1. Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China 2. Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China 3. Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
Synthetic lethal screening, which exploits the combination of mutations that result in cell death, is a promising method for identifying novel drug targets. This method provides a new avenue for targeting “undruggable” proteins, such as c-Myc. Here, we revisit current methods used to target c-Myc and discuss the important functional nodes related to c-Myc in non-oncogene addicted network, whose inhibition may cause a catastrophe for tumor cell destiny but not for normal cells. We further discuss strategies to identify these functional nodes in the context of synthetic lethality. We review the progress and shortcomings of this research field and look forward to opportunities offered by synthetic lethal screening to treat tumors potently.
J Pan, Q Deng, C Jiang, X Wang, T Niu, H Li, T Chen, J Jin, W Pan, X Cai, X Yang, M Lu, J Xiao, P Wang. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene 2015; 34(30): 3957–3967 https://doi.org/10.1038/onc.2014.327
pmid: 25284584
2
XX Sun, X He, L Yin, M Komada, RC Sears, MS Dai. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci USA 2015; 112(12): 3734–3739 https://doi.org/10.1073/pnas.1411713112
pmid: 25775507
D Dominguez-Sola, CY Ying, C Grandori, L Ruggiero, B Chen, M Li, DA Galloway, W Gu, J Gautier, R Dalla-Favera. Non-transcriptional control of DNA replication by c-Myc. Nature 2007; 448(7152): 445–451 https://doi.org/10.1038/nature05953
pmid: 17597761
5
A Wilson, MJ Murphy, T Oskarsson, K Kaloulis, MD Bettess, GM Oser, AC Pasche, C Knabenhans, HR Macdonald, A Trumpp. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18(22): 2747–2763 https://doi.org/10.1101/gad.313104
pmid: 15545632
6
CM Shachaf, AM Kopelman, C Arvanitis, A Karlsson, S Beer, S Mandl, MH Bachmann, AD Borowsky, B Ruebner, RD Cardiff, Q Yang, JM Bishop, CH Contag, DW Felsher. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004; 431(7012): 1112–1117 https://doi.org/10.1038/nature03043
pmid: 15475948
7
TA Baudino, C McKay, H Pendeville-Samain, JA Nilsson, KH Maclean, EL White, AC Davis, JN Ihle, JL Cleveland. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 2002; 16(19): 2530–2543 https://doi.org/10.1101/gad.1024602
pmid: 12368264
8
JC Lucchesi. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 1968; 59(1): 37–44
pmid: 5683639
S Wright, T Dobzhansky. Genetics of natural populations; experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics 1946; 31: 125–156
pmid: 21021044
11
M Toyoshima, HL Howie, M Imakura, RM Walsh, JE Annis, AN Chang, J Frazier, BN Chau, A Loboda, PS Linsley, MA Cleary, JR Park, C Grandori. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109(24): 9545–9550 https://doi.org/10.1073/pnas.1121119109
pmid: 22623531
12
PA Carroll, BW Freie, H Mathsyaraja, RN Eisenman. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12(4): 412–425 https://doi.org/10.1007/s11684-018-0650-z
pmid: 30054853
13
GI Evan, AH Wyllie, CS Gilbert, TD Littlewood, H Land, M Brooks, CM Waters, LZ Penn, DC Hancock. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69(1): 119–128 https://doi.org/10.1016/0092-8674(92)90123-T
pmid: 1555236
14
