Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (4): 541-550   https://doi.org/10.1007/s11684-020-0780-y
  本期目录
Targeting “undruggable” c-Myc protein by synthetic lethality
Chen Wang1,2,3, Hui Fang2, Jiawei Zhang1(), Ying Gu1,2,3()
1. Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
2. Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
3. Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
 全文: PDF(668 KB)   HTML
Abstract

Synthetic lethal screening, which exploits the combination of mutations that result in cell death, is a promising method for identifying novel drug targets. This method provides a new avenue for targeting “undruggable” proteins, such as c-Myc. Here, we revisit current methods used to target c-Myc and discuss the important functional nodes related to c-Myc in non-oncogene addicted network, whose inhibition may cause a catastrophe for tumor cell destiny but not for normal cells. We further discuss strategies to identify these functional nodes in the context of synthetic lethality. We review the progress and shortcomings of this research field and look forward to opportunities offered by synthetic lethal screening to treat tumors potently.

Key wordssynthetic lethality    undruggable    transcription factor    c-Myc
收稿日期: 2019-06-25      出版日期: 2021-09-23
Corresponding Author(s): Jiawei Zhang,Ying Gu   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(4): 541-550.
Chen Wang, Hui Fang, Jiawei Zhang, Ying Gu. Targeting “undruggable” c-Myc protein by synthetic lethality. Front. Med., 2021, 15(4): 541-550.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-020-0780-y
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I4/541
Fig.1  
Fig.2  
Fig.3  
1 J Pan, Q Deng, C Jiang, X Wang, T Niu, H Li, T Chen, J Jin, W Pan, X Cai, X Yang, M Lu, J Xiao, P Wang. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene 2015; 34(30): 3957–3967
https://doi.org/10.1038/onc.2014.327 pmid: 25284584
2 XX Sun, X He, L Yin, M Komada, RC Sears, MS Dai. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci USA 2015; 112(12): 3734–3739
https://doi.org/10.1073/pnas.1411713112 pmid: 25775507
3 JR Whitfield, ME Beaulieu, L Soucek. Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol 2017; 5: 10
https://doi.org/10.3389/fcell.2017.00010 pmid: 28280720
4 D Dominguez-Sola, CY Ying, C Grandori, L Ruggiero, B Chen, M Li, DA Galloway, W Gu, J Gautier, R Dalla-Favera. Non-transcriptional control of DNA replication by c-Myc. Nature 2007; 448(7152): 445–451
https://doi.org/10.1038/nature05953 pmid: 17597761
5 A Wilson, MJ Murphy, T Oskarsson, K Kaloulis, MD Bettess, GM Oser, AC Pasche, C Knabenhans, HR Macdonald, A Trumpp. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18(22): 2747–2763
https://doi.org/10.1101/gad.313104 pmid: 15545632
6 CM Shachaf, AM Kopelman, C Arvanitis, A Karlsson, S Beer, S Mandl, MH Bachmann, AD Borowsky, B Ruebner, RD Cardiff, Q Yang, JM Bishop, CH Contag, DW Felsher. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004; 431(7012): 1112–1117
https://doi.org/10.1038/nature03043 pmid: 15475948
7 TA Baudino, C McKay, H Pendeville-Samain, JA Nilsson, KH Maclean, EL White, AC Davis, JN Ihle, JL Cleveland. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 2002; 16(19): 2530–2543
https://doi.org/10.1101/gad.1024602 pmid: 12368264
8 JC Lucchesi. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 1968; 59(1): 37–44
