Deep learning in digital pathology image analysis: a survey
Shujian Deng1,2,3, Xin Zhang1,2,3, Wen Yan1,2,3, Eric I-Chao Chang4, Yubo Fan1,2,3, Maode Lai5, Yan Xu1,2,3,4()
1. School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China 2. Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China 3. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China 4. Microsoft Research Asia, Beijing 100080, China 5. Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310007, China
deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.
Ensemble of several CNNs with different architectures
[38]
2015
Neuronal cell membranes
Brain cervix
EM LM
U-Net
U-net with deformation augmentation
[39]
2015
Nuclei
Brain
H&E
CNN
Sparsity constrained convolutional regression
[40]
2015
Cytoplasm and nuclei
Cervix
H&E
CNN
Multi-scale CNN and graph partitioning-based method
[41]
2016
Nuclei
Brain/pancreas/breast
H&E
CNN
CNN and selection-based sparse shape model
[42]
2016
Nuclei
Breast
H&E
CNN
Sparse reconstruction and CNN and morphological operations
[43]
2017
Nuclei
Cervix
H&E
FCN
FCN and graph-based approach
[44]
2018
Nuclei
–
FL
U-Net
U-net with recurrent residual convolutional operations
Cell/nuclei detection
[45]
2015
Cell
Breast cervix
H&E PC
CNN
CNN-based structured regression model
[46]
2016
Nuclei
Colorectal adenocarcinomas
H&E
CNN
Spatially constrained CNN for regression
[47]
2016
Nuclei
Breast
H&E
SAE
Stack SAE
[48]
2018
Cell
Breast cervix Neuroendocrine tumor
H&E PC Ki-67
FCN
Structured regression model based on residual FCN
Mitosis detection
[49]
2013
Mitosis
Breast
H&E
CNN
CNN-based pixel classifier
[50]
2014
Breast
H&E
CNN
Combination of CNN and hand-crafted features
[36]
2016
Breast
H&E
FCN
Deep regression network
[51]
2016
Breast
H&E
FCN
Deep cascaded networks
[52]
2016
Breast
H&E
CNN
Incorporated “crowdsourcing” layer into the CNN framework
[53]
2018
Breast
H&E
FCN
Proposal-based deep detection network
[54]
2018
Breast
H&E
CNN
Multi-scale and similarity learning CNN
[55]
2019
Breast
H&E
FCN
Weakly supervised FCN using concentric loss
Cell/nuclei instance segmentation
[56]
2016
Cell
Mouse brain
TPM
U-net
U-net with an iterative k-terminal cut algorithm
[57,58]
2016
Cell
Cervix
FL
FCN
Proposal-based CNN model
[59]
2016
Nuclei
Brain
H&E
FCN
Deep contour-aware network
[60]
2016
Cell
Cervix
H&E
CNN
Multi-scale CNN and multiple cell labeling and dynamic multitemplate deformation model
[61]
2017
Nuclei
Multiple organs
H&E
CNN
Three-class CNN with nuclear boundaries emphasized
[62]
2018
Nuclei
Rat kidney
FL
CNN
3D distance transform and CNN
[63]
2018
Nuclei
Multiple organs
H&E
U-Net
U-net with distance map regression
[64]
2019
Nuclei
Multiple organs
H&E
FCN
Contour-aware informative aggregation
Tab.1
Reference
Year
Architecture
Methods
Postprocessing
[107]
2015
CNN
Object-Net to predict foreground and Separator-Net to segment individuals
Yes
[108]
2016
CNN
Pixel-level classification
Yes
[59]
2016
FCN
FCN-based semantic segmentation and contour prediction
Yes
[106,109]
2016
FCN
FCN-based semantic segmentation and HED side convolution channel for contour detection
No
[110]
2016
FCN
Combine two losses into a unified topology-aware loss
No
[111]
2016
CNN
Multitask learning for gland grading and segmentation
No
Tab.2
Fig.2
Method
Jaccard index
Dice index
HC-SVM
0.71 ± 0.11
0.83 ± 0.09
Alexnet+ Googlenet
0.74 ± 0.14
0.84 ± 0.10
HC-SVM+ Alexnet+ Googlenet
0.77 ± 0.11
0.87 ± 0.08
Tab.3
Reference
Year
Architecture
Region/WSI
Organ
Task
Methods
[131]
2014
CNN
Region
Colon
Classification and segmentation
CNN with MIL
[132]
2015
CNN
Region
Brain/colon
Classification and segmentation
CNN with feature pooling and selection
[133]
2016
CNN
WSI
Lung
Classification
EM-based model with CNN
[134]
2016
CNN
Region
Prostate
Classification
Pretrained OverFeat with multilayer feature learning
[135]
2016
CNN
Region
Breast/colon
Classification and segmentation
Superpixel-based scheme for generating patches
[136]
2017
CNN
WSI
Colon
Segmentation
Combine persistent homology features with CNN features for ensemble learning
[137]
2017
FCN
Region
Colon
Segmentation
FCN with constrained deep weak supervision
[138]
2018
CNN
WSI
Lung/lymph nodes
Classification and segmentation
ResNet-50 with MIL
[139]
2018
FCN
WSI
Lung
Classification
FCN with context-aware feature selection
[140]
2019
CNN
Region
Breast
Classification
Pretrained VGG-16 and average pooling of patch-level features for region-level ones
Tab.4
1
A Cardesa, N Zidar, L Alos, A Nadal, N Gale, G Klöppel. The Kaiser’s cancer revisited: was Virchow totally wrong? Virchows Arch 2011; 458(6): 649–657 https://doi.org/10.1007/s00428-011-1075-0
pmid: 21494762
2