B Bucci, I D’Agnano, D Amendola, A Citti, GH Raza, R Miceli, U De Paula, R Marchese, S Albini, A Felsani, E Brunetti, A Vecchione. Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 2005; 11(7): 2756–2767 https://doi.org/10.1158/1078-0432.CCR-04-1582
pmid: 15814658
15
RS Bindra, PM Glazer. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 2007; 252(1): 93–103 https://doi.org/10.1016/j.canlet.2006.12.011
pmid: 17275176
P Korangath, WW Teo, H Sadik, L Han, N Mori, CM Huijts, F Wildes, S Bharti, Z Zhang, CA Santa-Maria, H Tsai, CV Dang, V Stearns, ZM Bhujwalla, S Sukumar. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res 2015; 21(14): 3263–3273 https://doi.org/10.1158/1078-0432.CCR-14-1200
pmid: 25813021
18
E Ben-David, AC Bester, S Shifman, B Kerem. Transcriptional dynamics in colorectal carcinogenesis: new insights into the role of c-Myc and miR17 in benign to cancer transformation. Cancer Res 2014; 74(19): 5532–5540 https://doi.org/10.1158/0008-5472.CAN-14-0932
pmid: 25125661
19
CM Koh, B Gurel, S Sutcliffe, MJ Aryee, D Schultz, T Iwata, M Uemura, KI Zeller, U Anele, Q Zheng, JL Hicks, WG Nelson, CV Dang, S Yegnasubramanian, AM De Marzo. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol 2011; 178(4): 1824–1834 https://doi.org/10.1016/j.ajpath.2010.12.040
pmid: 21435462
20
S Pelengaris, M Khan, G Evan. c-MYC: more than just a matter of life and death. Nat Rev Cancer 2002; 2(10): 764–776 https://doi.org/10.1038/nrc904
pmid: 12360279
21
H Mossafa, D Damotte, A Jenabian, R Delarue, A Vincenneau, I Amouroux, R Jeandel, E Khoury, JM Martelli, T Samson, S Tapia, G Flandrin, X Troussard. Non-Hodgkin’s lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis. Leuk Lymphoma 2006; 47(9): 1885–1893 https://doi.org/10.1080/10428190600687547
pmid: 17065002
22
R Dalla-Favera, M Bregni, J Erikson, D Patterson, RC Gallo, CM Croce. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 1982; 79(24): 7824–7827 https://doi.org/10.1073/pnas.79.24.7824
pmid: 6961453
23
S Barrans, S Crouch, A Smith, K Turner, R Owen, R Patmore, E Roman, A Jack. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol 2010; 28(20): 3360–3365 https://doi.org/10.1200/JCO.2009.26.3947
pmid: 20498406
24
N Niitsu, M Okamoto, I Miura, M Hirano. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia 2009; 23(4): 777–783 https://doi.org/10.1038/leu.2008.344
pmid: 19151788
25
A Valera, A López-Guillermo, T Cardesa-Salzmann, F Climent, E González-Barca, S Mercadal, I Espinosa, S Novelli, J Briones, JL Mate, O Salamero, JM Sancho, L Arenillas, S Serrano, N Erill, D Martínez, P Castillo, J Rovira, A Martínez, E Campo, L; Grup per l’Estudi dels Limfomes de Catalunya i Balears (GELCAB). Colomo MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica 2013; 98(10): 1554–1562 https://doi.org/10.3324/haematol.2013.086173
pmid: 23716551
26
CG Eberhart, J Kratz, Y Wang, K Summers, D Stearns, K Cohen, CV Dang, PC Burger. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 2004; 63(5): 441–449 https://doi.org/10.1093/jnen/63.5.441
pmid: 15198123
27
KK Jovanović, C Roche-Lestienne, IM Ghobrial, T Facon, B Quesnel, S Manier. Targeting MYC in multiple myeloma. Leukemia 2018; 32(6): 1295–1306 https://doi.org/10.1038/s41375-018-0036-x
pmid: 29467490
D Horiuchi, B Anderton, A Goga. Taking on challenging targets: making MYC druggable. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting 2014: e497–e502
30
Z Yang, JH Yik, R Chen, N He, MK Jang, K Ozato, Q Zhou. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005; 19(4): 535–545 https://doi.org/10.1016/j.molcel.2005.06.029