pmid: 5683639
9 RL Beijersbergen, LF Wessels, R Bernards. Synthetic lethality in cancer therapeutics. Annu Rev Cancer Biol 2017; 1(1): 141–161
https://doi.org/10.1146/annurev-cancerbio-042016-073434
10 S Wright, T Dobzhansky. Genetics of natural populations; experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics 1946; 31: 125–156
pmid: 21021044
11 M Toyoshima, HL Howie, M Imakura, RM Walsh, JE Annis, AN Chang, J Frazier, BN Chau, A Loboda, PS Linsley, MA Cleary, JR Park, C Grandori. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109(24): 9545–9550
https://doi.org/10.1073/pnas.1121119109 pmid: 22623531
12 PA Carroll, BW Freie, H Mathsyaraja, RN Eisenman. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12(4): 412–425
https://doi.org/10.1007/s11684-018-0650-z pmid: 30054853
13 GI Evan, AH Wyllie, CS Gilbert, TD Littlewood, H Land, M Brooks, CM Waters, LZ Penn, DC Hancock. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69(1): 119–128
https://doi.org/10.1016/0092-8674(92)90123-T pmid: 1555236
14 B Bucci, I D’Agnano, D Amendola, A Citti, GH Raza, R Miceli, U De Paula, R Marchese, S Albini, A Felsani, E Brunetti, A Vecchione. Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 2005; 11(7): 2756–2767
https://doi.org/10.1158/1078-0432.CCR-04-1582 pmid: 15814658
15 RS Bindra, PM Glazer. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 2007; 252(1): 93–103
https://doi.org/10.1016/j.canlet.2006.12.011 pmid: 17275176
16 CV Dang. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 2010; 9(19): 3884–3886
https://doi.org/10.4161/cc.9.19.13302 pmid: 20948290
17 P Korangath, WW Teo, H Sadik, L Han, N Mori, CM Huijts, F Wildes, S Bharti, Z Zhang, CA Santa-Maria, H Tsai, CV Dang, V Stearns, ZM Bhujwalla, S Sukumar. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res 2015; 21(14): 3263–3273
https://doi.org/10.1158/1078-0432.CCR-14-1200 pmid: 25813021
18 E Ben-David, AC Bester, S Shifman, B Kerem. Transcriptional dynamics in colorectal carcinogenesis: new insights into the role of c-Myc and miR17 in benign to cancer transformation. Cancer Res 2014; 74(19): 5532–5540
https://doi.org/10.1158/0008-5472.CAN-14-0932 pmid: 25125661
19 CM Koh, B Gurel, S Sutcliffe, MJ Aryee, D Schultz, T Iwata, M Uemura, KI Zeller, U Anele, Q Zheng, JL Hicks, WG Nelson, CV Dang, S Yegnasubramanian, AM De Marzo. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol 2011; 178(4): 1824–1834
https://doi.org/10.1016/j.ajpath.2010.12.040 pmid: 21435462
20 S Pelengaris, M Khan, G Evan. c-MYC: more than just a matter of life and death. Nat Rev Cancer 2002; 2(10): 764–776
https://doi.org/10.1038/nrc904 pmid: 12360279
21 H Mossafa, D Damotte, A Jenabian, R Delarue, A Vincenneau, I Amouroux, R Jeandel, E Khoury, JM Martelli, T Samson, S Tapia, G Flandrin, X Troussard. Non-Hodgkin’s lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis. Leuk Lymphoma 2006; 47(9): 1885–1893
https://doi.org/10.1080/10428190600687547 pmid: 17065002
22 R Dalla-Favera, M Bregni, J Erikson, D Patterson, RC Gallo, CM Croce. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 1982; 79(24): 7824–7827
https://doi.org/10.1073/pnas.79.24.7824 pmid: 6961453
23 S Barrans, S Crouch, A Smith, K Turner, R Owen, R Patmore, E Roman, A Jack. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol 2010; 28(20): 3360–3365