MN Gurcan, LE Boucheron, A Can, A Madabhushi, NM Rajpoot, B Yener. Histopathological image analysis: a review. IEEE Rev Biomed Eng 2009; 2: 147–171 https://doi.org/10.1109/RBME.2009.2034865
pmid: 20671804
3
A Andrion, C Magnani, PG Betta, A Donna, F Mollo, M Scelsi, P Bernardi, M Botta, B Terracini. Malignant mesothelioma of the pleura: interobserver variability. J Clin Pathol 1995; 48(9): 856–860 https://doi.org/10.1136/jcp.48.9.856
pmid: 7490321
4
WH Wolberg, WN Street, DM Heisey, OL Mangasarian. Computer-derived nuclear features distinguish malignant from benign breast cytology. Hum Pathol 1995; 26(7): 792–796 https://doi.org/10.1016/0046-8177(95)90229-5
pmid: 7628853
5
JP Thiran, B Macq. Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Trans Biomed Eng 1996; 43(10): 1011–1020 https://doi.org/10.1109/10.536902
pmid: 9214818
6
HK Choi, T Jarkrans, E Bengtsson, J Vasko, K Wester, PU Malmström, C Busch. Image analysis based grading of bladder carcinoma. Comparison of object, texture and graph based methods and their reproducibility. Anal Cell Pathol 1997; 15(1): 1–18 https://doi.org/10.1155/1997/147187
pmid: 9373709
AN Esgiar, RN Naguib, BS Sharif, MK Bennett, A Murray. Fractal analysis in the detection of colonic cancer images. IEEE Trans Inf Technol Biomed 2002; 6(1): 54–58 https://doi.org/10.1109/4233.992163
pmid: 11936597
9
P Spyridonos, P Ravazoula, D Cavouras, K Berberidis, G Nikiforidis. Computer-based grading of haematoxylin-eosin stained tissue sections of urinary bladder carcinomas. Med Inform Internet Med 2001; 26(3): 179–190 https://doi.org/10.1080/14639230110065757
pmid: 11706928
B Nielsen, F Albregtsen, HE Danielsen. The use of fractal features from the periphery of cell nuclei as a classification tool. Anal Cell Pathol 1999; 19(1): 21–37 https://doi.org/10.1155/1999/986086
pmid: 10661622
12
AN Esgiar, RN Naguib, BS Sharif, MK Bennett, A Murray. Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa. IEEE Trans Inf Technol Biomed 1998; 2(3): 197–203 https://doi.org/10.1109/4233.735785
pmid: 10719530
C Demir, SH Gultekin, B Yener. Learning the topological properties of brain tumors. IEEE/ACM Trans Comput Biol Bioinformatics 2005; 2(3): 262–270 https://doi.org/10.1109/TCBB.2005.42
pmid: 17044189
RS Weinstein, AR Graham, LC Richter, GP Barker, EA Krupinski, AM Lopez, KA Erps, AK Bhattacharyya, Y Yagi, JR Gilbertson. Overview of telepathology, virtual microscopy, and whole slide imaging: prospects for the future. Hum Pathol 2009; 40(8): 1057–1069 https://doi.org/10.1016/j.humpath.2009.04.006
pmid: 19552937
18
EA Krupinski, AK Bhattacharyya, RS Weinstein. Telepathology and Digital Pathology Research. Springer, Cham. 2016: 41–54
19
N Farahani, AV Parwani, L Pantanowitz. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int 2015; 7: 23–33
Y LeCun, BE Boser, JS Denker, D Henderson, RE Howard, WE Hubbard, LD Jackel. Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems. 1990: 396–404
23
Y LeCun, L Bottou, Y Bengio, P Haffner. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86(11): 2278–2324 https://doi.org/10.1109/5.726791
24
P Wang, R Ge, X Xiao, Y Cai, G Wang, F Zhou. Rectified-linear-unit-based deep learning for biomedical multi-label data. Interdiscip Sci 2017; 9(3): 419–422 https://doi.org/10.1007/s12539-016-0196-1
25
A Madabhushi, G Lee. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal 2016; 33: 170–175 https://doi.org/10.1016/j.media.2016.06.037
HF Frierson Jr, RA Wolber, KW Berean, DW Franquemont, MJ Gaffey, JC Boyd, DC Wilbur. Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma. Am J Clin Pathol 1995; 103(2): 195–198 https://doi.org/10.1093/ajcp/103.2.195
pmid: 7856562
28
AM Khan, N Rajpoot, D Treanor, D Magee. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 2014; 61(6): 1729–1738 https://doi.org/10.1109/TBME.2014.2303294
pmid: 24845283
29
A Vahadane, T Peng, A Sethi, S Albarqouni, L Wang, M Baust, K Steiger, AM Schlitter, I Esposito, N Navab. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans Med Imaging 2016; 35(8): 1962–1971 https://doi.org/10.1109/TMI.2016.2529665
pmid: 27164577
30
A Janowczyk, A Basavanhally, A Madabhushi. Stain normalization using Sparse AutoEncoders (StaNoSA): application to digital pathology. Comput Med Imaging Graph 2017; 57: 50–61 https://doi.org/10.1016/j.compmedimag.2016.05.003
pmid: 27373749
31
A Bentaieb, G Hamarneh. Adversarial stain transfer for histopathology image analysis. IEEE Trans Med Imaging 2018; 37(3): 792–802 https://doi.org/10.1109/TMI.2017.2781228
CW Elston, IO Ellis. Author Commentary: “Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403–410.” Histopathology 2002; 41(3A): 151 https://doi.org/10.1046/j.1365-2559.2002.14691.x
pmid: 12405945
34
KH Chow, RE Factor, KS Ullman. The nuclear envelope environment and its cancer connections. Nat Rev Cancer 2012; 12(3): 196–209 https://doi.org/10.1038/nrc3219
pmid: 22337151
35
P Dey. Cancer nucleus: morphology and beyond. Diagn Cytopathol 2010; 38(5): 382–390
pmid: 19894267
36
H Chen, X Wang, PA Heng. Automated mitosis detection with deep regression networks. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE. 2016: 1204–1207
37
D Cireşan, A Giusti, LM Gambardella, J Schmidhuber. Deep neural networks segment neuronal membranes in electron microscopy images. Adv Neural Inf Process Syst 2012: 2843–2851
38
O Ronneberger, P Fischer, T Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2015: 234–241
39
Y Zhou, H Chang, KE Barner, B Parvin. Nuclei segmentation via sparsity constrained convolutional regression. Proc IEEE Int Symp Biomed Imaging 2015; 2015: 1284–1287 https://doi.org/10.1109/ISBI.2015.7164109
40
Y Song, L Zhang, S Chen, D Ni, B Lei, T Wang. Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning. IEEE Trans Biomed Eng 2015; 62(10): 2421–2433 https://doi.org/10.1109/TBME.2015.2430895
pmid: 25966470
41
F Xing, Y Xie, L Yang. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging 2016; 35(2): 550–566 https://doi.org/10.1109/TMI.2015.2481436
pmid: 26415167
42
X Pan, L Li, H Yang, Z Liu, J Yang, L Zhao, Y Fan. Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks. Neurocomputing 2016; 229: S0925231216313765
43
L Zhang, M Sonka, L Lu, RM Summers, J Yao. Combining fully convolutional networks and graph-based approach for automated segmentation of cervical cell nuclei. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE. 2017: 406–409
44
MZ Alom, C Yakopcic, TM Taha, VK Asari. Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net). NAECON 2018-IEEE National Aerospace and Electronics Conference. IEEE. 2018: 228–233
45
Y Xie, F Xing, X Kong, H Su, L Yang. Beyond classification: structured regression for robust cell detection using convolutional neural network. Med Image Comput Comput Assist Interv 2015; 9351: 358–365 https://doi.org/10.1007/978-3-319-24574-4_43
46
K Sirinukunwattana, SE Ahmed Raza, YW Tsang, DRJ Snead, IA Cree, NM Rajpoot. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 2016; 35(5): 1196–1206 https://doi.org/10.1109/TMI.2016.2525803
pmid: 26863654
47
J Xu, L Xiang, Q Liu, H Gilmore, J Wu, J Tang, A Madabhushi. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imaging 2016; 35(1): 119–130 https://doi.org/10.1109/TMI.2015.2458702
pmid: 26208307
48
Y Xie, F Xing, X Shi, X Kong, H Su, L Yang. Efficient and robust cell detection: a structured regression approach. Med Image Anal 2018; 44: 245–254 https://doi.org/10.1016/j.media.2017.07.003
pmid: 28797548
49
DC Cireşan, A Giusti, LM Gambardella, J Schmidhuber. Mitosis detection in breast cancer histology images with deep neural networks. Med Image Comput Comput Assist Interv 2013; 16(Pt 2): 411–418 https://doi.org/10.1007/978-3-642-40763-5_51
50
H Wang, A Cruz-Roa, A Basavanhally, H Gilmore, N Shih, M Feldman, J Tomaszewski, F Gonzalez, A Madabhushi. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging (Bellingham) 2014; 1(3): 034003 https://doi.org/10.1117/1.JMI.1.3.034003
pmid: 26158062
51
H Chen, Q Dou, X Wang, J Qin, PA Heng. Mitosis detection in breast cancer histology images via deep cascaded networks. Thirtieth AAAI Conference on Artificial Intelligence. 2016
52
S Albarqouni, C Baur, F Achilles, V Belagiannis, S Demirci, N Navab. Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 2016; 35(5): 1313–1321 https://doi.org/10.1109/TMI.2016.2528120
pmid: 26891484
53
C Li, X Wang, W Liu, LJ Latecki. DeepMitosis: mitosis detection via deep detection, verification and segmentation networks. Med Image Anal 2018; 45: 121–133 https://doi.org/10.1016/j.media.2017.12.002
pmid: 29455111
54
M Ma, Y Shi, W Li, Y Gao, J Xu. A novel two-stage deep method for mitosis detection in breast cancer histology images. 2018 24th International Conference on Pattern Recognition (ICPR). IEEE. 2018: 3892–3897
55
C Li, X Wang, W Liu, LJ Latecki, B Wang, J Huang. Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med Image Anal 2019; 53: 165–178 https://doi.org/10.1016/j.media.2019.01.013
pmid: 30798116
56
L Yang, Y Zhang, IH Guldner, S Zhang, DZ Chen. 3D segmentation of glial cells using fully convolutional networks and k-terminal cut. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2016: 658–666
57
SU Akram, J Kannala, L Eklund, J Heikkilä. Cell proposal network for microscopy image analysis. 2016 IEEE International Conference on Image Processing (ICIP). IEEE. 2016: 3199–3203
