655
150
E Smith, J Breznik, BD Lichty. Strategies to enhance viral penetration of solid tumors. Hum Gene Ther 2011; 22(9): 1053–1060 https://doi.org/10.1089/hum.2010.227
pmid: 21443415
151
JH Kim, YS Lee, H Kim, JH Huang, AR Yoon, CO Yun. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98(20): 1482–1493 https://doi.org/10.1093/jnci/djj397
pmid: 17047197
152
S Schäfer, S Weibel, U Donat, Q Zhang, RJ Aguilar, NG Chen, AA Szalay. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012; 12(1): 366 https://doi.org/10.1186/1471-2407-12-366
pmid: 22917220
153
N Dmitrieva, L Yu, M Viapiano, TP Cripe, EA Chiocca, JC Glorioso, B Kaur. Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res 2011; 17(6): 1362–1372 https://doi.org/10.1158/1078-0432.CCR-10-2213
154
S Guedan, JJ Rojas, A Gros, E Mercade, M Cascallo, R Alemany. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 2010; 18(7): 1275–1283 https://doi.org/10.1038/mt.2010.79
pmid: 20442708
155
A Rodríguez-García, M Giménez-Alejandre, JJ Rojas, R Moreno, M Bazan-Peregrino, M Cascalló, R Alemany. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res 2015; 21(6): 1406–1418 https://doi.org/10.1158/1078-0432.CCR-14-2213
pmid: 25391696
156
G Pascual-Pasto, M Bazan-Peregrino, NG Olaciregui, CA Restrepo-Perdomo, A Mato-Berciano, D Ottaviani, K Weber, G Correa, S Paco, M Vila-Ubach, M Cuadrado-Vilanova, H Castillo-Ecija, G Botteri, L Garcia-Gerique, H Moreno-Gilabert, M Gimenez-Alejandre, P Alonso-Lopez, M Farrera-Sal, S Torres-Manjon, D Ramos-Lozano, R Moreno, I Aerts, F Doz, N Cassoux, E Chapeaublanc, M Torrebadell, M Roldan, A König, M Suñol, J Claverol, C Lavarino, T Carmen de, L Fu, F Radvanyi, FL Munier, J Catalá-Mora, J Mora, R Alemany, M Cascalló, GL Chantada, AM Carcaboso. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2019; 11(476): eaat9321 https://doi.org/10.1126/scitranslmed.aat9321
KS Siveen, K Prabhu, R Krishnankutty, S Kuttikrishnan, M Tsakou, FQ Alali, S Dermime, RM Mohammad, S Uddin. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges. Curr Vasc Pharmacol 2017; 15(4): 339–351 https://doi.org/10.2174/1570161115666170105124038
pmid: 28056756
159
A Frentzen, YA Yu, N Chen, Q Zhang, S Weibel, V Raab, AA Szalay. Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proc Natl Acad Sci USA 2009; 106(31): 12915–12920 https://doi.org/10.1073/pnas.0900660106
pmid: 19617539
160
JM Goodwin, AD Schmitt, CM McGinn, BC Fuchs, D Kuruppu, KK Tanabe, M Lanuti. Angiogenesis inhibition using an oncolytic herpes simplex virus expressing endostatin in a murine lung cancer model. Cancer Invest 2012; 30(3): 243–250 https://doi.org/10.3109/07357907.2012.654870
pmid: 22360364
161
B Hutzen, HK Bid, PJ Houghton, CR Pierson, K Powell, A Bratasz, C Raffel, AW Studebaker. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer 2014; 14(1): 206 https://doi.org/10.1186/1471-2407-14-206
pmid: 24646176
162
T Tsuji, M Nakamori, M Iwahashi, M Nakamura, T Ojima, T Iida, M Katsuda, K Hayata, Y Ino, T Todo, H Yamaue. An armed oncolytic herpes simplex virus expressing thrombospondin-1 has an enhanced in vivo antitumor effect against human gastric cancer. Int J Cancer 2013; 132(2): 485–494 https://doi.org/10.1002/ijc.27681
pmid: 22729516