https://doi.org/10.1200/JCO.2009.26.3947 pmid: 20498406
24 N Niitsu, M Okamoto, I Miura, M Hirano. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia 2009; 23(4): 777–783
https://doi.org/10.1038/leu.2008.344 pmid: 19151788
25 A Valera, A López-Guillermo, T Cardesa-Salzmann, F Climent, E González-Barca, S Mercadal, I Espinosa, S Novelli, J Briones, JL Mate, O Salamero, JM Sancho, L Arenillas, S Serrano, N Erill, D Martínez, P Castillo, J Rovira, A Martínez, E Campo, L; Grup per l’Estudi dels Limfomes de Catalunya i Balears (GELCAB). Colomo MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica 2013; 98(10): 1554–1562
https://doi.org/10.3324/haematol.2013.086173 pmid: 23716551
26 CG Eberhart, J Kratz, Y Wang, K Summers, D Stearns, K Cohen, CV Dang, PC Burger. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 2004; 63(5): 441–449
https://doi.org/10.1093/jnen/63.5.441 pmid: 15198123
27 KK Jovanović, C Roche-Lestienne, IM Ghobrial, T Facon, B Quesnel, S Manier. Targeting MYC in multiple myeloma. Leukemia 2018; 32(6): 1295–1306
https://doi.org/10.1038/s41375-018-0036-x pmid: 29467490
28 RJ Rebello, RB Pearson, RD Hannan, L Furic. Therapeutic approaches targeting MYC-driven prostate cancer. Genes (Basel) 2017; 8(2): 71
https://doi.org/10.3390/genes8020071 pmid: 28212321
29 D Horiuchi, B Anderton, A Goga. Taking on challenging targets: making MYC druggable. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting 2014: e497–e502
30 Z Yang, JH Yik, R Chen, N He, MK Jang, K Ozato, Q Zhou. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005; 19(4): 535–545
https://doi.org/10.1016/j.molcel.2005.06.029 pmid: 16109377
31 DH Price. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000; 20(8): 2629–2634
https://doi.org/10.1128/MCB.20.8.2629-2634.2000 pmid: 10733565
32 BM Peterlin, DH Price. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23(3): 297–305
https://doi.org/10.1016/j.molcel.2006.06.014 pmid: 16885020
33 JE Delmore, GC Issa, ME Lemieux, PB Rahl, J Shi, HM Jacobs, E Kastritis, T Gilpatrick, RM Paranal, J Qi, M Chesi, AC Schinzel, MR McKeown, TP Heffernan, CR Vakoc, PL Bergsagel, IM Ghobrial, PG Richardson, RA Young, WC Hahn, KC Anderson, AL Kung, JE Bradner, CS Mitsiades. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146(6): 904–917
https://doi.org/10.1016/j.cell.2011.08.017 pmid: 21889194
34 MA Dawson, RK Prinjha, A Dittmann, G Giotopoulos, M Bantscheff, WI Chan, SC Robson, CW Chung, C Hopf, MM Savitski, C Huthmacher, E Gudgin, D Lugo, S Beinke, TD Chapman, EJ Roberts, PE Soden, KR Auger, O Mirguet, K Doehner, R Delwel, AK Burnett, P Jeffrey, G Drewes, K Lee, BJ Huntly, T Kouzarides. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478(7370): 529–533
https://doi.org/10.1038/nature10509 pmid: 21964340
35 J Zuber, J Shi, E Wang, AR Rappaport, H Herrmann, EA Sison, D Magoon, J Qi, K Blatt, M Wunderlich, MJ Taylor, C Johns, A Chicas, JC Mulloy, SC Kogan, P Brown, P Valent, JE Bradner, SW Lowe, CR Vakoc. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478(7370): 524–528
https://doi.org/10.1038/nature10334 pmid: 21814200
36 JA Mertz, AR Conery, BM Bryant, P Sandy, S Balasubramanian, DA Mele, L Bergeron, RJ Sims 3rd. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108(40): 16669–16674
https://doi.org/10.1073/pnas.1108190108 pmid: 21949397
37 PK Mazur, A Herner, SS Mello, M Wirth, S Hausmann, FJ Sánchez-Rivera, SM Lofgren, T Kuschma, SA Hahn, D Vangala, M Trajkovic-Arsic, A Gupta, I Heid, PB Noël, R Braren, M Erkan, J Kleeff, B Sipos, LC Sayles, M Heikenwalder, E Heßmann, V Ellenrieder, I Esposito, T Jacks, JE Bradner, P Khatri, EA Sweet-Cordero, LD Attardi, RM Schmid, G Schneider, J Sage, JT Siveke. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med 2015; 21(10): 1163–1171
https://doi.org/10.1038/nm.3952 pmid: 26390243
38 AC Hsieh, Y Liu, MP Edlind, NT Ingolia, MR Janes, A Sher, EY Shi, CR Stumpf, C Christensen, MJ Bonham, S Wang, P Ren, M Martin, K Jessen, ME Feldman, JS Weissman, KM Shokat, C Rommel, D Ruggero. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485(7396): 55–61
https://doi.org/10.1038/nature10912 pmid: 22367541
39 P Liu, M Ge, J Hu, X Li, L Che, K Sun, L Cheng, Y Huang, MG Pilo, A Cigliano, GM Pes, RM Pascale, S Brozzetti, G Vidili, A Porcu, A Cossu, G Palmieri, MC Sini, S Ribback, F Dombrowski, J Tao, DF Calvisi, L Chen, X Chen. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology 2017; 66(1): 167–181
https://doi.org/10.1002/hep.29183 pmid: 28370287
40 M Pourdehnad, ML Truitt, IN Siddiqi, GS Ducker, KM Shokat, D Ruggero. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA 2013; 110(29): 11988–11993
https://doi.org/10.1073/pnas.1310230110 pmid: 23803853
41 I Paul, SF Ahmed, A Bhowmik, S Deb, MK Ghosh. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 2013; 32(10): 1284–1295
https://doi.org/10.1038/onc.2012.144 pmid: 22543587
42 BJ Pulverer, C Fisher, K Vousden, T Littlewood, G Evan, JR Woodgett. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 1994; 9(1): 59–70
pmid: 8302604
43 Y Gu, J Zhang, X Ma, BW Kim, H Wang, J Li, Y Pan, Y Xu, L Ding, L Yang, C Guo, X Wu, J Wu, K Wu, X Gan, G Li, L Li, SJ Forman, WC Chan, R Xu, W Huang. Stabilization of the c-Myc protein by CAMKIIγ promotes T cell lymphoma. Cancer Cell 2017; 32(1): 115–128.e7
https://doi.org/10.1016/j.ccell.2017.06.001 pmid: 28697340
44 Y Gu, T Chen, Z Meng, Y Gan, X Xu, G Lou, H Li, X Gan, H Zhou, J Tang, G Xu, L Huang, X Zhang, Y Fang, K Wang, S Zheng, W Huang, R Xu. CaMKII g, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood 2012; 120(24): 4829–4839
https://doi.org/10.1182/blood-2012-06-434894 pmid: 23074277
45 A Prahallad, R Bernards. Opportunities and challenges provided by crosstalk between signalling pathways in cancer. Oncogene 2016; 35(9): 1073–1079
https://doi.org/10.1038/onc.2015.151 pmid: 25982281
46 WG Kaelin Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 2005; 5(9): 689–698
https://doi.org/10.1038/nrc1691 pmid: 16110319
47 PC Fong, DS Boss, TA Yap, A Tutt, P Wu, M Mergui-Roelvink, P Mortimer, H Swaisland, A Lau, MJ O’Connor, A Ashworth, J Carmichael, SB Kaye, JH Schellens, JS de Bono. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361(2): 123–134
https://doi.org/10.1056/NEJMoa0900212 pmid: 19553641
48 H Farmer, N McCabe, CJ Lord, AN Tutt, DA Johnson, TB Richardson, M Santarosa, KJ Dillon, I Hickson, C Knights, NM Martin, SP Jackson, GC Smith, A Ashworth. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–921
https://doi.org/10.1038/nature03445 pmid: 15829967
49 CJ Lord, A Ashworth. PARP inhibitors: synthetic lethality in the clinic. Science 2017; 355(6330): 1152–1158
https://doi.org/10.1126/science.aam7344 pmid: 28302823