58
SU Akram, J Kannala, L Eklund, J Heikkilä. Cell segmentation proposal network for microscopy image analysis. Deep Learning and Data Labeling for Medical Applications. Springer, Cham. 2016: 21–29
59
H Chen, X Qi, L Yu, Q Dou, J Qin, PA Heng. DCAN: deep contour-aware networks for object instance segmentation from histology images. Med Image Anal 2017; 36: 135–146 https://doi.org/10.1016/j.media.2016.11.004
60
Y Song, EL Tan, X Jiang, JZ Cheng, D Ni, S Chen, B Lei, T Wang. Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans Med Imaging 2017; 36(1): 288–300 https://doi.org/10.1109/TMI.2016.2606380
pmid: 27623573
61
N Kumar, R Verma, S Sharma, S Bhargava, A Vahadane, A Sethi. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans Med Imaging 2017; 36(7): 1550–1560 https://doi.org/10.1109/TMI.2017.2677499
pmid: 28287963
62
DJ Ho, C Fu, P Salama, KW Dunn, EJ Delp. Nuclei detection and segmentation of fluorescence microscopy images using three dimensional convolutional neural networks. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE. 2018: 418–422
63
P Naylor, M Laé, F Reyal, T Walter. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans Med Imaging 2019; 38(2): 448–459 https://doi.org/10.1109/TMI.2018.2865709
pmid: 30716022
64
Y Zhou, OF Onder, Q Dou, E Tsougenis, H Chen, PA Heng. Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation. International Conference on Information Processing in Medical Imaging. Springer, Cham. 2019: 682–693
65
I Arganda-Carreras, HS Seung, A Cardona, J Schindelin. Segmentation of neuronal structures in EM stacks challenge–ISBI 2012. 2012
66
A Oren, J Fernandes. The Bethesda system for the reporting of cervical/vaginal cytology. J Am Osteopath Assoc 1991; 91(5): 476–479
67
S Naik, S Doyle, M Feldman, J Tomaszewski, A Madabhushi. Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information. MIAAB workshop. 2007: 1–8
68
PS Karvelis, DI Fotiadis, I Georgiou, M Syrrou. A watershed based segmentation method for multispectral chromosome images classification. Conf Proc IEEE Eng Med Biol Soc 2006; 2006: 3009–3012 https://doi.org/10.1109/IEMBS.2006.260682
69
S Petushi, FU Garcia, MM Haber, C Katsinis, A Tozeren. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med Imaging 2006; 6(1): 14 https://doi.org/10.1186/1471-2342-6-14
pmid: 17069651
70
E Shelhamer, J Long, T Darrell. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2017; 39(4): 640–651 https://doi.org/10.1109/TPAMI.2016.2572683
71
O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, S McDonagh, NY Hammerla, B Kainz, B Glocker, D Rueckert. Attention U-net: learning where to look for the pancreas. arXiv 2018; 1804.03999
72
Z Zeng, W Xie, Y Zhang, Y. Lu RIC-Unet: an improved neural network based on Unet for nuclei segmentation in histology images. IEEE Access 2019; 7: 21420–21428
73
JM Chen, Y Li, J Xu, L Gong, LW Wang, WL Liu, J Liu. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: a review. Tumour Biol 2017; 39(3): 1010428317694550 https://doi.org/10.1177/1010428317694550
pmid: 28347240
74
M Veta, JP Pluim, PJ van Diest, MA Viergever. Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 2014; 61(5): 1400–1411 https://doi.org/10.1109/TBME.2014.2303852
pmid: 24759275
75
C Sommer, L Fiaschi, FA Hamprecht, DW Gerlich. Learning-based mitotic cell detection in histopathological images. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). IEEE. 2012: 2306–2309
76
M Veta, PJ van Diest, JPW Pluim. Detecting mitotic figures in breast cancer histopathology images. Medical Imaging 2013: Digital Pathology. International Society for Optics and Photonics. 2013; 8676: 867607
77
AM Khan, H Eldaly, NM Rajpoot. A gamma-Gaussian mixture model for detection of mitotic cells in breast cancer histopathology images. J Pathol Inform 2013; 4(4): 149–152
pmid: 23858386
78
A Paul, A Dey, DP Mukherjee, J Sivaswamy, V Tourani. Regenerative random forest with automatic feature selection to detect mitosis in histopathological breast cancer images. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2015: 94–102
79
AA Cruz-Roa, JE Arevalo Ovalle, A Madabhushi, FA González Osorio. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Med Image Comput Comput Assist Interv 2013; 16(Pt 2): 403–410 https://doi.org/10.1007/978-3-642-40763-5_50
80
M Veta, PJ van Diest, SM Willems, H Wang, A Madabhushi, A Cruz-Roa, F Gonzalez, AB Larsen, JS Vestergaard, AB Dahl, DC Cireşan, J Schmidhuber, A Giusti, LM Gambardella, FB Tek, T Walter, CW Wang, S Kondo, BJ Matuszewski, F Precioso, V Snell, J Kittler, TE de Campos, AM Khan, NM Rajpoot, E Arkoumani, MM Lacle, MA Viergever, JP Pluim. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 2015; 20(1): 237–248 https://doi.org/10.1016/j.media.2014.11.010