pmid: 16109377
JE Delmore, GC Issa, ME Lemieux, PB Rahl, J Shi, HM Jacobs, E Kastritis, T Gilpatrick, RM Paranal, J Qi, M Chesi, AC Schinzel, MR McKeown, TP Heffernan, CR Vakoc, PL Bergsagel, IM Ghobrial, PG Richardson, RA Young, WC Hahn, KC Anderson, AL Kung, JE Bradner, CS Mitsiades. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146(6): 904–917 https://doi.org/10.1016/j.cell.2011.08.017
pmid: 21889194
34
MA Dawson, RK Prinjha, A Dittmann, G Giotopoulos, M Bantscheff, WI Chan, SC Robson, CW Chung, C Hopf, MM Savitski, C Huthmacher, E Gudgin, D Lugo, S Beinke, TD Chapman, EJ Roberts, PE Soden, KR Auger, O Mirguet, K Doehner, R Delwel, AK Burnett, P Jeffrey, G Drewes, K Lee, BJ Huntly, T Kouzarides. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478(7370): 529–533 https://doi.org/10.1038/nature10509
pmid: 21964340
35
J Zuber, J Shi, E Wang, AR Rappaport, H Herrmann, EA Sison, D Magoon, J Qi, K Blatt, M Wunderlich, MJ Taylor, C Johns, A Chicas, JC Mulloy, SC Kogan, P Brown, P Valent, JE Bradner, SW Lowe, CR Vakoc. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478(7370): 524–528 https://doi.org/10.1038/nature10334
pmid: 21814200
36
JA Mertz, AR Conery, BM Bryant, P Sandy, S Balasubramanian, DA Mele, L Bergeron, RJ Sims 3rd. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108(40): 16669–16674 https://doi.org/10.1073/pnas.1108190108
pmid: 21949397
37
PK Mazur, A Herner, SS Mello, M Wirth, S Hausmann, FJ Sánchez-Rivera, SM Lofgren, T Kuschma, SA Hahn, D Vangala, M Trajkovic-Arsic, A Gupta, I Heid, PB Noël, R Braren, M Erkan, J Kleeff, B Sipos, LC Sayles, M Heikenwalder, E Heßmann, V Ellenrieder, I Esposito, T Jacks, JE Bradner, P Khatri, EA Sweet-Cordero, LD Attardi, RM Schmid, G Schneider, J Sage, JT Siveke. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med 2015; 21(10): 1163–1171 https://doi.org/10.1038/nm.3952
pmid: 26390243
38
AC Hsieh, Y Liu, MP Edlind, NT Ingolia, MR Janes, A Sher, EY Shi, CR Stumpf, C Christensen, MJ Bonham, S Wang, P Ren, M Martin, K Jessen, ME Feldman, JS Weissman, KM Shokat, C Rommel, D Ruggero. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485(7396): 55–61 https://doi.org/10.1038/nature10912
pmid: 22367541
39
P Liu, M Ge, J Hu, X Li, L Che, K Sun, L Cheng, Y Huang, MG Pilo, A Cigliano, GM Pes, RM Pascale, S Brozzetti, G Vidili, A Porcu, A Cossu, G Palmieri, MC Sini, S Ribback, F Dombrowski, J Tao, DF Calvisi, L Chen, X Chen. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology 2017; 66(1): 167–181 https://doi.org/10.1002/hep.29183
pmid: 28370287
40
M Pourdehnad, ML Truitt, IN Siddiqi, GS Ducker, KM Shokat, D Ruggero. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA 2013; 110(29): 11988–11993 https://doi.org/10.1073/pnas.1310230110
pmid: 23803853
41
I Paul, SF Ahmed, A Bhowmik, S Deb, MK Ghosh. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 2013; 32(10): 1284–1295 https://doi.org/10.1038/onc.2012.144
pmid: 22543587
42
BJ Pulverer, C Fisher, K Vousden, T Littlewood, G Evan, JR Woodgett. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 1994; 9(1): 59–70
pmid: 8302604
43
Y Gu, J Zhang, X Ma, BW Kim, H Wang, J Li, Y Pan, Y Xu, L Ding, L Yang, C Guo, X Wu, J Wu, K Wu, X Gan, G Li, L Li, SJ Forman, WC Chan, R Xu, W Huang. Stabilization of the c-Myc protein by CAMKIIγ promotes T cell lymphoma. Cancer Cell 2017; 32(1): 115–128.e7 https://doi.org/10.1016/j.ccell.2017.06.001