50 JC Lucchesi. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 1968; 59(1): 37–44
pmid: 5683639
51 P Chen, D Zhao, J Li, X Liang, J Li, A Chang, VK Henry, Z Lan, DJ Spring, G Rao, YA Wang, RA DePinho. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-Null glioma. Cancer Cell 2019; 35(6): 868–884.e6
https://doi.org/10.1016/j.ccell.2019.05.003 pmid: 31185211
52 LH Hartwell, P Szankasi, CJ Roberts, AW Murray, SH Friend. Integrating genetic approaches into the discovery of anticancer drugs. Science 1997; 278(5340): 1064–1068
https://doi.org/10.1126/science.278.5340.1064 pmid: 9353181
53 N Chan, IM Pires, Z Bencokova, C Coackley, KR Luoto, N Bhogal, M Lakshman, P Gottipati, FJ Oliver, T Helleday, EM Hammond, RG Bristow. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res 2010; 70(20): 8045–8054
https://doi.org/10.1158/0008-5472.CAN-10-2352 pmid: 20924112
54 RT Penson, RV Valencia, D Cibula, N Colombo, CA Leath, M Bidziński, J-W Kim, J-H Nam, R Madry, CH Hernández, PAR Mora, SY Ryu, T Milenkova, ES Lowe, L Barker, G Scambia. Olaparib monotherapy versus (vs) chemotherapy for germline BRCA-mutated (gBRCAm) platinum-sensitive relapsed ovarian cancer (PSR OC) patients (pts): Phase III SOLO3 trial. J Clin Oncol 2019; 37(15_suppl): 5506–5506
55 M Robson, SA Im, E Senkus, B Xu, SM Domchek, N Masuda, S Delaloge, W Li, N Tung, A Armstrong, W Wu, C Goessl, S Runswick, P Conte. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017; 377(6): 523–533
https://doi.org/10.1056/NEJMoa1706450 pmid: 28578601
56 J Luo, NL Solimini, SJ Elledge. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136(5): 823–837
https://doi.org/10.1016/j.cell.2009.02.024 pmid: 19269363
57 M Toyoshima, HL Howie, M Imakura, RM Walsh, JE Annis, AN Chang, J Frazier, BN Chau, A Loboda, PS Linsley, MA Cleary, JR Park, C Grandori. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109(24): 9545–9550
https://doi.org/10.1073/pnas.1121119109 pmid: 22623531
58 AD Cox, SW Fesik, AC Kimmelman, J Luo, CJ Der. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 2014; 13(11): 828–851
https://doi.org/10.1038/nrd4389 pmid: 25323927
59 IB Weinstein, A Joe, D Felsher. Oncogene addiction. Cancer Res 2008; 68(9): 3077–3080
https://doi.org/10.1158/0008-5472.CAN-07-3293 pmid: 18451130
60 J Downward. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3(1): 11–22
https://doi.org/10.1038/nrc969 pmid: 12509763
61 O Shalem, NE Sanjana, E Hartenian, X Shi, DA Scott, T Mikkelson, D Heckl, BL Ebert, DE Root, JG Doench, F Zhang. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84–87
https://doi.org/10.1126/science.1247005 pmid: 24336571
62 R Bernards, TR Brummelkamp, RL Beijersbergen. shRNA libraries and their use in cancer genetics. Nat Methods 2006; 3(9): 701–706
https://doi.org/10.1038/nmeth921 pmid: 16929315
63 T Wang, JJ Wei, DM Sabatini, ES Lander. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014; 343(6166): 80–84
https://doi.org/10.1126/science.1246981 pmid: 24336569
64 Y Zhou, S Zhu, C Cai, P Yuan, C Li, Y Huang, W Wei. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014; 509(7501): 487–491
https://doi.org/10.1038/nature13166 pmid: 24717434
65 J Downward. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin Cancer Res 2015; 21(8): 1802–1809
https://doi.org/10.1158/1078-0432.CCR-14-2180 pmid: 25878361
66 SV Sharma, DA Haber, J Settleman. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 2010; 10(4): 241–253
https://doi.org/10.1038/nrc2820 pmid: 20300105
67 AJ Aguirre, RM Meyers, BA Weir, F Vazquez, CZ Zhang, U Ben-David, A Cook, G Ha, WF Harrington, MB Doshi, M Kost-Alimova, S Gill, H Xu, LD Ali, G Jiang, S Pantel, Y Lee, A Goodale, AD Cherniack, C Oh, G Kryukov, GS Cowley, LA Garraway, K Stegmaier, CW Roberts, TR Golub, M Meyerson, DE Root, A Tsherniak, WC Hahn. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 2016; 6(8): 914–929
https://doi.org/10.1158/2159-8290.CD-16-0154 pmid: 27260156
68 DM Munoz, PJ Cassiani, L Li, E Billy, JM Korn, MD Jones, J Golji, DA Ruddy, K Yu, G McAllister, A DeWeck, D Abramowski, J Wan, MD Shirley, SY Neshat, D Rakiec, R de Beaumont, O Weber, A Kauffmann, ER McDonald 3rd, N Keen, F Hofmann, WR Sellers, T Schmelzle, F Stegmeier, MR Schlabach. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 2016; 6(8): 900–913
https://doi.org/10.1158/2159-8290.CD-16-0178 pmid: 27260157
69 LS Qi, MH Larson, LA Gilbert, JA Doudna, JS Weissman, AP Arkin, WA Lim. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173–1183
https://doi.org/10.1016/j.cell.2013.02.022 pmid: 23452860
70 LA Gilbert, MH Larson, L Morsut, Z Liu, GA Brar, SE Torres, N Stern-Ginossar, O Brandman, EH Whitehead, JA Doudna, WA Lim, JS Weissman, LS Qi. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442–451
https://doi.org/10.1016/j.cell.2013.06.044 pmid: 23849981
71 AHY Tong, M Evangelista, AB Parsons, H Xu, GD Bader, N Pagé, M Robinson, S Raghibizadeh, CW Hogue, H Bussey, B Andrews, M Tyers, C Boone. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001; 294(5550): 2364–2368
https://doi.org/10.1126/science.1065810 pmid: 11743205
72 X Pan, DS Yuan, D Xiang, X Wang, S Sookhai-Mahadeo, JS Bader, P Hieter, F Spencer, JD Boeke. A robust toolkit for functional profiling of the yeast genome. Mol Cell 2004; 16(3): 487–496
https://doi.org/10.1016/j.molcel.2004.09.035 pmid: 15525520
73 CJ Torrance, V Agrawal, B Vogelstein, KW Kinzler. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 2001; 19(10): 940–945
https://doi.org/10.1038/nbt1001-940 pmid: 11581659
74 Y Wang, IH Engels, DA Knee, M Nasoff, QL Deveraux, KC Quon. Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 2004; 5(5): 501–512
https://doi.org/10.1016/S1535-6108(04)00113-8 pmid: 15144957
75 AA Borisy, PJ Elliott, NW Hurst, MS Lee, J Lehár, ER Price, G Serbedzija, GR Zimmermann, MA Foley, BR Stockwell, CT Keith. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 2003; 100(13): 7977–7982
https://doi.org/10.1073/pnas.1337088100 pmid: 12799470
76 A Birmingham, EM Anderson, A Reynolds, D Ilsley-Tyree, D Leake, Y Fedorov, S Baskerville, E Maksimova, K Robinson, J Karpilow, WS Marshall, A Khvorova. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006; 3(3): 199–204
https://doi.org/10.1038/nmeth854 pmid: 16489337
77 Y Fu, JA Foden, C Khayter, ML Maeder, D Reyon, JK Joung, JD Sander. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822–826
https://doi.org/10.1038/nbt.2623 pmid: 23792628
78 J Luo. CRISPR/Cas9: from genome engineering to cancer drug discovery. Trends Cancer 2016; 2(6): 313–324
https://doi.org/10.1016/j.trecan.2016.05.001 pmid: 28603775
79 NJ O’Neil, ML Bailey, P Hieter. Synthetic lethality and cancer. Nat Rev Genet 2017; 18(10): 613–623
https://doi.org/10.1038/nrg.2017.47 pmid: 28649135