pmid: 25547073
81
L Roux, D Racoceanu, N Loménie, M Kulikova, H Irshad, J Klossa, F Capron, C Genestie, GL Naour, MN Gurcan. Mitosis detection in breast cancer histological images. An ICPR 2012 contest. J Pathol Inform 2013; 4: 8 https://doi.org/10.4103/2153-3539.112693
82
F Yang, MA Mackey, F Ianzini, G Gallardo, M Sonka. Cell segmentation, tracking, and mitosis detection using temporal context. Med Image Comput Comput Assist Interv 2005; 8(Pt 1): 302–309 https://doi.org/doi:10.1007/11566465_38
83
C Payer, D Štern, M Feiner, H Bischof, M Urschler. Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks. Med Image Anal 2019; 57: 106–119 https://doi.org/10.1016/j.media.2019.06.015
84
B Hariharan, P Arbeláez, R Girshick, J Malik. Simultaneous detection and segmentation. European Conference on Computer Vision. Springer, Cham. 2014: 297–312
85
M Veta, PJ Van Diest, JPW Pluim. Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2016: 632–639
86
P Kronqvist, T Kuopio, Y Collan. Morphometric grading of invasive ductal breast cancer. I. Thresholds for nuclear grade. Br J Cancer 1998; 78(6): 800–805 https://doi.org/10.1038/bjc.1998.582
pmid: 9743304
87
EC Mommers, DL Page, WD Dupont, P Schuyler, AM Leonhart, JP Baak, CJ Meijer, PJ van Diest. Prognostic value of morphometry in patients with normal breast tissue or usual ductal hyperplasia of the breast. Int J Cancer 2001; 95(5): 282–285
pmid: 11494225
88
M Veta, R Kornegoor, A Huisman, AH Verschuur-Maes, MA Viergever, JP Pluim, PJ van Diest. Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer. Mod Pathol 2012; 25(12): 1559–1565 https://doi.org/10.1038/modpathol.2012.126
pmid: 22899294
89
M Maška, V Ulman, D Svoboda, P Matula, P Matula, C Ederra, A Urbiola, T España, S Venkatesan, DMW Balak, P Karas, T Bolcková, M Štreitová, C Carthel, S Coraluppi, N Harder, K Rohr, KEG Magnusson, J Jaldén, HM Blau, O Dzyubachyk, P Křížek, GM Hagen, DP Escuredo, DJ Carretero, MJL Carbayo, AM Barrutia, E Meijering, M Kozubek, CO Solorzano. A benchmark for comparison of cell tracking algorithms. Bioinformatics 2014; 30(11): 1609–1617 https://doi.org/10.1093/bioinformatics/btu080
90
QD Vu, S Graham, NN To. Minh, Muhammad S, Talha Q, Navid AK, Ali KS, Tahsin K, Keyvan F, Tianhao Z, Rajarsi G, Tae KJ, Nasir R, Joel S. Methods for segmentation and classification of digital microscopy tissue images. Front Bioeng Biotechnol 2019; 7: 53 https://doi.org/10.3389/fbioe.2019.00053
91
P Naylor, M Laé, F Reyal, et al.. Nuclei segmentation in histopathology images using deep neural networks[C]//2017 IEEE 14th International Symposium On Biomedical Imaging (ISBI 2017). IEEE. 2017: 933–936
92
N Kumar, R Verma, D Anand, Y Zhou, OF Onder, E Tsougenis, H Chen, P Heng, J Li, Z Hu, Y Wang, NA Koohbanani, M Jahanifar, NZ Tajeddin, A Gooya, N Rajpoot, X Ren, S Zhou, Q Wang, D Shen, C Yang, C Weng, W Yu, C Yeh, S Yang, S Xu, PH Yeung, P Sun, A Mahbod, G Schaefer, I Ellinger, R Ecker, O Smedby, C Wang, B Chidester, T Ton, M Tran, J Ma, MN Do, S Graham, QD Vu, JT Kwak, A Gunda, R Chunduri, C Hu, X Zhou, D Lotfi, R Safdari, A Kascenas, A O’Neil, D Eschweiler, J Stegmaier, Y Cui, B Yin, K Chen, X Tian, P Gruening, E Barth, E Arbel, L Remer, A Ben-Dor, E Sirazitdinova, M Kohl, S Braunewell, Y Li, X Xie, L Shen, J Ma, KD Baksi, MA Khan, J Choo, A Colomer, V Naranjo, L Pei, KM Iftekharuddin, K Roy, D Bhattacharjee, A Pedraza, MG Bueno, S Devanathan, S Radhakrishnan, P Koduganty, Z Wu, G Cai, X Liu, Y Wang, A Sethi. A multi-organ nucleus segmentation challenge. IEEE Trans Med Imaging 2020; 39(5): 1380–1391 https://doi.org/10.1109/TMI.2019.2947628
93
A Neubeck, L Van Gool. Efficient non-maximum suppression. 18th International Conference on Pattern Recognition (ICPR'06). IEEE. 2006, 3: 850–855
94
CR Maurer, R Qi, V Raghavan. A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Pattern Anal Mach Intell 2003; 25(2): 265–270 https://doi.org/10.1109/TPAMI.2003.1177156
95
S Ren, K He, R Girshick, J Sun. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2017; 39(6): 1137–1149 https://doi.org/10.1109/TPAMI.2016.2577031
96
R Zhang, C Cheng, X Zhao, X Li. Multiscale mask R-CNN-based lung tumor detection using PET imaging. Mol Imaging 2019; 18: 1536012119863531 https://doi.org/10.1177/1536012119863531
97
S Wang, R Rong, DM Yang, J Fujimoto, S Yan, L Cai, L Yang, D Luo, C Behrens , ER Parra, B Yao, L Xu, T Wang, X Zhan, II Wistuba, J Minna, Y Xie, G Xiao. Computational staining of pathology images to study the tumor microenvironment in lung cancer. Cancer Res 2020; 80(10): 2056–2066 https://doi.org/10.1158/0008-5472.CAN-19-1629
pmid: 31915129
SA Hoda, RS Hoda. Rubin’s pathology: clinicopathologic foundations of medicine. JAMA 2007; 298(17): 2070–2075
100
K Sirinukunwattana, JPW Pluim, H Chen, X Qi, PA Heng, YB Guo, LY Wang, BJ Matuszewski, E Bruni, U Sanchez, A Böhm, O Ronneberger, BB Cheikh, D Racoceanu, P Kainz, M Pfeiffer, M Urschler, DRJ Snead, NM Rajpoot. Gland segmentation in colon histology images: the GlaS challenge contest. Med Image Anal 2017; 35: 489–502 https://doi.org/10.1016/j.media.2016.08.008
pmid: 27614792
KR Hess, GR Varadhachary, SH Taylor, W Wei, MN Raber, R Lenzi, JL Abbruzzese. Metastatic patterns in adenocarcinoma. Cancer 2006; 106(7): 1624–1633 https://doi.org/10.1002/cncr.21778
pmid: 16518827
M Fleming, S Ravula, SF Tatishchev, HL Wang. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol 2012; 3(3): 153–173
pmid: 22943008
105
WD Travis, E Brambilla, KR Geisinger. Histological grading in lung cancer: one system for all or separate systems for each histological type? Eur Respir J 2016; 47(3): 720–723 https://doi.org/10.1183/13993003.00035-2016
106
Y Xu, Y Li, M Liu, Y Wang, M Lai, C Eric. Gland instance segmentation by deep multichannel side supervision. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2016: 496–504
107
P Kainz, M Pfeiffer, M Urschler. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ 2017; 5: e3874 https://doi.org/10.7717/peerj.3874
108
W Li, S Manivannan, S Akbar, J Zhang, E Trucco, SJ McKenna. Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE. 2016: 1405–1408
109
Y Xu, Y Li, Y Wang, M Liu, Y Fan, M Lai, EIC Chang. Gland instance segmentation using deep multichannel neural networks. IEEE Trans Biomed Eng 2017; 64(12): 2901–2912 https://doi.org/10.1109/TBME.2017.2686418
pmid: 28358671
110
A BenTaieb, G Hamarneh. Topology aware fully convolutional networks for histology gland segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2016: 460–468
111
A BenTaieb, J Kawahara, G Hamarneh. Multi-loss convolutional networks for gland analysis in microscopy. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE. 2016: 642–645
112
HS Wu, R Xu, N Harpaz, D Burstein, J Gil. Segmentation of microscopic images of small intestinal glands with directional 2-D filters. Anal Quant Cytol Histol 2005; 27(5): 291–300
pmid: 16447822
113
R Farjam, H Soltanian-Zadeh, K Jafari-Khouzani, RA Zoroofi. An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry B Clin Cytom 2007; 72(4): 227–240 https://doi.org/10.1002/cyto.b.20162
pmid: 17285628
H Fu, G Qiu, J Shu, M Ilyas. A novel polar space random field model for the detection of glandular structures. IEEE Trans Med Imaging 2014; 33(3): 764–776 https://doi.org/10.1109/TMI.2013.2296572
pmid: 24595348
116
K Sirinukunwattana, DR Snead, NM Rajpoot. A stochastic polygons model for glandular structures in colon histology images. IEEE Trans Med Imaging 2015; 34(11): 2366–2378 https://doi.org/10.1109/TMI.2015.2433900
pmid: 25993703
117
JP Monaco, JE Tomaszewski, MD Feldman, I Hagemann, M Moradi, P Mousavi, A Boag, C Davidson, P Abolmaesumi, A Madabhushi. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med Image Anal 2010; 14(4): 617–629 https://doi.org/10.1016/j.media.2010.04.007
pmid: 20493759
118
J Diamond, NH Anderson, PH Bartels, R Montironi, PW Hamilton. The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum Pathol 2004; 35(9): 1121–1131 https://doi.org/10.1016/j.humpath.2004.05.010
pmid: 15343515
119
S Doyle, A Madabhushi, M Feldman, J Tomaszeweski. A boosting cascade for automated detection of prostate cancer from digitized histology. Med Image Comput Comput Assist Interv 2006; 9(Pt 2): 504–511
120
A Tabesh, M Teverovskiy, HY Pang, VP Kumar, D Verbel, A Kotsianti, O Saidi. Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans Med Imaging 2007; 26(10): 1366–1378 https://doi.org/10.1109/TMI.2007.898536
pmid: 17948727
121
K Nguyen, A Sarkar, AK Jain. Structure and context in prostatic gland segmentation and classification. Med Image Comput Comput Assist Interv 2012; 15(Pt 1): 115–123 https://doi.org/10.1007/978-3-642-33415-3_15
122
JG Jacobs, E Panagiotaki, DC Alexander. Gleason grading of prostate tumours with max-margin conditional random fields. International Workshop on Machine Learning in Medical Imaging. Springer, Cham. 2014: 85–92
123
B Sabata, B Babenko, R Monroe, C Srinivas. Automated analysis of pin-4 stained prostate needle biopsies. International Workshop on Prostate Cancer Imaging. Springer, Berlin, Heidelberg. 2010: 89–100
124