pmid: 28697340
44
Y Gu, T Chen, Z Meng, Y Gan, X Xu, G Lou, H Li, X Gan, H Zhou, J Tang, G Xu, L Huang, X Zhang, Y Fang, K Wang, S Zheng, W Huang, R Xu. CaMKII g, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood 2012; 120(24): 4829–4839 https://doi.org/10.1182/blood-2012-06-434894
pmid: 23074277
45
A Prahallad, R Bernards. Opportunities and challenges provided by crosstalk between signalling pathways in cancer. Oncogene 2016; 35(9): 1073–1079 https://doi.org/10.1038/onc.2015.151
pmid: 25982281
46
WG Kaelin Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 2005; 5(9): 689–698 https://doi.org/10.1038/nrc1691
pmid: 16110319
47
PC Fong, DS Boss, TA Yap, A Tutt, P Wu, M Mergui-Roelvink, P Mortimer, H Swaisland, A Lau, MJ O’Connor, A Ashworth, J Carmichael, SB Kaye, JH Schellens, JS de Bono. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361(2): 123–134 https://doi.org/10.1056/NEJMoa0900212
pmid: 19553641
48
H Farmer, N McCabe, CJ Lord, AN Tutt, DA Johnson, TB Richardson, M Santarosa, KJ Dillon, I Hickson, C Knights, NM Martin, SP Jackson, GC Smith, A Ashworth. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–921 https://doi.org/10.1038/nature03445
pmid: 15829967
JC Lucchesi. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 1968; 59(1): 37–44
pmid: 5683639
51
P Chen, D Zhao, J Li, X Liang, J Li, A Chang, VK Henry, Z Lan, DJ Spring, G Rao, YA Wang, RA DePinho. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-Null glioma. Cancer Cell 2019; 35(6): 868–884.e6 https://doi.org/10.1016/j.ccell.2019.05.003
pmid: 31185211
52
LH Hartwell, P Szankasi, CJ Roberts, AW Murray, SH Friend. Integrating genetic approaches into the discovery of anticancer drugs. Science 1997; 278(5340): 1064–1068 https://doi.org/10.1126/science.278.5340.1064
pmid: 9353181
53
N Chan, IM Pires, Z Bencokova, C Coackley, KR Luoto, N Bhogal, M Lakshman, P Gottipati, FJ Oliver, T Helleday, EM Hammond, RG Bristow. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res 2010; 70(20): 8045–8054 https://doi.org/10.1158/0008-5472.CAN-10-2352
pmid: 20924112
54
RT Penson, RV Valencia, D Cibula, N Colombo, CA Leath, M Bidziński, J-W Kim, J-H Nam, R Madry, CH Hernández, PAR Mora, SY Ryu, T Milenkova, ES Lowe, L Barker, G Scambia. Olaparib monotherapy versus (vs) chemotherapy for germline BRCA-mutated (gBRCAm) platinum-sensitive relapsed ovarian cancer (PSR OC) patients (pts): Phase III SOLO3 trial. J Clin Oncol 2019; 37(15_suppl): 5506–5506
55
M Robson, SA Im, E Senkus, B Xu, SM Domchek, N Masuda, S Delaloge, W Li, N Tung, A Armstrong, W Wu, C Goessl, S Runswick, P Conte. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017; 377(6): 523–533 https://doi.org/10.1056/NEJMoa1706450
pmid: 28578601
M Toyoshima, HL Howie, M Imakura, RM Walsh, JE Annis, AN Chang, J Frazier, BN Chau, A Loboda, PS Linsley, MA Cleary, JR Park, C Grandori. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109(24): 9545–9550 https://doi.org/10.1073/pnas.1121119109
pmid: 22623531
58
AD Cox, SW Fesik, AC Kimmelman, J Luo, CJ Der. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 2014; 13(11): 828–851 https://doi.org/10.1038/nrd4389
pmid: 25323927
O Shalem, NE Sanjana, E Hartenian, X Shi, DA Scott, T Mikkelson, D Heckl, BL Ebert, DE Root, JG Doench, F Zhang. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84–87 https://doi.org/10.1126/science.1247005