D Haddad. Genetically engineered vaccinia viruses as agents for cancer treatment, imaging, and transgene delivery. Front Oncol 2017; 7: 96 https://doi.org/10.3389/fonc.2017.00096
pmid: 28589082
165
E Domingo-Musibay, C Allen, C Kurokawa, JJ Hardcastle, I Aderca, P Msaouel, A Bansal, H Jiang, TR DeGrado, E Galanis. Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther 2014; 21(11): 483–490 https://doi.org/10.1038/cgt.2014.54
pmid: 25394505
166
K Jiang, C Song, L Kong, L Hu, G Lin, T Ye, G Yao, Y Wang, H Chen, W Cheng, MP Barr, Q Liu, G Zhang, C Ding, S Meng. Recombinant oncolytic Newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells. BMC Cancer 2018; 18(1): 746 https://doi.org/10.1186/s12885-018-4522-3
pmid: 30021550
167
S Aref, K Bailey, A Fielding. Measles to the rescue: a review of oncolytic measles virus. Viruses 2016; 8(10): 294 https://doi.org/10.3390/v8100294
pmid: 27782084
168
KW Peng, S Facteau, T Wegman, D O’Kane, SJ Russell. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002; 8(5): 527–531 https://doi.org/10.1038/nm0502-527
pmid: 11984600
DB Johnson, I Puzanov, MC Kelley. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7(6): 611–619 https://doi.org/10.2217/imt.15.35
pmid: 26098919
RH Andtbacka, SS Agarwala, DW Ollila, S Hallmeyer, M Milhem, T Amatruda, JJ Nemunaitis, KJ Harrington, L Chen, M Shilkrut, M Ross, HL Kaufman. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016; 38(12): 1752–1758 https://doi.org/10.1002/hed.24522
pmid: 27407058
173
IR Eissa, Y Naoe, I Bustos-Villalobos, T Ichinose, M Tanaka, W Zhiwen, N Mukoyama, T Morimoto, N Miyajima, H Hitoki, S Sumigama, B Aleksic, Y Kodera, H Kasuya. Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 2017; 7: 149 https://doi.org/10.3389/fonc.2017.00149
pmid: 28770166
174
N Martínez-Vélez, M Garcia-Moure, M Marigil, M González-Huarriz, M Puigdelloses, J Gallego Pérez-Larraya, M Zalacaín, L Marrodán, M Varela-Guruceaga, V Laspidea, JJ Aristu, LI Ramos, S Tejada-Solís, R Díez-Valle, C Jones, A Mackay, JA Martínez-Climent, MJ García-Barchino, E Raabe, M Monje, OJ Becher, MP Junier, EA El-Habr, H Chneiweiss, G Aldave, H Jiang, J Fueyo, A Patiño-García, C Gomez-Manzano, MM Alonso. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nat Commun 2019; 10(1): 2235 https://doi.org/10.1038/s41467-019-10043-0
pmid: 31138805
175
O Nakajima, D Ichimaru, Y Urata, T Fujiwara, T Horibe, M Kohno, K Kawakami. Use of telomelysin (OBP-301) in mouse xenografts of human head and neck cancer. Oncol Rep 2009; 22(5): 1039–1043
pmid: 19787218
176
CJ Breitbach, K Parato, J Burke, TH Hwang, JC Bell, DH Kirn. Pexa-Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic. Curr Opin Virol 2015; 13: 49–54 https://doi.org/10.1016/j.coviro.2015.03.016
pmid: 25900822
177
P Singh, SK Pal, A Alex, N Agarwal. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol 2015; 11(15): 2137–2148 https://doi.org/10.2217/fon.15.120
pmid: 26235179
178
SA Felt, VZ Grdzelishvili. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98(12): 2895–2911 https://doi.org/10.1099/jgv.0.000980
pmid: 29143726
A Desjardins, M Gromeier, JE Herndon 2nd, N Beaubier, DP Bolognesi, AH Friedman, HS Friedman, F McSherry, AM Muscat, S Nair, KB Peters, D Randazzo, JH Sampson, G Vlahovic, WT Harrison, RE McLendon, D Ashley, DD Bigner. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018; 379(2): 150–161 https://doi.org/10.1056/NEJMoa1716435
pmid: 29943666
181
MJ Atherton, KB Stephenson, JK Nikota, QN Hu, A Nguyen, Y Wan, BD Lichty. Preclinical development of peptide vaccination combined with oncolytic MG1-E6E7 for HPV-associated cancer. Vaccine 2018; 36(16): 2181–2192 https://doi.org/10.1016/j.vaccine.2018.02.070
pmid: 29544689
182
J Gong, E Sachdev, AC Mita, MM Mita. Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 2016; 6(1):25–42 https://doi.org/10.5662/wjm.v6.i1.25
pmid: 27019795
183
K Geletneky, JPF Nüesch, A Angelova, I Kiprianova, J Rommelaere. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13: 17–24 https://doi.org/10.1016/j.coviro.2015.03.008
pmid: 25841215
184
J Hajda, M Lehmann, O Krebs, M Kieser, K Geletneky, D Jäger, M Dahm, B Huber, T Schöning, O Sedlaczek, A Stenzinger, N Halama, V Daniel, B Leuchs, A Angelova, J Rommelaere, CE Engeland, C Springfeld, G Ungerechts. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol. BMC Cancer 2017; 17(1): 576 https://doi.org/10.1186/s12885-017-3604-y
pmid: 28851316
185
RM Lorence, MS Roberts, JD O’Neil, WS Groene, JA Miller, SN Mueller, MK Bamat. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 2007; 7(2): 157–167 https://doi.org/10.2174/156800907780058853
pmid: 17346107
186
M Bauzon, T Hermiston. Armed therapeutic viruses — a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol 2014; 5: 74 https://doi.org/10.3389/fimmu.2014.00074
pmid: 24605114
JE Rosenberg, J Hoffman-Censits, T Powles, MS van der Heijden, AV Balar, A Necchi, N Dawson, PH O’Donnell, A Balmanoukian, Y Loriot, S Srinivas, MM Retz, P Grivas, RW Joseph, MD Galsky, MT Fleming, DP Petrylak, JL Perez-Gracia, HA Burris, D Castellano, C Canil, J Bellmunt, D Bajorin, D Nickles, R Bourgon, GM Frampton, N Cui, S Mariathasan, O Abidoye, GD Fine, R Dreicer. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016; 387(10031): 1909–1920 https://doi.org/10.1016/S0140-6736(16)00561-4
pmid: 26952546
191
HO Alsaab, S Sau, R Alzhrani, K Tatiparti, K Bhise, SK Kashaw, AK Iyer. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561 https://doi.org/10.3389/fphar.2017.00561
pmid: 28878676
A Kalbasi, A Ribas. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 2020; 20(1): 25–39
pmid: 31570880
194
Z Liu, R Ravindranathan, P Kalinski, ZS Guo, DL Bartlett. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun 2017; 8(1): 14754 https://doi.org/10.1038/ncomms14754
pmid: 28345650
195
CY Chen, PY Wang, B Hutzen, L Sprague, HM Swain, JK Love, JR Stanek, L Boon, J Conner, TP Cripe. Cooperation of oncolytic herpes virotherapy and PD-1 blockade in murine rhabdomyosarcoma models. Sci Rep 2017; 7(1): 2396 https://doi.org/10.1038/s41598-017-02503-8
pmid: 28539588
196
J Hardcastle, L Mills, CS Malo, F Jin, C Kurokawa, H Geekiyanage, M Schroeder, J Sarkaria, AJ Johnson, E Galanis. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro Oncol 2017; 19(4): 493–502
pmid: 27663389
197
W Shen, MM Patnaik, A Ruiz, SJ Russell, KW Peng. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 2016; 127(11): 1449–1458 https://doi.org/10.1182/blood-2015-06-652503
pmid: 26712908
198
D Saha, RL Martuza, SD Rabkin. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 2017; 32(2): 253–267.e5 https://doi.org/10.1016/j.ccell.2017.07.006
pmid: 28810147
199
L Fend, T Yamazaki, C Remy, C Fahrner, M Gantzer, V Nourtier, X Préville, E Quéméneur, O Kepp, J Adam, A Marabelle, JM Pitt, G Kroemer, L Zitvogel. Immune checkpoint blockade, immunogenic chemotherapy or IFN-a blockade boost the local and abscopal effects of oncolytic virotherapy. Cancer Res 2017; 77(15): 4146–4157 https://doi.org/10.1158/0008-5472.CAN-16-2165
pmid: 28536278
200
A Ribas, R Dummer, I Puzanov, A VanderWalde, RHI Andtbacka, O Michielin, AJ Olszanski, J Malvehy, J Cebon, E Fernandez, JM Kirkwood, TF Gajewski, L Chen, KS Gorski, AA Anderson, SJ Diede, ME Lassman, J Gansert, FS Hodi, GV Long. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170(6): 1109–1119.e10 https://doi.org/10.1016/j.cell.2017.08.027
201
L Sun, P Funchain, JM Song, P Rayman, C Tannenbaum, J Ko, M Mcnamara, C Marcela Diaz-Montero, B Gastman. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018; 6(1): 36 https://doi.org/10.1186/s40425-018-0337-7
pmid: 29764498
202
I Puzanov, MM Milhem, D Minor, O Hamid, A Li, L Chen, M Chastain, KS Gorski, A Anderson, J Chou, HL Kaufman, RH Andtbacka. Talimogene Laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 2016; 34(22): 2619–2626 https://doi.org/10.1200/JCO.2016.67.1529
pmid: 27298410
203
J Chesney, I Puzanov, F Collichio, P Singh, MM Milhem, J Glaspy, O Hamid, M Ross, P Friedlander, C Garbe, TF Logan, A Hauschild, C Lebbé, L Chen, JJ Kim, J Gansert, RHI Andtbacka, HL Kaufman. Randomized, open-label phase II study evaluating the efficacy and safety of Talimogene Laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 2018; 36(17): 1658–1667 https://doi.org/10.1200/JCO.2017.73.7379
pmid: 28981385
204
A Wing, CA Fajardo, AD Posey, C Shaw, T Da, RM Young, R Alemany, CH June, S Guedan. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res 2018; 6(5): 605–616 https://doi.org/10.1158/2326-6066.CIR-17-0314
205
K Watanabe, Y Luo, T Da, S Guedan, M Ruella, J Scholler, B Keith, RM Young, B Engels, S Sorsa, M Siurala, R Havunen, S Tähtinen, A Hemminki, CH June. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018; 3(7): e99573 https://doi.org/10.1172/jci.insight.99573
pmid: 29618658
206
N Nishio, I Diaconu, H Liu, V Cerullo, I Caruana, V Hoyos, L Bouchier-Hayes, B Savoldo, G Dotti. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014; 74(18): 5195–5205 https://doi.org/10.1158/0008-5472.CAN-14-0697
pmid: 25060519
207
A Rosewell Shaw, CE Porter, N Watanabe, K Tanoue, A Sikora, S Gottschalk, MK Brenner, M Suzuki. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther 2017; 25(11): 2440–2451 https://doi.org/10.1016/j.ymthe.2017.09.010
pmid: 28974431
208
K Tanoue, A Rosewell Shaw, N Watanabe, C Porter, B Rana, S Gottschalk, M Brenner, M Suzuki. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res 2017; 77(8): 2040–2051 https://doi.org/10.1158/0008-5472.CAN-16-1577
pmid: 28235763
209
JT Pento. Monoclonal antibodies for the treatment of cancer. Anticancer Res 2017; 37(11): 5935–5939
pmid: 29061772
PC Tumeh, CL Harview, JH Yearley, IP Shintaku, EJ Taylor, L Robert, B Chmielowski, M Spasic, G Henry, V Ciobanu, AN West, M Carmona, C Kivork, E Seja, G Cherry, AJ Gutierrez, TR Grogan, C Mateus, G Tomasic, JA Glaspy, RO Emerson, H Robins, RH Pierce, DA Elashoff, C Robert, A Ribas. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568–571 https://doi.org/10.1038/nature13954
pmid: 25428505
213
K Taipale, I Liikanen, J Juhila, A Karioja-Kallio, M Oksanen, R Turkki, N Linder, J Lundin, A Ristimäki, A Kanerva, A Koski, T Joensuu, M Vähä-Koskela, A Hemminki. T-cell subsets in peripheral blood and tumors of patients treated with oncolytic adenoviruses. Mol Ther 2015; 23(5): 964–973 https://doi.org/10.1038/mt.2015.17
pmid: 25655312
214
S Pesonen, I Diaconu, L Kangasniemi, T Ranki, A Kanerva, SK Pesonen, U Gerdemann, AM Leen, K Kairemo, M Oksanen, E Haavisto, SL Holm, A Karioja-Kallio, S Kauppinen, KP Partanen, L Laasonen, T Joensuu, T Alanko, V Cerullo, A Hemminki. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer Res 2012; 72(7): 1621–1631 https://doi.org/10.1158/0008-5472.CAN-11-3001
pmid: 22323527
215
P Letendre, V Monga, M Milhem, Y Zakharia. Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol 2017; 13(7): 625–636 https://doi.org/10.2217/fon-2016-0385
pmid: 27882779
KB Long, RM Young, AC Boesteanu, MM Davis, JJ Melenhorst, SF Lacey, DA DeGaramo, BL Levine, JA Fraietta. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front Immunol 2018; 9: 2740 https://doi.org/10.3389/fimmu.2018.02740
pmid: 30559740
221
RJ Brentjens, ML Davila, I Riviere, J Park, X Wang, LG Cowell, S Bartido, J Stefanski, C Taylor, M Olszewska, O Borquez-Ojeda, J Qu, T Wasielewska, Q He, Y Bernal, IV Rijo, C Hedvat, R Kobos, K Curran, P Steinherz, J Jurcic, T Rosenblat, P Maslak, M Frattini, M Sadelain. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra38 https://doi.org/10.1126/scitranslmed.3005930
pmid: 23515080
222
J Li, W Li, K Huang, Y Zhang, G Kupfer, Q Zhao. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 2018; 11(1): 22 https://doi.org/10.1186/s13045-018-0568-6
pmid: 29433552
223
TF Gajewski, SR Woo, Y Zha, R Spaapen, Y Zheng, L Corrales, S Spranger. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 2013; 25(2): 268–276 https://doi.org/10.1016/j.coi.2013.02.009
pmid: 23579075
224
Y Lavin, S Kobayashi, A Leader, ED Amir, N Elefant, C Bigenwald, R Remark, R Sweeney, CD Becker, JH Levine, K Meinhof, A Chow, S Kim-Shulze, A Wolf, C Medaglia, H Li, JA Rytlewski, RO Emerson, A Solovyov, BD Greenbaum, C Sanders, M Vignali, MB Beasley, R Flores, S Gnjatic, D Pe’er, A Rahman, I Amit, M Merad. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017; 169(4): 750–765.e17 https://doi.org/10.1016/j.cell.2017.04.014
pmid: 28475900
AM Huehls, TA Coupet, CL Sentman. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 2015; 93(3): 290–296 https://doi.org/10.1038/icb.2014.93
pmid: 25367186
227
J Stieglmaier, J Benjamin, D Nagorsen. Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer. Expert Opin Biol Ther 2015; 15(8): 1093–1099 https://doi.org/10.1517/14712598.2015.1041373
pmid: 25971805
228
EM Scott, MR Duffy, JD Freedman, KD Fisher, LW Seymour. Solid tumor immunotherapy with T cell engager-armed oncolytic viruses. Macromol Biosci 2018; 18(1): 1700187 https://doi.org/10.1002/mabi.201700187
pmid: 28902983
229
A Cheung, HJ Bax, DH Josephs, KM Ilieva, G Pellizzari, J Opzoomer, J Bloomfield, M Fittall, A Grigoriadis, M Figini, S Canevari, JF Spicer, AN Tutt, SN Karagiannis. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574 https://doi.org/10.18632/oncotarget.9651
pmid: 27248175
230
SN Zolov, SP Rietberg, CL Bonifant. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy 2018; 20(10): 1259–1266 https://doi.org/10.1016/j.jcyt.2018.07.005
pmid: 30309710
231
L Cherkassky, A Morello, J Villena-Vargas, Y Feng, DS Dimitrov, DR Jones, M Sadelain, PS Adusumilli. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016; 126(8): 3130–3144 https://doi.org/10.1172/JCI83092
pmid: 27454297
232
KM Mahoney, PD Rennert, GJ Freeman. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14(8): 561–584 https://doi.org/10.1038/nrd4591
pmid: 26228759
233
I Serganova, E Moroz, I Cohen, M Moroz, M Mane, J Zurita, L Shenker, V Ponomarev, R Blasberg. Enhancement of PSMA-directed CAR adoptive immunotherapy by PD-1/PD-L1 blockade. Mol Ther Oncolytics 2017; 4: 41–54 https://doi.org/10.1016/j.omto.2016.11.005
pmid: 28345023
234
MA Postow, R Sidlow, MD Hellmann. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018; 378(2): 158–168 https://doi.org/10.1056/NEJMra1703481
pmid: 29320654
235
IM Svane, EM Verdegaal. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother 2014; 63(10): 1081–1091 https://doi.org/10.1007/s00262-014-1580-5
pmid: 25099366
236
MJ Besser, R Shapira-Frommer, O Itzhaki, AJ Treves, DB Zippel, D Levy, A Kubi, N Shoshani, D Zikich, Y Ohayon, D Ohayon, B Shalmon, G Markel, R Yerushalmi, S Apter, A Ben-Nun, E Ben-Ami, A Shimoni, A Nagler, J Schachter. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 2013; 19(17): 4792–4800 https://doi.org/10.1158/1078-0432.CCR-13-0380
237
JM Santos, R Havunen, M Siurala, V Cervera-Carrascon, S Tähtinen, S Sorsa, M Anttila, P Karell, A Kanerva, A Hemminki. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int J Cancer 2017; 141(7): 1458–1468 https://doi.org/10.1002/ijc.30839
pmid: 28614908
238
S Hamano, Y Mori, M Aoyama, H Kataoka, M Tanaka, M Ebi, E Kubota, T Mizoshita, S Tanida, RN Johnston, K Asai, T Joh. Oncolytic reovirus combined with trastuzumab enhances antitumor efficacy through TRAIL signaling in human HER2-positive gastric cancer cells. Cancer Lett 2015; 356(2 Pt B): 846–854 https://doi.org/10.1016/j.canlet.2014.10.046
pmid: 25444894
239
G Tan, H Kasuya, TT Sahin, K Yamamura, Z Wu, Y Koide, Y Hotta, T Shikano, S Yamada, A Kanzaki, T Fujii, H Sugimoto, S Nomoto, Y Nishikawa, M Tanaka, N Tsurumaru, T Kuwahara, S Fukuda, T Ichinose, T Kikumori, S Takeda, A Nakao, Y Kodera. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer 2015; 136(7): 1718–1730 https://doi.org/10.1002/ijc.29163
pmid: 25156870
240
PK Bommareddy, S Aspromonte, A Zloza, SD Rabkin, HL Kaufman. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018; 10(471): eaau0417 https://doi.org/10.1126/scitranslmed.aau0417
pmid: 30541787
241
S Abdullahi, M Jäkel, SJ Behrend, K Steiger, G Topping, T Krabbe, A Colombo, V Sandig, TS Schiergens, WE Thasler, J Werner, SF Lichtenthaler, RM Schmid, O Ebert, J Altomonte. A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma. J Virol 2018; 92(23): e01386-18 https://doi.org/10.1128/JVI.01386-18
pmid: 30232179