D Altunbay, C Cigir, C Sokmensuer, C Gunduz-Demir. Color graphs for automated cancer diagnosis and grading. IEEE Trans Biomed Eng 2010; 57(3): 665–674 https://doi.org/10.1109/TBME.2009.2033804
pmid: 19846369
125
A Fakhrzadeh, E Sporndly-Nees, L Holm, CLL Hendriks. Analyzing tubular tissue in histopathological thin sections. 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA). IEEE. 2012: 1–6
126
A Krizhevsky, I Sutskever, GE Hinton. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012: 1097–1105
127
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke, A Rabinovich. Going deeper with convolutions. Proceedings of the IEEE Conference on computer Vision and Pattern Recognition. 2015: 1–9
128
J Deng, W Dong, R Socher, LJ Li, K Li, L Fei-Fei. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248–255
129
S Manivannan, W Li, S Akbar, R Wang, J Zhang, SJ McKenna. An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens. Pattern Recognit 2016; 51: 12–26 https://doi.org/10.1016/j.patcog.2015.09.015
130
Y Xu, Z Jia, LB Wang, Y Ai, F Zhang, M Lai, EIC Chang. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics 2017; 18(1): 281 https://doi.org/10.1186/s12859-017-1685-x
pmid: 28549410
131
Y Xu, T Mo, Q Feng, P Zhong, M Lai, EI Chang. Deep learning of feature representation with multiple instance learning for medical image analysis. IEEE International Conference on Acoustics, Speech and Signal Processing 2014; 1626–1630 https://doi.org/10.1109/ICASSP.2014.6853873
132
Y Xu, Z Jia, Y Ai, F Zhang, M Lai, EI Change. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. IEEE International Conference on Acoustics, Speech and Signal Processing. 2015: 947–951 https://doi.org/10.1109/ICASSP.2015.7178109
133
L Hou, D Samaras, TM Kurc, Y Gao, JE Davis, JH Saltz. Patch-based convolutional neural network for whole slide tissue image classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016; 2016: 2424–2433 https://doi.org/10.1109/CVPR.2016.266
pmid: 27795661
134
H Källén, J Molin, A Heyden, C Lundstrom, K Astrom. Towards grading gleason score using generically trained deep convolutional neural networks. IEEE International Symposium on Biomedical Imaging. 2016: 1163–1167 https://doi.org/10.1109/isbi.2016.7493473
135
J Xu, X Luo, G Wang, H Gilmore, A Madabhushi. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 2016; 191: 214–223 https://doi.org/10.1016/j.neucom.2016.01.034
pmid: 28154470
136
T Qaiser, YW Tsang, D Epstein, N Rajpoot. Tumor segmentation in whole slide images using persistent homology and deep convolutional features. Annual Conference on Medical Image Understanding and Analysis. 2017; 723: 320–329 https://doi.org/10.1007/978-3-319-60964-5_28
137
Z Jia, X Huang, EI Chang, Y Xu. Constrained deep weak supervision for histopathology image segmentation. IEEE Trans Med Imaging 2017; 36(11): 2376–2388 https://doi.org/10.1109/TMI.2017.2724070
pmid: 28692971
138
P Courtiol, EW Tramel, M Sanselme, G Wainrib. Classification and disease localization in histopathology using only global labels: a weakly-supervised approach. 2018
139
X Wang, H Chen, C Gan, H Lin, Q Dou, E Tsougenis, Q Huang, M Cai, PA Heng. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans Cybern 2019; [Epub ahead of print] doi: 10.1109/TCYB.2019.2935141 https://doi.org/10.1109/TCYB.2019.2935141
pmid: 31484154
140
C Mercan, S Aksoy, E Mercan, LG Shapiro, DL Weaver, JG Elmore. From patch-level to roi-level deep feature representations for breast histopathology classification. Medical Imaging 2019: Digital Pathology. 2019. 109560H https://doi.org/10.1117/12.2510665
141
Y Xu, L Jiao, S Wang, J Wei, Y Fan, M Lai, EI Chang. Multi-label classification for colon cancer using histopathological images. Microsc Res Tech 2013; 76(12): 1266–1277 https://doi.org/10.1002/jemt.22294
pmid: 24123468
MM Adankon, M Cheriet. Support vector machine. Comput Sci 2002; 1(4): 1–28
144
P Golland, N Hata, C Barillot, J Hornegger, R Howe. Preface. Medical image computing and computer-assisted intervention—MICCAI 2014. Med Image Comput Comput Assist Interv 2014; 17(Pt 1): V–VI
145
P Sermanet, D Eigen, X Zhang, M Mathieu, R Fergus, Y Lecun. Overfeat: integrated recognition, localization and detection using convolutional networks. International Conference on Learning Representations. 2014
146
A Liaw, M Wiener. Classification and regression by random forest. R News 2007; 2: 18–22
147
K Simonyan, A Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv 2014; 1409.1556v6
148
X Yan, JY Zhu, EI Chang, Z Tu. Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2012; 964–971 https://doi.org/10.1109/cvpr.2012.6247772
149
Y Xu, J Zhang, EI Chang, M Lai, Z Tu. Context-constrained multiple instance learning for histopathology image segmentation. Med Image Comput Comput Assist Interv 2012; 15(Pt 3): 623–630 https://doi.org/10.1007/978-3-642-33454-2_77
pmid: 23286183
150
Y Xu, JY Zhu, EI Chang, M Lai, Z Tu. Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal 2014; 18(3): 591–604 https://doi.org/10.1016/j.media.2014.01.010
pmid: 24637156
151
Y Xu, Y Li, Z Shen, Z Wu, T Gao, Y Fan, M Lai, EI Chang. Parallel multiple instance learning for extremely large histopathology image analysis. BMC Bioinformatics 2017; 18(1): 360 https://doi.org/10.1186/s12859-017-1768-8
pmid: 28774262
152
K He, X Zhang, S Ren, J Sun. Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016: 770–778 https://doi.org/10.1109/cvpr.2016.90
153
RG Hagerty, PN Butow, PM Ellis, S Dimitry, MH Tattersall. Communicating prognosis in cancer care: a systematic review of the literature. Ann Oncol 2005; 16(7): 1005–1053 https://doi.org/10.1093/annonc/mdi211
pmid: 15939716
H Uramoto, F Tanaka. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res 2014; 3(4): 242–249
pmid: 25806307
156
X Wang, A Janowczyk, Y Zhou, R Thawani, P Fu, K Schalper, V Velcheti, A Madabhushi. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci Rep 2017; 7(1): 13543 https://doi.org/10.1038/s41598-017-13773-7
pmid: 29051570
157
P Vaidya, X Wang, K Bera, A Khunger, H Choi, P Patil, V Velcheti, A Madabhushi. Raptomics: integrating radiomic and pathomic features for predicting recurrence in early stage lung cancer. Medical Imaging 2018: Digital Pathology International Society for Optics and Photonics. 2018: 105810M https://doi.org/10.1117/12.2296646
158
M Sanchez-Cespedes, P Parrella, M Esteller, S Nomoto, B Trink, JM Engles, WH Westra, JG Herman, D Sidransky. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002; 62(13): 3659–3662
pmid: 12097271
159
DB Shackelford, E Abt, L Gerken, DS Vasquez, A Seki, M Leblanc, L Wei, MC Fishbein, J Czernin, PS Mischel, RJ Shaw. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23(2): 143–158 https://doi.org/10.1016/j.ccr.2012.12.008
pmid: 23352126
S Wang, DM Yang, R Rong, X Zhan, J Fujimoto, H Liu, J Minna, II Wistuba, Y Xie, G Xiao. Artificial intelligence in lung cancer pathology image analysis. Cancers (Basel) 2019; 11(11): 1673 https://doi.org/10.3390/cancers11111673
pmid: 31661863
162
N Coudray, PS Ocampo, T Sakellaropoulos, N Narula, M Snuderl, D Fenyö, AL Moreira, N Razavian, A Tsirigos. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018; 24(10): 1559–1567 https://doi.org/10.1038/s41591-018-0177-5
pmid: 30224757
163
JN Kather, AT Pearson, N Halama, D Jäger, J Krause, SH Loosen, A Marx, P Boor, F Tacke, UP Neumann, HI Grabsch, T Yoshikawa, H Brenner, J Chang-Claude, M Hoffmeister, C Trautwein, T Luedde. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 2019; 25(7): 1054–1056 https://doi.org/10.1038/s41591-019-0462-y
pmid: 31160815
164
DT Le, JN Uram, H Wang, BR Bartlett, H Kemberling, AD Eyring, AD Skora, BS Luber, NS Azad, D Laheru, B Biedrzycki, RC Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, SM Duffy, RM Goldberg, A de la Chapelle, M Koshiji, F Bhaijee, T Huebner, RH Hruban, LD Wood, N Cuka, DM Pardoll, N Papadopoulos, KW Kinzler, S Zhou, TC Cornish, JM Taube, RA Anders, JR Eshleman, B Vogelstein, LA Diaz Jr. Pd-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520 https://doi.org/10.1056/NEJMoa1500596
pmid: 26028255
165
K Nagpal, D Foote, Y Liu, PHC Chen, E Wulczyn, F Tan, N Olson, JL Smith, A Mohtashamian, JH Wren, GS Corrado, R MacDonald, LH Peng, MB Amin, AJ Evans, AR Sangoi, CH Mermel, JD Hipp, MC Stumpe. Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ Digit Med 2019; 2(1): 1–10 https://doi.org/10.1038/s41746-019-0112-2
pmid: 31304394
166
C Szegedy, V Vanhoucke, S Ioffe, J Shlens, Z Wojna. Rethinking the inception architecture for computer vision. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016: 2818–2826 https://doi.org/10.1109/cvpr.2016.308
167
N Ing, Z Ma, J Li, H Salemi, C Arnold, BS Knudsen, A Gertych. Semantic segmentation for prostate cancer grading by convolutional neural networks. Medical Imaging 2018: Digital Pathology International Society for Optics and Photonics. 2018: 105811B https://doi.org/10.1117/12.2293000
168
V Badrinarayanan, A Kendall, R Cipolla. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 2017; 39(12): 2481–2495 https://doi.org/10.1109/TPAMI.2016.2644615
pmid: 28060704
169
W Li, J Li, KV Sarma, KC Ho, S Shen, BS Knudsen, A Gertych, CW Arnold. Path R-CNN for prostate cancer diagnosis and gleason grading of histological images. IEEE Trans Med Imaging 2019; 38(4): 945–954 https://doi.org/10.1109/TMI.2018.2875868
pmid: 30334752