pmid: 24336571
62
R Bernards, TR Brummelkamp, RL Beijersbergen. shRNA libraries and their use in cancer genetics. Nat Methods 2006; 3(9): 701–706 https://doi.org/10.1038/nmeth921
pmid: 16929315
Y Zhou, S Zhu, C Cai, P Yuan, C Li, Y Huang, W Wei. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014; 509(7501): 487–491 https://doi.org/10.1038/nature13166
pmid: 24717434
SV Sharma, DA Haber, J Settleman. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 2010; 10(4): 241–253 https://doi.org/10.1038/nrc2820
pmid: 20300105
67
AJ Aguirre, RM Meyers, BA Weir, F Vazquez, CZ Zhang, U Ben-David, A Cook, G Ha, WF Harrington, MB Doshi, M Kost-Alimova, S Gill, H Xu, LD Ali, G Jiang, S Pantel, Y Lee, A Goodale, AD Cherniack, C Oh, G Kryukov, GS Cowley, LA Garraway, K Stegmaier, CW Roberts, TR Golub, M Meyerson, DE Root, A Tsherniak, WC Hahn. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 2016; 6(8): 914–929 https://doi.org/10.1158/2159-8290.CD-16-0154
pmid: 27260156
68
DM Munoz, PJ Cassiani, L Li, E Billy, JM Korn, MD Jones, J Golji, DA Ruddy, K Yu, G McAllister, A DeWeck, D Abramowski, J Wan, MD Shirley, SY Neshat, D Rakiec, R de Beaumont, O Weber, A Kauffmann, ER McDonald 3rd, N Keen, F Hofmann, WR Sellers, T Schmelzle, F Stegmeier, MR Schlabach. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 2016; 6(8): 900–913 https://doi.org/10.1158/2159-8290.CD-16-0178
pmid: 27260157
69
LS Qi, MH Larson, LA Gilbert, JA Doudna, JS Weissman, AP Arkin, WA Lim. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173–1183 https://doi.org/10.1016/j.cell.2013.02.022
pmid: 23452860
70
LA Gilbert, MH Larson, L Morsut, Z Liu, GA Brar, SE Torres, N Stern-Ginossar, O Brandman, EH Whitehead, JA Doudna, WA Lim, JS Weissman, LS Qi. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442–451 https://doi.org/10.1016/j.cell.2013.06.044
pmid: 23849981
71
AHY Tong, M Evangelista, AB Parsons, H Xu, GD Bader, N Pagé, M Robinson, S Raghibizadeh, CW Hogue, H Bussey, B Andrews, M Tyers, C Boone. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001; 294(5550): 2364–2368 https://doi.org/10.1126/science.1065810
pmid: 11743205
72
X Pan, DS Yuan, D Xiang, X Wang, S Sookhai-Mahadeo, JS Bader, P Hieter, F Spencer, JD Boeke. A robust toolkit for functional profiling of the yeast genome. Mol Cell 2004; 16(3): 487–496 https://doi.org/10.1016/j.molcel.2004.09.035
pmid: 15525520
73
CJ Torrance, V Agrawal, B Vogelstein, KW Kinzler. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 2001; 19(10): 940–945 https://doi.org/10.1038/nbt1001-940
pmid: 11581659
74
Y Wang, IH Engels, DA Knee, M Nasoff, QL Deveraux, KC Quon. Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 2004; 5(5): 501–512 https://doi.org/10.1016/S1535-6108(04)00113-8
pmid: 15144957
75
AA Borisy, PJ Elliott, NW Hurst, MS Lee, J Lehár, ER Price, G Serbedzija, GR Zimmermann, MA Foley, BR Stockwell, CT Keith. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 2003; 100(13): 7977–7982 https://doi.org/10.1073/pnas.1337088100
pmid: 12799470
76
A Birmingham, EM Anderson, A Reynolds, D Ilsley-Tyree, D Leake, Y Fedorov, S Baskerville, E Maksimova, K Robinson, J Karpilow, WS Marshall, A Khvorova. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006; 3(3): 199–204 https://doi.org/10.1038/nmeth854
pmid: 16489337
77
Y Fu, JA Foden, C Khayter, ML Maeder, D Reyon, JK Joung, JD Sander. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822–826 https://doi.org/10.1038/nbt.2623
pmid: 23792628
V Popovici, E Budinska, S Tejpar, S Weinrich, H Estrella, G Hodgson, E Van Cutsem, T Xie, FT Bosman, AD Roth, M Delorenzi. Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J Clin Oncol 2012; 30(12): 1288–1295 https://doi.org/10.1200/JCO.2011.39.5814
pmid: 22393095
81
S Tian, I Simon, V Moreno, P Roepman, J Tabernero, M Snel, L van’t Veer, R Salazar, R Bernards, G Capella. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut 2013; 62(4): 540–549 https://doi.org/10.1136/gutjnl-2012-302423
pmid: 22798500
82
N Turner, A Tutt, A Ashworth. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 2004; 4(10): 814–819 https://doi.org/10.1038/nrc1457
pmid: 15510162
83
KA Gelmon, M Tischkowitz, H Mackay, K Swenerton, A Robidoux, K Tonkin, H Hirte, D Huntsman, M Clemons, B Gilks, R Yerushalmi, E Macpherson, J Carmichael, A Oza. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011; 12(9): 852–861 https://doi.org/10.1016/S1470-2045(11)70214-5
pmid: 21862407
84
AJ Chien, S Rahmaputri, HF Dittrich, MC Majure, HS Rugo, ME Melisko, A Goga. A phase Ib trial of the cyclin-dependent kinase inhibitor dinaciclib (dina) in combination with pembrolizumab (P) in patients with advanced triple-negative breast cancer (TNBC). J Clin Oncol 2019; 37(15_suppl): 1072–1072
85
JF Liu, WT Barry, M Birrer, JM Lee, RJ Buckanovich, GF Fleming, B Rimel, MK Buss, S Nattam, J Hurteau, W Luo, P Quy, C Whalen, L Obermayer, H Lee, EP Winer, EC Kohn, SP Ivy, UA Matulonis. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol 2014; 15(11): 1207–1214 https://doi.org/10.1016/S1470-2045(14)70391-2
pmid: 25218906
86
I Ray-Coquard, P Pautier, S Pignata, D Pérol, A González-Martín, R Berger, K Fujiwara, I Vergote, N Colombo, J Mäenpää, F Selle, J Sehouli, D Lorusso, EM Guerra Alía, A Reinthaller, S Nagao, C Lefeuvre-Plesse, U Canzler, G Scambia, A Lortholary, F Marmé, P Combe, N de Gregorio, M Rodrigues, P Buderath, C Dubot, A Burges, B You, E Pujade-Lauraine, P; PAOLA-1 Investigators Harter. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019; 381(25): 2416–2428 https://doi.org/10.1056/NEJMoa1911361
pmid: 31851799
87
E Dean, MR Middleton, T Pwint, H Swaisland, J Carmichael, P Goodege-Kunwar, M Ranson. Phase I study to assess the safety and tolerability of olaparib in combination with bevacizumab in patients with advanced solid tumours. Br J Cancer 2012; 106(3): 468–474 https://doi.org/10.1038/bjc.2011.555
pmid: 22223088
88
N Zhao, J Cao, L Xu, Q Tang, LE Dobrolecki, X Lv, M Talukdar, Y Lu, X Wang, DZ Hu, Q Shi, Y Xiang, Y Wang, X Liu, W Bu, Y Jiang, M Li, Y Gong, Z Sun, H Ying, B Yuan, X Lin, XH Feng, SM Hartig, F Li, H Shen, Y Chen, L Han, Q Zeng, JB Patterson, BA Kaipparettu, N Putluri, F Sicheri, JM Rosen, MT Lewis, X Chen. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest 2018; 128(4): 1283–1299 https://doi.org/10.1172/JCI95873
pmid: 29480818
89
TYT Hsu, LM Simon, NJ Neill, R Marcotte, A Sayad, CS Bland, GV Echeverria, T Sun, SJ Kurley, S Tyagi, KL Karlin, R Dominguez-Vidaña, JD Hartman, A Renwick, K Scorsone, RJ Bernardi, SO Skinner, A Jain, M Orellana, C Lagisetti, I Golding, SY Jung, JR Neilson, XHF Zhang, TA Cooper, TR Webb, BG Neel, CA Shaw, TF Westbrook. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 2015; 525(7569): 384–388 https://doi.org/10.1038/nature14985
pmid: 26331541