80 V Popovici, E Budinska, S Tejpar, S Weinrich, H Estrella, G Hodgson, E Van Cutsem, T Xie, FT Bosman, AD Roth, M Delorenzi. Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J Clin Oncol 2012; 30(12): 1288–1295
https://doi.org/10.1200/JCO.2011.39.5814 pmid: 22393095
81 S Tian, I Simon, V Moreno, P Roepman, J Tabernero, M Snel, L van’t Veer, R Salazar, R Bernards, G Capella. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut 2013; 62(4): 540–549
https://doi.org/10.1136/gutjnl-2012-302423 pmid: 22798500
82 N Turner, A Tutt, A Ashworth. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 2004; 4(10): 814–819
https://doi.org/10.1038/nrc1457 pmid: 15510162
83 KA Gelmon, M Tischkowitz, H Mackay, K Swenerton, A Robidoux, K Tonkin, H Hirte, D Huntsman, M Clemons, B Gilks, R Yerushalmi, E Macpherson, J Carmichael, A Oza. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011; 12(9): 852–861
https://doi.org/10.1016/S1470-2045(11)70214-5 pmid: 21862407
84 AJ Chien, S Rahmaputri, HF Dittrich, MC Majure, HS Rugo, ME Melisko, A Goga. A phase Ib trial of the cyclin-dependent kinase inhibitor dinaciclib (dina) in combination with pembrolizumab (P) in patients with advanced triple-negative breast cancer (TNBC). J Clin Oncol 2019; 37(15_suppl): 1072–1072
85 JF Liu, WT Barry, M Birrer, JM Lee, RJ Buckanovich, GF Fleming, B Rimel, MK Buss, S Nattam, J Hurteau, W Luo, P Quy, C Whalen, L Obermayer, H Lee, EP Winer, EC Kohn, SP Ivy, UA Matulonis. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol 2014; 15(11): 1207–1214
https://doi.org/10.1016/S1470-2045(14)70391-2 pmid: 25218906
86 I Ray-Coquard, P Pautier, S Pignata, D Pérol, A González-Martín, R Berger, K Fujiwara, I Vergote, N Colombo, J Mäenpää, F Selle, J Sehouli, D Lorusso, EM Guerra Alía, A Reinthaller, S Nagao, C Lefeuvre-Plesse, U Canzler, G Scambia, A Lortholary, F Marmé, P Combe, N de Gregorio, M Rodrigues, P Buderath, C Dubot, A Burges, B You, E Pujade-Lauraine, P; PAOLA-1 Investigators Harter. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019; 381(25): 2416–2428
https://doi.org/10.1056/NEJMoa1911361 pmid: 31851799
87 E Dean, MR Middleton, T Pwint, H Swaisland, J Carmichael, P Goodege-Kunwar, M Ranson. Phase I study to assess the safety and tolerability of olaparib in combination with bevacizumab in patients with advanced solid tumours. Br J Cancer 2012; 106(3): 468–474
https://doi.org/10.1038/bjc.2011.555 pmid: 22223088
88 N Zhao, J Cao, L Xu, Q Tang, LE Dobrolecki, X Lv, M Talukdar, Y Lu, X Wang, DZ Hu, Q Shi, Y Xiang, Y Wang, X Liu, W Bu, Y Jiang, M Li, Y Gong, Z Sun, H Ying, B Yuan, X Lin, XH Feng, SM Hartig, F Li, H Shen, Y Chen, L Han, Q Zeng, JB Patterson, BA Kaipparettu, N Putluri, F Sicheri, JM Rosen, MT Lewis, X Chen. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest 2018; 128(4): 1283–1299
https://doi.org/10.1172/JCI95873 pmid: 29480818
89 TYT Hsu, LM Simon, NJ Neill, R Marcotte, A Sayad, CS Bland, GV Echeverria, T Sun, SJ Kurley, S Tyagi, KL Karlin, R Dominguez-Vidaña, JD Hartman, A Renwick, K Scorsone, RJ Bernardi, SO Skinner, A Jain, M Orellana, C Lagisetti, I Golding, SY Jung, JR Neilson, XHF Zhang, TA Cooper, TR Webb, BG Neel, CA Shaw, TF Westbrook. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 2015; 525(7569): 384–388
https://doi.org/10.1038/nature14985 pmid: 26331541
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed