Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (5): 693-703   https://doi.org/10.1007/s11684-020-0777-6
  本期目录
Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance
Awanish Kumar(), Anil Kumar
Department of Biotechnology, National Institute of Technology, Raipur-492010 (Chhattisgarh), India
 全文: PDF(828 KB)   HTML
Abstract

Resistome is a cluster of microbial genes encoding proteins with necessary functions to resist the action of antibiotics. Resistome governs essential and separate biological functions to develop resistance against antibiotics. The widespread clinical and nonclinical uses of antibiotics over the years have combined to select antibiotic-resistant determinants and develop resistome in bacteria. At present, the emergence of drug resistance because of resistome is a significant problem faced by clinicians for the treatment of Salmonella infection. Antibiotic resistome is a dynamic and ever-expanding component in Salmonella. The foundation of resistome in Salmonella is laid long before; therefore, the antibiotic resistome of Salmonella is reviewed, discussed, and summarized. We have searched the literature using PubMed, MEDLINE, and Google Scholar with related key terms (resistome, Salmonella, antibiotics, drug resistance) and prepared this review. In this review, we summarize the status of resistance against antibiotics in S. typhi, highlight the seminal work in the resistome of S. typhi and the genes involved in the antibiotic resistance, and discuss the various methods to identify S. typhi resistome for the proactive identification of this infection and quick diagnosis of the disease.

Key wordsS. typhi    antibiotic resistance    mechanism    resistome    identification methods
收稿日期: 2019-09-13      出版日期: 2021-11-01
Corresponding Author(s): Awanish Kumar   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(5): 693-703.
Awanish Kumar, Anil Kumar. Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance. Front. Med., 2021, 15(5): 693-703.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-020-0777-6
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I5/693
Fig.1  
Fig.2  
S.N. Gene Resistance against antibiotics Product/function Reference
1 Carb-like (carbenicillinase) gene, blaCMY-2, TEM-1, ?PSE-1 Cephalosporin (cefalotin, cefuroxime, cefuroximeaxetil)
Penicillins, b-lactams (ampicillin, ampicillin sulbactam, and piperacillin/tazobactam)
b-lactamase enzyme, extended spectrum
b-lactamases (ESBLs)
Das et al., 2017 [11]; El-Tayeb et al., 2017 [12]; Frye et al., 2013 [16]
2 gyrB, gyrA, parC Ciprofloxacin (fluoroquinolone) Mutation in QRDR Das et al., 2017 [11]; El-Tayeb et al., 2017 [12]
3 gyrA Nalidixic acid Mutation Das et al., 2017 [11]; El-Tayeb et al., 2017 [12]
4 aadA, strA, and strB Streptomycin Mutation Das et al., 2017 [11]
5 catA1, floR, cmlA, cat1, cat2 Chloramphenicol Mutation El-Tayeb et al., 2017 [12]; Frye et al., 2013 [16]
6 sul1, sul2, sul3and dfrVII, dfrA7/dfrA15 Co-trimoxazole Act on the folic acid pathway in bacteria by interfering with the production of dihydrofolic acid Das et al., 2017 [11]
7 Allelesof aacC, aadA, aadB, ant, aphA, and StrAB Aminoglycosides (gentamicin, amikacin, and tobramycin) Binding to the 30S ribosomal subunit inhibiting protein translation El-Tayeb et al., 2017 [12]; Frye et al. 2013 [16]
8 Alleles of tetA, tetB, tetC, tetD, ?tetG, tetR, tetK, tetL, tetM, tetO, ?tetS Tetracycline Targets the 30S subunit of the bacterial ribosome binding to the ribosome and inhibiting protein synthesis Das et al., 2017 [11]; Frye et al., 2013 [16]
Tab.1  
1 GO Abakpa, VJ Umoh, JB Ameh, SE Yakubu, JKP Kwaga, S Kamaruzaman. Diversity and antimicrobial resistance of Salmonella enterica isolated from fresh produce and environmental samples. Environ Nanotechnol Monit Manag 2015; 3: 38–46
https://doi.org/10.1016/j.enmm.2014.11.004
2 LS Wei, W Wee, JYF Siong, DF Syamsumir. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 2011; 49(10): 670–674
pmid: 22071643
3 A Mahapatra, S Patro, S Choudhury, A Padhee, R Das. Emerging enteric fever due to switching biotype of Salmonella (paratyphi A) in Eastern Odisha. Indian J Pathol Microbiol 2016; 59(3): 327–329
https://doi.org/10.4103/0377-4929.188124 pmid: 27510670
4 JA Crump, ED Mintz. Global trends in typhoid and paratyphoid fever. Clin Infect Dis 2010; 15; 50(2): 241–246
5 A Tatavarthy, VA Luna, PT Amuso. How multidrug resistance in typhoid fever affects treatment options. Ann N Y Acad Sci 2014; 1323(1): 76–90
https://doi.org/10.1111/nyas.12490 pmid: 25069595
6 WHO. Vaccine-preventable diseases surveillance standards: typhoid and other invasive salmonellosis. WHO 2019; 1–13. (accessed January 11, 2020)
7 S Chitnis, V Chitnis, N Hemvani, DS Chitnis. Ciprofloxacin therapy for typhoid fever needs reconsideration. J Infect Chemother 2006; 12(6): 402–404
https://doi.org/10.1007/s10156-006-0472-9 pmid: 17235649
8 CS Chiou, TL Lauderdale, DC Phung, H Watanabe, JC Kuo, PJ Wang, YY Liu, SY Liang, PC Chen. Antimicrobial resistance in Salmonella enterica serovar typhi isolates from Bangladesh, Indonesia, Chinese Taiwan, and Vietnam. Antimicrob Agents Chemother 2014; 58(11): 6501–6507
https://doi.org/10.1128/AAC.03608-14 pmid: 25136011
9 S Rai, S Jain, KN Prasad, U Ghoshal, TN Dhole. Rationale of azithromycin prescribing practices for enteric fever in India. Indian J Med Microbiol 2012; 30(1): 30–33
https://doi.org/10.4103/0255-0857.93017 pmid: 22361757
10 RJ Hassing, WH Goessens, W van Pelt, DJ Mevius, BH Stricker, N Molhoek, A Verbon, PJ van Genderen. Salmonella subtypes with increased MICs for azithromycin in travelers returned to The Netherlands. Emerg Infect Dis 2014; 20(4): 705–708
https://doi.org/10.3201/eid2004.131536 pmid: 24655478
11 S Das, S Samajpati, U Ray, I Roy, S Dutta. Antimicrobial resistance and molecular subtypes of Salmonella enterica serovar typhi isolates from Kolkata, India over a 15 years period 1998–2012. Int J Med Microbiol 2017; 307(1): 28–36
https://doi.org/10.1016/j.ijmm.2016.11.006 pmid: 27916384
12 MA El-Tayeb, ASS Ibrahim, AA Al-Salamah, KS Almaary, YB Elbadawi. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz J Microbiol 2017; 48(3): 499–508
https://doi.org/10.1016/j.bjm.2016.09.021 pmid: 28245965
13 S Sood, A Kapil, N Dash, BK Das, V Goel, P Seth. Paratyphoid fever in India: an emerging problem. Emerg Infect Dis 1999; 5(3): 483–484
https://doi.org/10.3201/eid0503.990329 pmid: 10341194
14 SS Bhattacharya, U Dash. A sudden rise in occurrence of Salmonella paratyphi a infection in Rourkela, Orissa. Indian J Med Microbiol 2007; 25(1): 78–79
https://doi.org/10.4103/0255-0857.31077 pmid: 17377367
15 B Veeraraghavan, S Anandan, DP Muthuirulandi Sethuvel, N Puratchiveeran, K Walia, NK Devanga Ragupathi. Molecular characterization of intermediate susceptible typhoidal Salmonella to ciprofloxacin, and its impact. Mol Diagn Ther 2016; 20(3): 213–219
https://doi.org/10.1007/s40291-016-0191-6 pmid: 26951258
16 JG Frye, CR Jackson. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 2013; 4(4): 135
https://doi.org/10.3389/fmicb.2013.00135 pmid: 23734150
17 A Bertolini, M Castelli, S Genedani, M Garuti. Trimethoprim enhances the antibacterial activity of nalidixic and oxolinic acids and delays the emergence of resistance. Experientia 1980; 36(2): 243–244
https://doi.org/10.1007/BF01953757 pmid: 7371772
18 N Datta, H Richards, C Datta. Salmonella typhi in vivo acquires resistance to both chloramphenicol and co-trimoxazole. Lancet 1981; 317(8231): 1181–1183
https://doi.org/10.1016/s0140-6736(81)92350-3
19 S Mandal, MD Mandal, NK Pal. Synergism of ciprofloxacin and trimethoprim against Salmonella enterica serovar typhi isolates showing reduced susceptibility to ciprofloxacin. Chemotherapy 2004; 50(3): 152–154
https://doi.org/10.1159/000077890 pmid: 15272228
20 OC Amira, NU Okubadejo. Frequency of complementary and alternative medicine utilization in hypertensive patients attending an urban tertiary care centre in Nigeria. BMC Complement Altern Med 2007; 7: 30
https://doi.org/10.1186/1472-6882-7-30 pmid: 17903257
21 WH Lewis, MP Elvin-Lewis. Medicinal plants as sources of new therapeutics. Ann Mo Bot Gard 1995; 82(1): 16–24
https://doi.org/10.2307/2399976
22 F Guilhelmelli, N Vilela, P Albuquerque, LS Derengowski, I Silva-Pereira, CM Kyaw. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013; 4: 353
https://doi.org/10.3389/fmicb.2013.00353 pmid: 24367355
23 SA Zaki, S Karande. Multidrug-resistant typhoid fever: a review. J Infect Dev Ctries 2011; 5(5): 324–337
https://doi.org/10.3855/jidc.1405 pmid: 21628808
24 H Ugboko, N De. Mechanisms of antibiotic resistance in Salmonella typhi. Int J Curr Microbiol Appl Sci 2014; 3: 461–476
25 K Nishino, E Nikaido, A Yamaguchi. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta 2009; 1794(5): 834–843
https://doi.org/10.1016/j.bbapap.2009.02.002 pmid: 19230852
26 A Shaheen, F Ismat, M Iqbal, A Haque, R De Zorzi, O Mirza, T Walz, M Rahman. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella typhi. J Infect Chemother 2015; 21(5): 357–362
https://doi.org/10.1016/j.jiac.2015.01.002 pmid: 25724589
27 E van Duijkeren, AK Schink, MC Roberts, Y Wang, S Schwarz. Mechanisms of bacterial resistance to antimicrobial agents. Microbiol Spectr 2018; 6(1): 10
pmid: 29327680
28 V Sharma, S Dahiya, P Jangra, BK Das, R Kumar, S Sood, A Kapil. Study of the role of efflux pump in ciprofloxacin resistance in Salmonella enterica serotype typhi. Indian J Med Microbiol 2013; 31(4): 374–378
https://doi.org/10.4103/0255-0857.118898 pmid: 24064645
29 SI Miller. Antibiotic resistance and regulation of the Gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio 2016; 7(5): e01541–e16
https://doi.org/10.1128/mBio.01541-16 pmid: 27677793
30 T Mascher. Signaling diversity and evolution of extracytoplasmic function (ECF) s factors. Curr Opin Microbiol 2013; 16(2): 148–155
https://doi.org/10.1016/j.mib.2013.02.001 pmid: 23466210
31 VK Mutalik, G Nonaka, SE Ades, VA Rhodius, CA Gross. Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. J Bacteriol 2009; 191(23): 7279–7287
https://doi.org/10.1128/JB.01047-09 pmid: 19783623
32 X Xie, H Zhang, Y Zheng, A Li, M Wang, H Zhou, X Zhu, Z Schneider, L Chen, BN Kreiswirth, H Du. RpoE is a putative antibiotic resistance regulator of Salmonella enteric serovar typhi. Curr Microbiol 2016; 72(4): 457–464
https://doi.org/10.1007/s00284-015-0983-7 pmid: 26742769
33 H Du, M Wang, Z Luo, B Ni, F Wang, Y Meng, S Xu, X Huang. Coregulation of gene expression by sigma factors RpoE and RpoS in Salmonella enterica serovar typhi during hyperosmotic stress. Curr Microbiol 2011; 62(5): 1483–1489
https://doi.org/10.1007/s00284-011-9890-8 pmid: 21311887
34 LC Seaver, JA Imlay. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 2001; 183(24): 7182–7189
https://doi.org/10.1128/JB.183.24.7182-7189.2001 pmid: 11717277
35 M Hébrard, JPM Viala, S Méresse, F Barras, L Aussel. Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 2009; 191(14): 4605–4614
https://doi.org/10.1128/JB.00144-09 pmid: 19447905
36 M Hillion, H Antelmann. Thiol-based redox switches in prokaryotes. Biol Chem 2015; 396(5): 415–444
https://doi.org/10.1515/hsz-2015-0102 pmid: 25720121
37 VK Wong, S Baker, DJ Pickard, J Parkhill, AJ Page, NA Feasey, RA Kingsley, NR Thomson, JA Keane, FX Weill, DJ Edwards, J Hawkey, SR Harris, AE Mather, AK Cain, J Hadfield, PJ Hart, NT Thieu, EJ Klemm, DA Glinos, RF Breiman, CH Watson, S Kariuki, MA Gordon, RS Heyderman, C Okoro, J Jacobs, O Lunguya, WJ Edmunds, C Msefula, JA Chabalgoity, M Kama, K Jenkins, S Dutta, F Marks, J Campos, C Thompson, S Obaro, CA MacLennan, C Dolecek, KH Keddy, AM Smith, CM Parry, A Karkey, EK Mulholland, JI Campbell, S Dongol, B Basnyat, M Dufour, D Bandaranayake, TT Naseri, SP Singh, M Hatta, P Newton, RS Onsare, L Isaia, D Dance, V Davong, G Thwaites, L Wijedoru, JA Crump, E De Pinna, S Nair, EJ Nilles, DP Thanh, P Turner, S Soeng, M Valcanis, J Powling, K Dimovski, G Hogg, J Farrar, KE Holt, G Dougan. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella typhi identifies inter- and intracontinental transmission events. Nat Genet 2015; 47(6): 632–639
https://doi.org/10.1038/ng.3281 pmid: 25961941
38 H Pai, JH Byeon, S Yu, BK Lee, S Kim. Salmonella enterica serovar typhi strains isolated in Korea containing a multidrug resistance class 1 integron. Antimicrob Agents Chemother 2003; 47(6): 2006–2008
https://doi.org/10.1128/AAC.47.6.2006-2008.2003 pmid: 12760886
39 Y Pfeifer, J Matten, W Rabsch. Salmonella enterica serovar typhi with CTX-M β-lactamase, Germany. Emerg Infect Dis 2009; 15(9): 1533–1535
https://doi.org/10.3201/eid1509.090567 pmid: 19788837
40 SK Sy, L Zhuang, H Derendorf. Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin Drug Metab Toxicol 2016; 12(1): 93–114
https://doi.org/10.1517/17425255.2016.1123250 pmid: 26652832
41 E Asín-Prieto, A Rodríguez-Gascón, A Isla. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 2015; 21(5): 319–329
https://doi.org/10.1016/j.jiac.2015.02.001 pmid: 25737147
42 PG Ambrose, SM Bhavnani, CM Rubino, A Louie, T Gumbo, A Forrest, GL Drusano. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 2007; 44(1): 79–86
https://doi.org/10.1086/510079 pmid: 17143821
43 J Li, H Hao, G Cheng, X Wang, S Ahmed, MAB Shabbir, Z Liu, M Dai, Z Yuan. The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella typhimurium. Sci Rep 2017; 7(1): 11676
https://doi.org/10.1038/s41598-017-12294-7 pmid: 28916830
44 SJ Lee, EG Awji, NH Park, SC Park. Using in vitro dynamic models to evaluate fluoroquinolone activity against emergence of resistant Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 2017; 61(2): e01756-16
https://doi.org/10.1128/AAC.01756-16 pmid: 27895011
45 PL Toutain, JR del Castillo, A Bousquet-Mélou. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci 2002; 73(2): 105–114
https://doi.org/10.1016/S0034-5288(02)00039-5 pmid: 12204627
46 M Song, M Husain, J Jones-Carson, L Liu, CA Henard, A Vázquez-Torres. Low-molecular-weight thiol-dependent antioxidant and antinitrosative defences in Salmonella pathogenesis. Mol Microbiol 2013; 87(3): 609–622
https://doi.org/10.1111/mmi.12119 pmid: 23217033
47 M Song, JS Kim, L Liu, M Husain, A Vázquez-Torres. Antioxidant defense by thioredoxin can occur independently of canonical thiol-disulfide oxidoreductase enzymatic activity. Cell Rep 2016; 14(12): 2901–2911
https://doi.org/10.1016/j.celrep.2016.02.066 pmid: 26997275
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed