Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (2): 232-251   https://doi.org/10.1007/s11684-020-0797-2
  本期目录
Recent advances in myeloid-derived suppressor cell biology
Mahmoud Mohammad Yaseen1(), Nizar Mohammad Abuharfeil1, Homa Darmani2, Ammar Daoud3
1. Department of Biotechnology and Genetic Engineering
2. Department of Applied Biology, Faculty of Science and Arts
3. Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
 全文: PDF(2899 KB)   HTML
Abstract

In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.

Key wordsnon-human primates (rhesus macaques)    myeloid-derived pro-inflammatory cells (MDPCs)    autoimmune disorders    alloimmune responses    pregnancy    mature MDSCs    multiple sclerosis    Yin-Yang law of MDSCs
收稿日期: 2020-02-08      出版日期: 2021-04-23
Corresponding Author(s): Mahmoud Mohammad Yaseen   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(2): 232-251.
Mahmoud Mohammad Yaseen, Nizar Mohammad Abuharfeil, Homa Darmani, Ammar Daoud. Recent advances in myeloid-derived suppressor cell biology. Front. Med., 2021, 15(2): 232-251.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-020-0797-2
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I2/232
Fig.1  
Fig.2  
Fig.3  
1 MG Schwacha, SR Scroggins, RK Montgomery, SE Nicholson, AP Cap. Burn injury is associated with an infiltration of the wound site with myeloid-derived suppressor cells. Cell Immunol 2019; 338: 21–26
https://doi.org/10.1016/j.cellimm.2019.03.001 pmid: 30902343
2 M Ahmadi, M Mohammadi, M Ali-Hassanzadeh, M Zare, B Gharesi-Fard. MDSCs in pregnancy: critical players for a balanced immune system at the feto-maternal interface. Cell Immunol 2019; 346: 103990
https://doi.org/10.1016/j.cellimm.2019.103990 pmid: 31703912
3 S Ostrand-Rosenberg, P Sinha, C Figley, R Long, D Park, D Carter, VK Clements. Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. J Leukoc Biol 2017; 101(5): 1091–1101
https://doi.org/10.1189/jlb.1HI1016-306RR pmid: 28007981
4 IT Schrijver, C Théroude, T Roger. Myeloid-derived suppressor cells in sepsis. Front Immunol 2019; 10: 327
https://doi.org/10.3389/fimmu.2019.00327 pmid: 30873175
5 E Medina, D Hartl. Myeloid-derived suppressor cells in infection: a general overview. J Innate Immun 2018; 10(5-6): 407–413
https://doi.org/10.1159/000489830 pmid: 29945134
6 A Salminen, K Kaarniranta, A Kauppinen. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev 2018; 48: 1–10
https://doi.org/10.1016/j.arr.2018.09.001 pmid: 30248408
7 T Nakamura, H Ushigome. Myeloid-derived suppressor cells as a regulator of immunity in organ transplantation. Int J Mol Sci 2018; 19(8): E2357
https://doi.org/10.3390/ijms19082357 pmid: 30103447
8 A Salminen. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57: 100998
https://doi.org/10.1016/j.arr.2019.100998 pmid: 31838128
9 C Guo, F Hu, H Yi, Z Feng, C Li, L Shi, Y Li, H Liu, X Yu, H Wang, J Li, Z Li, XY Wang. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis 2016; 75(1): 278–285
https://doi.org/10.1136/annrheumdis-2014-205508 pmid: 25371442
10 H Zhang, S Wang, Y Huang, H Wang, J Zhao, F Gaskin, N Yang, SM Fu. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin Immunol 2015; 157(2): 175–186
https://doi.org/10.1016/j.clim.2015.02.001 pmid: 25680967
11 H Wu, Y Zhen, Z Ma, H Li, J Yu, ZG Xu, XY Wang, H Yi, YG Yang. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016; 8(331): 331ra40
https://doi.org/10.1126/scitranslmed.aae0482 pmid: 27009269
12 DI Gabrilovich, V Bronte, SH Chen, MP Colombo, A Ochoa, S Ostrand-Rosenberg, H Schreiber. The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007; 67(1): 425
https://doi.org/10.1158/0008-5472.CAN-06-3037 pmid: 17210725
13 DI Gabrilovich. Myeloid-derived suppressor cells. Cancer Immunol Res 2017; 5(1): 3–8
https://doi.org/10.1158/2326-6066.CIR-16-0297 pmid: 28052991
14 V Kumar, S Patel, E Tcyganov, DI Gabrilovich. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 2016; 37(3): 208–220
https://doi.org/10.1016/j.it.2016.01.004 pmid: 26858199
15 V Bronte, S Brandau, SH Chen, MP Colombo, AB Frey, TF Greten, S Mandruzzato, PJ Murray, A Ochoa, S Ostrand-Rosenberg, PC Rodriguez, A Sica, V Umansky, RH Vonderheide, DI Gabrilovich. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7(1): 12150
https://doi.org/10.1038/ncomms12150 pmid: 27381735
16 CA Dumitru, K Moses, S Trellakis, S Lang, S Brandau. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 2012; 61(8): 1155–1167
https://doi.org/10.1007/s00262-012-1294-5 pmid: 22692756
17 SL Highfill, PC Rodriguez, Q Zhou, CA Goetz, BH Koehn, R Veenstra, PA Taylor, A Panoskaltsis-Mortari, JS Serody, DH Munn, J Tolar, AC Ochoa, BR Blazar. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116(25): 5738–5747
https://doi.org/10.1182/blood-2010-06-287839 pmid: 20807889
18 O Goldmann, A Beineke, E Medina. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils. J Infect Dis 2017; 216(11): 1444–1451
https://doi.org/10.1093/infdis/jix494 pmid: 29029332
19 MM Yaseen, MM Yaseen, MA Alqudah. Broadly neutralizing antibodies: an approach to control HIV-1 infection. Int Rev Immunol 2017; 36(1): 31–40
https://doi.org/10.1080/08830185.2016.1225301 pmid: 27739924
20 ZB Bjornson-Hooper, GK Fragiadakis, MH Spitzer, D Madhireddy, D McIlwain, GP Nolan. A comprehensive atlas of immunological differences between humans, mice and non-human primates. Biorxiv 2019; 10.1101/574160
21 DA Grow, JR McCarrey, CS Navara. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res (Amst) 2016; 17(2): 352–366
https://doi.org/10.1016/j.scr.2016.08.013 pmid: 27622596
22 KK Watson, ML Platt. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012; 4(1): 21
https://doi.org/10.1186/1866-1955-4-21 pmid: 22958282
23 AF Zahorchak, MB Ezzelarab, L Lu, HR Turnquist, AW Thomson. In vivo mobilization and functional characterization of nonhuman primate monocytic myeloid-derived suppressor cells. Am J Transplant 2016; 16(2): 661–671
https://doi.org/10.1111/ajt.13454 pmid: 26372923
24 A Luyckx, E Schouppe, O Rutgeerts, C Lenaerts, S Fevery, T Devos, D Dierickx, M Waer, JA Van Ginderachter, AD Billiau. G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol 2012; 143(1): 83–87
https://doi.org/10.1016/j.clim.2012.01.011 pmid: 22341087
25 BD Hock, KA Mackenzie, NB Cross, KG Taylor, MJ Currie, BA Robinson, JW Simcock, JL McKenzie. Renal transplant recipients have elevated frequencies of circulating myeloid-derived suppressor cells. Nephrol Dial Transplant 2012; 27(1): 402–410
https://doi.org/10.1093/ndt/gfr264 pmid: 21617199
26 AF Zahorchak, A Perez-Gutierrez, MB Ezzelarab, AW Thomson. Monocytic myeloid-derived suppressor cells generated from rhesus macaque bone marrow enrich for regulatory T cells. Cell Immunol 2018; 329: 50–55
https://doi.org/10.1016/j.cellimm.2018.04.013 pmid: 29803290
27 Y Sui, B Frey, Y Wang, R Billeskov, S Kulkarni, K McKinnon, T Rourke, L Fritts, CJ Miller, JA Berzofsky. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13(5): e1006395
https://doi.org/10.1371/journal.ppat.1006395 pmid: 28498847
28 A Lin, F Liang, EA Thompson, M Vono, S Ols, G Lindgren, K Hassett, H Salter, G Ciaramella, K Loré. Rhesus macaque myeloid-derived suppressor cells demonstrate T cell inhibitory functions and are transiently increased after vaccination. J Immunol 2018; 200(1): 286–294
https://doi.org/10.4049/jimmunol.1701005 pmid: 29180488
29 T Condamine, GA Dominguez, JI Youn, AV Kossenkov, S Mony, K Alicea-Torres, E Tcyganov, A Hashimoto, Y Nefedova, C Lin, S Partlova, A Garfall, DT Vogl, X Xu, SC Knight, G Malietzis, GH Lee, E Eruslanov, SM Albelda, X Wang, JL Mehta, M Bewtra, A Rustgi, N Hockstein, R Witt, G Masters, B Nam, D Smirnov, MA Sepulveda, DI Gabrilovich. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016; 1(2): aaf8943
https://doi.org/10.1126/sciimmunol.aaf8943 pmid: 28417112
30 CR Millrud, C Bergenfelz, K Leandersson. On the origin of myeloid-derived suppressor cells. Oncotarget 2017; 8(2): 3649–3665
https://doi.org/10.18632/oncotarget.12278 pmid: 27690299
31 S Sangaletti, G Talarico, C Chiodoni, B Cappetti, L Botti, P Portararo, A Gulino, FM Consonni, A Sica, G Randon, M Di Nicola, C Tripodo, MP Colombo. SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities. Front Immunol 2019; 10: 1369
https://doi.org/10.3389/fimmu.2019.01369 pmid: 31281314
32 MRI Young, MA Wright, Y Lozano, MM Prechel, J Benefield, JP Leonetti, SL Collins, GJ Petruzzelli. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 1997; 74(1): 69–74
https://doi.org/10.1002/(SICI)1097-0215(19970220)74:1<69::AID-IJC12>3.0.CO;2-D pmid: 9036872
33 AS Pak, MA Wright, JP Matthews, SL Collins, GJ Petruzzelli, MR Young. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995; 1(1): 95–103
pmid: 9815891
34 A Romano, NL Parrinello, C Vetro, S Forte, A Chiarenza, A Figuera, G Motta, GA Palumbo, M Ippolito, U Consoli, F Di Raimondo. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol 2015; 168(5): 689–700
https://doi.org/10.1111/bjh.13198 pmid: 25376846
35 D Vasquez-Dunddel, F Pan, Q Zeng, M Gorbounov, E Albesiano, J Fu, RL Blosser, AJ Tam, T Bruno, H Zhang, D Pardoll, Y Kim. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013; 123(4): 1580–1589
https://doi.org/10.1172/JCI60083 pmid: 23454751
36 H Fan, JA Cook. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 2004; 10(2): 71–84
https://doi.org/10.1179/096805104225003997 pmid: 15119998
37 A Sinistro, C Ciaprini, S Natoli, E Sussarello, FC Carducci, C Almerighi, M Capozzi, F Bolacchi, G Rocchi, A Bergamini. Lipopolysaccharide desensitizes monocytes-macrophages to CD40 ligand stimulation. Immunology 2007; 122(3): 362–370
https://doi.org/10.1111/j.1365-2567.2007.02648.x pmid: 17608691
38 B Xiu, Y Lin, DM Grote, SC Ziesmer, MP Gustafson, ML Maas, Z Zhang, AB Dietz, LF Porrata, AJ Novak, AB Liang, ZZ Yang, SM Ansell. IL-10 induces the development of immunosuppressive CD14+HLA-DRlow/− monocytes in B-cell non-Hodgkin lymphoma. Blood Cancer J 2015; 5(7): e328
https://doi.org/10.1038/bcj.2015.56 pmid: 26230952
39 R Landmann, C Ludwig, R Obrist, JP Obrecht. Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages. J Cell Biochem 1991; 47(4): 317–329
https://doi.org/10.1002/jcb.240470406 pmid: 1724447
40 O Marini, S Costa, D Bevilacqua, F Calzetti, N Tamassia, C Spina, D De Sabata, E Tinazzi, C Lunardi, MT Scupoli, C Cavallini, E Zoratti, I Tinazzi, A Marchetta, A Vassanelli, M Cantini, G Gandini, A Ruzzenente, A Guglielmi, F Missale, W Vermi, C Tecchio, MA Cassatella, P Scapini. Mature CD10+ and immature CD10− neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 2017; 129(10): 1343–1356
https://doi.org/10.1182/blood-2016-04-713206 pmid: 28053192
41 C Carmona-Rivera, MJ Kaplan. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol 2013; 35(4): 455–463
https://doi.org/10.1007/s00281-013-0375-7 pmid: 23553215
42 O Marini, C Spina, E Mimiola, A Cassaro, G Malerba, G Todeschini, O Perbellini, M Scupoli, G Carli, D Facchinelli, M Cassatella, P Scapini, C Tecchio. Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget 2016; 7(19): 27676–27688
https://doi.org/10.18632/oncotarget.8507 pmid: 27050283
43 S Lang, K Bruderek, C Kaspar, B Höing, O Kanaan, N Dominas, T Hussain, F Droege, C Eyth, B Hadaschik, S Brandau. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res 2018; 24(19): 4834–4844
https://doi.org/10.1158/1078-0432.CCR-17-3726 pmid: 29914893
44 C Bergenfelz, AM Larsson, K von Stedingk, S Gruvberger-Saal, K Aaltonen, S Jansson, H Jernström, H Janols, M Wullt, A Bredberg, L Rydén, K Leandersson. Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients. PLoS One 2015; 10(5): e0127028
https://doi.org/10.1371/journal.pone.0127028 pmid: 25992611
45 I Poschke, D Mougiakakos, J Hansson, GV Masucci, R Kiessling. Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 2010; 70(11): 4335–4345
https://doi.org/10.1158/0008-5472.CAN-09-3767 pmid: 20484028
46 C Sunderkötter, T Nikolic, MJ Dillon, N Van Rooijen, M Stehling, DA Drevets, PJ Leenen. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172(7): 4410–4417
https://doi.org/10.4049/jimmunol.172.7.4410 pmid: 15034056
47 A Mantovani, A Sica, P Allavena, C Garlanda, M Locati. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009; 70(5): 325–330
https://doi.org/10.1016/j.humimm.2009.02.008 pmid: 19236898
48 SK Biswas, E Lopez-Collazo. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30(10): 475–487
https://doi.org/10.1016/j.it.2009.07.009 pmid: 19781994
49 J Pillay, T Tak, VM Kamp, L Koenderman. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 2013; 70(20): 3813–3827
https://doi.org/10.1007/s00018-013-1286-4 pmid: 23423530
50 N Obermajer, R Muthuswamy, J Lesnock, RP Edwards, P Kalinski. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011; 118(20): 5498–5505
https://doi.org/10.1182/blood-2011-07-365825 pmid: 21972293
51 R Domenis, D Cesselli, B Toffoletto, E Bourkoula, F Caponnetto, I Manini, AP Beltrami, T Ius, M Skrap, C Di Loreto, G Gri. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS One 2017; 12(1): e0169932
https://doi.org/10.1371/journal.pone.0169932 pmid: 28107450
52 N Obermajer, P Kalinski. Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res 2012; 1(1): 15
https://doi.org/10.1186/2047-1440-1-15 pmid: 23369567
53 F Veglia, M Perego, D Gabrilovich. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108–119
https://doi.org/10.1038/s41590-017-0022-x pmid: 29348500
54 I Dufait, JK Schwarze, T Liechtenstein, W Leonard, H Jiang, D Escors, M De Ridder, K Breckpot. Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget 2015; 6(14): 12369–12382
https://doi.org/10.18632/oncotarget.3682 pmid: 25869209
55 S Casacuberta-Serra, M Parés, A Golbano, E Coves, C Espejo, J Barquinero. Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 2017; 95(6): 538–548
https://doi.org/10.1038/icb.2017.4 pmid: 28108746
56 Y Mao, I Poschke, E Wennerberg, Y Pico de Coaña, S Egyhazi Brage, I Schultz, J Hansson, G Masucci, A Lundqvist, R Kiessling. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 2013; 73(13): 3877–3887
https://doi.org/10.1158/0008-5472.CAN-12-4115 pmid: 23633486
57 JC Rodrigues, GC Gonzalez, L Zhang, G Ibrahim, JJ Kelly, MP Gustafson, Y Lin, AB Dietz, PA Forsyth, VW Yong, IF Parney. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-oncol 2010; 12(4): 351–365
https://doi.org/10.1093/neuonc/nop023 pmid: 20308313
58 K Moses, S Brandau. Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 2016; 28(2): 187–196
https://doi.org/10.1016/j.smim.2016.03.018 pmid: 27067179
59 Q Li, PY Pan, P Gu, D Xu, SH Chen. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 2004; 64(3): 1130–1139
https://doi.org/10.1158/0008-5472.CAN-03-1715 pmid: 14871848
60 Y Narita, D Wakita, T Ohkur, K Chamoto, T Nishimura. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells. Biomed Res 2009; 30(1): 7–15
https://doi.org/10.2220/biomedres.30.7 pmid: 19265258
61 JM Haverkamp, SA Crist, BD Elzey, C Cimen, TL Ratliff. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 2011; 41(3): 749–759
https://doi.org/10.1002/eji.201041069 pmid: 21287554
62 E Grützner, R Stirner, L Arenz, AP Athanasoulia, K Schrödl, C Berking, JR Bogner, R Draenert. Kinetics of human myeloid-derived suppressor cells after blood draw. J Transl Med 2016; 14(1): 2
https://doi.org/10.1186/s12967-015-0755-y pmid: 26733325
63 S Trellakis, K Bruderek, J Hütte, M Elian, TK Hoffmann, S Lang, S Brandau. Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun 2013; 19(3): 328–336
https://doi.org/10.1177/1753425912463618 pmid: 23160385
64 S Brandau, K Moses, S Lang. The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? Semin Cancer Biol 2013; 23(3): 171–182
https://doi.org/10.1016/j.semcancer.2013.02.007 pmid: 23459190
65 P Scapini, MA Cassatella. Social networking of human neutrophils within the immune system. Blood 2014; 124(5): 710–719
https://doi.org/10.1182/blood-2014-03-453217 pmid: 24923297
66 MC Apodaca, AE Wright, AM Riggins, WP Harris, RS Yeung, L Yu, C Morishima. Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells. J Immunother Cancer 2019; 7(1): 230
https://doi.org/10.1186/s40425-019-0674-1 pmid: 31462270
67 A Flörcken, A Takvorian, A Singh, A Gerhardt, BN Ostendorf, B Dörken, A Pezzutto, J Westermann. Myeloid-derived suppressor cells in human peripheral blood: optimized quantification in healthy donors and patients with metastatic renal cell carcinoma. Immunol Lett 2015; 168(2): 260–267
https://doi.org/10.1016/j.imlet.2015.10.001 pmid: 26462434
68 L Velten, SF Haas, S Raffel, S Blaszkiewicz, S Islam, BP Hennig, C Hirche, C Lutz, EC Buss, D Nowak, T Boch, WK Hofmann, AD Ho, W Huber, A Trumpp, MA Essers, LM Steinmetz. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017; 19(4): 271–281
https://doi.org/10.1038/ncb3493 pmid: 28319093
69 JL Schultze, E Mass, A Schlitzer. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity 2019; 50(2): 288–301
https://doi.org/10.1016/j.immuni.2019.01.019 pmid: 30784577
70 S Kusmartsev, DI Gabrilovich. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55(3): 237–245
https://doi.org/10.1007/s00262-005-0048-z pmid: 16047143
71 F Zhao, S Obermann, R von Wasielewski, L Haile, MP Manns, F Korangy, TF Greten. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 2009; 128(1): 141–149
https://doi.org/10.1111/j.1365-2567.2009.03105.x pmid: 19689743
72 D Ilkovitch, DM Lopez. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 2009; 69(13): 5514–5521
https://doi.org/10.1158/0008-5472.CAN-08-4625 pmid: 19549903
73 B Almand, JI Clark, E Nikitina, J van Beynen, NR English, SC Knight, DP Carbone, DI Gabrilovich. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166(1): 678–689
https://doi.org/10.4049/jimmunol.166.1.678 pmid: 11123353
74 Y Luan, E Mosheir, MC Menon, D Wilson, C Woytovich, J Ochando, B Murphy. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion. Am J Transplant 2013; 13(12): 3123–3131
https://doi.org/10.1111/ajt.12461 pmid: 24103111
75 N Köstlin, C Schoetensack, J Schwarz, B Spring, A Marmé, R Goelz, G Brodbeck, CF Poets, C Gille. Granulocytic myeloid-derived suppressor cells (GR-MDSC) in breast milk (BM); GR-MDSC accumulate in human BM and modulate T-cell and monocyte function. Front Immunol 2018; 9: 1098
https://doi.org/10.3389/fimmu.2018.01098 pmid: 29868036
76 M Roussel, PB Jr Ferrell, AR Greenplate, F Lhomme, S Le Gallou, KE Diggins, DB Johnson, JM Irish. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 2017; 102(2): 437–447
https://doi.org/10.1189/jlb.5MA1116-457R pmid: 28400539
77 GT Görgün, G Whitehill, JL Anderson, T Hideshima, C Maguire, J Laubach, N Raje, NC Munshi, PG Richardson, KC Anderson. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013; 121(15): 2975–2987
https://doi.org/10.1182/blood-2012-08-448548 pmid: 23321256
78 MR Porembka, JB Mitchem, BA Belt, CS Hsieh, HM Lee, J Herndon, WE Gillanders, DC Linehan, P Goedegebuure. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 2012; 61(9): 1373–1385
https://doi.org/10.1007/s00262-011-1178-0 pmid: 22215137
79 CP Verschoor, J Johnstone, J Millar, MG Dorrington, M Habibagahi, A Lelic, M Loeb, JL Bramson, DM Bowdish. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 2013; 93(4): 633–637
https://doi.org/10.1189/jlb.0912461 pmid: 23341539
80 RR Flores, CL Clauson, J Cho, BC Lee, SJ McGowan, DJ Baker, LJ Niedernhofer, PD Robbins. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-kB-dependent mechanism. Aging Cell 2017; 16(3): 480–487
https://doi.org/10.1111/acel.12571 pmid: 28229533
81 S Bulterijs, RS Hull, VC Björk, AG Roy. It is time to classify biological aging as a disease. Front Genet 2015; 6: 205
https://doi.org/10.3389/fgene.2015.00205 pmid: 26150825
82 LA Gavrilov, NS Gavrilova. Is aging a disease? Biodemographers’ point of view. Adv Gerontol 2017; 30(6): 841–842 (in Russian)
pmid: 29608825
83 The Lancet Diabetes Endocrinology. Opening the door to treating ageing as a disease. Lancet Diabetes Endocrinol 2018; 6(8): 587
https://doi.org/10.1016/s2213-8587(18)30214-6
84 AC Ochoa, AH Zea, C Hernandez, PC Rodriguez. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007; 13(2): 721s–726s
https://doi.org/10.1158/1078-0432.CCR-06-2197 pmid: 17255300
85 N Mirza, M Fishman, I Fricke, M Dunn, AM Neuger, TJ Frost, RM Lush, S Antonia, DI Gabrilovich. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66(18): 9299–9307
https://doi.org/10.1158/0008-5472.CAN-06-1690 pmid: 16982775
86 CM Diaz-Montero, ML Salem, MI Nishimura, E Garrett-Mayer, DJ Cole, AJ Montero. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58(1): 49–59
https://doi.org/10.1007/s00262-008-0523-4 pmid: 18446337
87 O Goñi, P Alcaide, M Fresno. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G(Gr1+)CD11b+ immature myeloid suppressor cells. Int Immunol 2002; 14(10): 1125–1134
https://doi.org/10.1093/intimm/dxf076 pmid: 12356678
88 L Brudecki, DA Ferguson, CE McCall, M El Gazzar. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Immun 2012; 80(6): 2026–2034
https://doi.org/10.1128/IAI.00239-12 pmid: 22451518
89 R Marhaba, M Vitacolonna, D Hildebrand, M Baniyash, P Freyschmidt-Paul, M Zöller. The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 2007; 179(8): 5071–5081
https://doi.org/10.4049/jimmunol.179.8.5071 pmid: 17911592
90 LA Haile, R von Wasielewski, J Gamrekelashvili, C Kruger, O Bachmann, AM Westendorf, J Buer, R Liblau, MP Manns, F Korangy, TF Greten. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 2008; 135(3): 871–881e5
https://doi.org/10.1053/j.gastro.2008.06.032
91 ZN Zhang, N Yi, TW Zhang, LL Zhang, X Wu, M Liu, YJ Fu, SJ He, YJ Jiang, HB Ding, ZX Chu, H Shang. Myeloid-derived suppressor cells associated with disease progression in primary HIV infection: PD-L1 blockade attenuates inhibition. J Acquir Immune Defic Syndr 2017; 76(2): 200–208
https://doi.org/10.1097/QAI.0000000000001471 pmid: 28570288
92 RS Tacke, HC Lee, C Goh, J Courtney, SJ Polyak, HR Rosen, YS Hahn. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology 2012; 55(2): 343–353
https://doi.org/10.1002/hep.24700 pmid: 21953144
93 MJ Delano, PO Scumpia, JS Weinstein, D Coco, S Nagaraj, KM Kelly-Scumpia, KA O’Malley, JL Wynn, S Antonenko, SZ Al-Quran, R Swan, CS Chung, MA Atkinson, R Ramphal, DI Gabrilovich, WH Reeves, A Ayala, J Phillips, D Laface, PG Heyworth, M Clare-Salzler, LL Moldawer. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 2007; 204(6): 1463–1474
https://doi.org/10.1084/jem.20062602 pmid: 17548519
94 M Bosiljcic, RA Cederberg, MJ Hamilton, NE LePard, BT Harbourne, JL Collier, EC Halvorsen, R Shi, SE Franks, AY Kim, JP Banáth, M Hamer, FM Rossi, KL Bennewith. Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Res 2019; 21(1): 103
https://doi.org/10.1186/s13058-019-1189-x pmid: 31488209
95 JI Youn, S Nagaraj, M Collazo, DI Gabrilovich. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181(8): 5791–5802
https://doi.org/10.4049/jimmunol.181.8.5791 pmid: 18832739
96 D Sarkar, MK Srivastava, L Zhu, M Harris-White, UK Kar, M Huang, MF Johnson, JM Lee, D Elashoff, R Strieter, S Dubinett, S Sharma. Correction: myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 2012; 7(7): e40677
https://doi.org/10.1371/annotation/5c756e7d-6e97-416f-836a-dced97cf46af
97 A Heine, SAE Held, J Schulte-Schrepping, JFA Wolff, K Klee, T Ulas, NA Schmacke, SN Daecke, K Riethausen, JL Schultze, P Brossart. Generation and functional characterization of MDSC-like cells. OncoImmunology 2017; 6(4): e1295203
https://doi.org/10.1080/2162402X.2017.1295203 pmid: 28507805
98 Z Julier, AJ Park, PS Briquez, MM Martino. Promoting tissue regeneration by modulating the immune system. Acta Biomater 2017; 53: 13–28
https://doi.org/10.1016/j.actbio.2017.01.056 pmid: 28119112
99 T Condamine, DI Gabrilovich. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32(1): 19–25
https://doi.org/10.1016/j.it.2010.10.002 pmid: 21067974
100 T Condamine, J Mastio, DI Gabrilovich. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98(6): 913–922
https://doi.org/10.1189/jlb.4RI0515-204R pmid: 26337512
101 DI Gabrilovich, S Nagaraj. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
https://doi.org/10.1038/nri2506 pmid: 19197294
102 MG Lechner, DJ Liebertz, AL Epstein. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 2010; 185(4): 2273–2284
https://doi.org/10.4049/jimmunol.1000901 pmid: 20644162
103 RV Jimenez, V Kuznetsova, AN Connelly, Z Hel, AJ Szalai. C-reactive protein promotes the expansion of myeloid derived cells with suppressor functions. Front Immunol 2019; 10: 2183
https://doi.org/10.3389/fimmu.2019.02183 pmid: 31620123
104 JI Youn, DI Gabrilovich. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40(11): 2969–2975
https://doi.org/10.1002/eji.201040895 pmid: 21061430
105 C Abad, H Nobuta, J Li, A Kasai, WH Yong, JA Waschek. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol 2014; 95(2): 357–367
https://doi.org/10.1189/jlb.1012531 pmid: 24068730
106 SP Tu, H Jin, JD Shi, LM Zhu, Y Suo, G Lu, A Liu, TC Wang, CS Yang. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 2012; 5(2): 205–215
https://doi.org/10.1158/1940-6207.CAPR-11-0247 pmid: 22030090
107 I Marigo, E Bosio, S Solito, C Mesa, A Fernandez, L Dolcetti, S Ugel, N Sonda, S Bicciato, E Falisi, F Calabrese, G Basso, P Zanovello, E Cozzi, S Mandruzzato, V Bronte. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010; 32(6): 790–802
https://doi.org/10.1016/j.immuni.2010.05.010 pmid: 20605485
108 K Abbasi, M Fadaei Araghi, M Zafarghandi, A Karimi, H Ahmadi, M Marzban, N Movahedi, SH Abbasi, N Moshtaghi. Concomitant carotid endarterectomy and coronary artery bypass grafting versus staged carotid stenting followed by coronary artery bypass grafting. J Cardiovasc Surg (Torino) 2008; 49(2): 285–288
pmid: 18431351
109 JI Youn, V Kumar, M Collazo, Y Nefedova, T Condamine, P Cheng, A Villagra, S Antonia, JC McCaffrey, M Fishman, A Sarnaik, P Horna, E Sotomayor, DI Gabrilovich. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 2013; 14(3): 211–220
https://doi.org/10.1038/ni.2526 pmid: 23354483
110 AJ Casbon, D Reynaud, C Park, E Khuc, DD Gan, K Schepers, E Passegué, Z Werb. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA 2015; 112(6): E566–E575
https://doi.org/10.1073/pnas.1424927112 pmid: 25624500
111 S Ryzhov, SV Novitskiy, AE Goldstein, A Biktasova, MR Blackburn, I Biaggioni, MM Dikov, I Feoktistov. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J Immunol 2011; 187(11): 6120–6129
https://doi.org/10.4049/jimmunol.1101225 pmid: 22039302
112 V Damuzzo, L Pinton, G Desantis, S Solito, I Marigo, V Bronte, S Mandruzzato. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom 2015; 88(2): 77–91
https://doi.org/10.1002/cytob.21206 pmid: 25504825
113 ZG Fridlender, J Sun, S Kim, V Kapoor, G Cheng, L Ling, GS Worthen, SM Albelda. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009; 16(3): 183–194
https://doi.org/10.1016/j.ccr.2009.06.017 pmid: 19732719
114 C Cimen Bozkus, BD Elzey, SA Crist, LG Ellies, TL Ratliff. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. J Immunol 2015; 195(11): 5237–5250
https://doi.org/10.4049/jimmunol.1500959 pmid: 26491198
115 CS Netherby, MN Messmer, L Burkard-Mandel, S Colligan, A Miller, E Cortes Gomez, J Wang, MJ Nemeth, SI Abrams. The granulocyte progenitor stage is a key target of IRF8-mediated regulation of myeloid-derived suppressor cell production. J Immunol 2017; 198(10): 4129–4139
https://doi.org/10.4049/jimmunol.1601722 pmid: 28356386
116 J Dai, A Kumbhare, DA Williams, D Youssef, ZQ Yao, CE McCall, M El Gazzar. Nfia deletion in myeloid cells blocks expansion of myeloid-derived suppressor cells during sepsis. Innate Immun 2018; 24(1): 54–65
https://doi.org/10.1177/1753425917742956 pmid: 29172874
117 X Tian, J Tian, X Tang, K Rui, Y Zhang, J Ma, Y Wang, H Xu, L Lu, S Wang. Particulate b-glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expression. OncoImmunology 2015; 4(9): e1038687
https://doi.org/10.1080/2162402X.2015.1038687 pmid: 26405609
118 G Zardo, A Ciolfi, L Vian, LM Starnes, M Billi, S Racanicchi, C Maresca, F Fazi, L Travaglini, N Noguera, M Mancini, M Nanni, G Cimino, F Lo-Coco, F Grignani, C Nervi. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 2012; 119(17): 4034–4046
https://doi.org/10.1182/blood-2011-08-371344 pmid: 22327224
119 Y Zheng, X Tian, T Wang, X Xia, F Cao, J Tian, P Xu, J Ma, H Xu, S Wang. Long noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Mol Cancer 2019; 18(1): 61
https://doi.org/10.1186/s12943-019-0978-2 pmid: 30925926
120 S Budhwar, P Verma, R Verma, S Rai, K Singh. The Yin and Yang of myeloid derived suppressor cells. Front Immunol 2018; 9: 2776
https://doi.org/10.3389/fimmu.2018.02776 pmid: 30555467
121 L Giordanengo, N Guiñazú, C Stempin, R Fretes, F Cerbán, S Gea. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol 2002; 32(4): 1003–1011
https://doi.org/10.1002/1521-4141(200204)32:4<1003::AID-IMMU1003>3.0.CO;2-P pmid: 11920566
122 MB Voisin, D Buzoni-Gatel, D Bout, F Velge-Roussel. Both expansion of regulatory GR1+CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 2004; 72(9): 5487–5492
https://doi.org/10.1128/IAI.72.9.5487-5492.2004 pmid: 15322051
123 LI Terrazas, KL Walsh, D Piskorska, E McGuire, DA Harn Jr. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J Immunol 2001; 167(9): 5294–5303
https://doi.org/10.4049/jimmunol.167.9.5294 pmid: 11673545
124 L Gómez-García, LM López-Marín, R Saavedra, JL Reyes, M Rodríguez-Sosa, LI Terrazas. Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol 2005; 27(10-11): 395–405
https://doi.org/10.1111/j.1365-3024.2005.00790.x pmid: 16179033
125 L Brys, A Beschin, G Raes, GH Ghassabeh, W Noël, J Brandt, F Brombacher, P De Baetselier. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 2005; 174(10): 6095–6104
https://doi.org/10.4049/jimmunol.174.10.6095 pmid: 15879104
126 A Mencacci, C Montagnoli, A Bacci, E Cenci, L Pitzurra, A Spreca, M Kopf, AH Sharpe, L Romani. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 2002; 169(6): 3180–3190
https://doi.org/10.4049/jimmunol.169.6.3180 pmid: 12218136
127 AV Ezernitchi, I Vaknin, L Cohen-Daniel, O Levy, E Manaster, A Halabi, E Pikarsky, L Shapira, M Baniyash. TCRζ down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 2006; 177(7): 4763–4772
https://doi.org/10.4049/jimmunol.177.7.4763 pmid: 16982917
128 C De Santo, M Salio, SH Masri, LY Lee, T Dong, AO Speak, S Porubsky, S Booth, N Veerapen, GS Besra, HJ Gröne, FM Platt, M Zambon, V Cerundolo. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 2008; 118(12): 4036–4048
https://doi.org/10.1172/JCI36264 pmid: 19033672
129 L Wang, J Zhao, JP Ren, XY Wu, ZD Morrison, MA Elgazzar, SB Ning, JP Moorman, ZQ Yao. Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. AIDS 2016; 30(10): 1521–1531
https://doi.org/10.1097/QAD.0000000000001083 pmid: 26959508
130 KR Crook, P Liu. Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol 2014; 4(1): 26–33
https://doi.org/10.5411/wji.v4.i1.26 pmid: 25621222
131 P Boros, J Ochando, M Zeher. Myeloid derived suppressor cells and autoimmunity. Hum Immunol 2016; 77(8): 631–636
https://doi.org/10.1016/j.humimm.2016.05.024 pmid: 27240453
132 J Qin, Y Arakawa, M Morita, JJ Fung, S Qian, L Lu. C-C chemokine receptor type 2-dependent migration of myeloid-derived suppressor cells in protection of islet transplants. Transplantation 2017; 101(8): 1793–1800
https://doi.org/10.1097/TP.0000000000001529 pmid: 27755503
133 P Li, Y Zheng, X Chen. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol 2017; 8: 460
https://doi.org/10.3389/fphar.2017.00460 pmid: 28785220
134 O Bereshchenko, G Migliorati, S Bruscoli, C Riccardi. Glucocorticoid-induced leucine zipper: a novel anti-inflammatory molecule. Front Pharmacol 2019; 10: 308
https://doi.org/10.3389/fphar.2019.00308 pmid: 30971930
135 KR Patil, UB Mahajan, BS Unger, SN Goyal, S Belemkar, SJ Surana, S Ojha, CR Patil. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 2019; 20(18): E4367
https://doi.org/10.3390/ijms20184367 pmid: 31491986
136 G van Niekerk, T Mabin, AM Engelbrecht. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 2019; 27(1): 39–46
https://doi.org/10.1007/s10787-018-00560-7 pmid: 30610735
137 E Toubi, Z Vadasz. Innate immune-responses and their role in driving autoimmunity. Autoimmun Rev 2019; 18(3): 306–311
https://doi.org/10.1016/j.autrev.2018.10.005 pmid: 30639645
138 IH Yoo, MJ Kim, J Kim, JJ Sung, ST Park, SW Ahn. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019; 34(28): e197
https://doi.org/10.3346/jkms.2019.34.e197 pmid: 31327180
139 Z Chen, A Bozec, A Ramming, G Schett. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2019; 15(1): 9–17
https://doi.org/10.1038/s41584-018-0109-2 pmid: 30341437
140 P Kumar, S Saini, S Khan, S Surendra Lele, BS Prabhakar. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol 2019; 339: 41–49
https://doi.org/10.1016/j.cellimm.2018.09.008 pmid: 30482489
141 CF Lee, YC Lo, CH Cheng, GJ Furtmüller, B Oh, V Andrade-Oliveira, AG Thomas, CE Bowman, BS Slusher, MJ Wolfgang, G Brandacher, JD Powell. Preventing allograft rejection by targeting immune metabolism. Cell Reports 2015; 13(4): 760–770
https://doi.org/10.1016/j.celrep.2015.09.036 pmid: 26489460
142 DN Mori, D Kreisel, JN Fullerton, DW Gilroy, DR Goldstein. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2014; 258(1): 132–144
https://doi.org/10.1111/imr.12146 pmid: 24517430
143 YS Lee, T Zhang, JS Bromberg, JR Scalea. Myeloid derived suppressor cells (MDSC) home to the allograft and can control t cell responses. Meeting abstract. 2019 American Transplant Congress. 2019. (accessed December 28, 2019)
144 W Zhang, J Li, G Qi, G Tu, C Yang, M Xu. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018; 16(1): 19
https://doi.org/10.1186/s12967-018-1395-9 pmid: 29378596
145 J Ochando, P Conde, A Utrero-Rico, E Paz-Artal. Tolerogenic role of myeloid suppressor cells in organ transplantation. Front Immunol 2019; 10: 374
https://doi.org/10.3389/fimmu.2019.00374 pmid: 30894860
146 BD Hock, JL McKenzie, NB Cross, MJ Currie. Dynamic changes in myeloid derived suppressor cell subsets following renal transplant: a prospective study. Transpl Immunol 2015; 32(3): 164–171
https://doi.org/10.1016/j.trim.2015.05.001 pmid: 25968653
147 HJ Lee, SY Park, HJ Jeong, HJ Kim, MK Kim, JY Oh. Glucocorticoids induce corneal allograft tolerance through expansion of monocytic myeloid-derived suppressor cells. Am J Transplant 2018; 18(12): 3029–3037
https://doi.org/10.1111/ajt.15026 pmid: 30019411
148 T Nakao, T Nakamura, K Masuda, T Matsuyama, H Ushigome, E Ashihara, N Yoshimura. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells. Transplant Proc 2018; 50(1): 299–304
https://doi.org/10.1016/j.transproceed.2017.11.014 pmid: 29407325
149 BH Koehn, P Apostolova, JM Haverkamp, JS Miller, V McCullar, J Tolar, DH Munn, WJ Murphy, WJ Brickey, JS Serody, DI Gabrilovich, V Bronte, PJ Murray, JP Ting, R Zeiser, BR Blazar. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 2015; 126(13): 1621–1628
https://doi.org/10.1182/blood-2015-03-634691 pmid: 26265697
150 N Köstlin, H Kugel, B Spring, A Leiber, A Marmé, M Henes, N Rieber, D Hartl, CF Poets, C Gille. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur J Immunol 2014; 44(9): 2582–2591
https://doi.org/10.1002/eji.201344200 pmid: 24894988
151 RR Nair, P Sinha, A Khanna, K Singh. Reduced myeloid-derived suppressor cells in the blood and endometrium is associated with early miscarriage. Am J Reprod Immunol 2015; 73(6): 479–486
https://doi.org/10.1111/aji.12351 pmid: 25496212
152 M Zhu, X Huang, S Yi, H Sun, J Zhou. High granulocytic myeloid-derived suppressor cell levels in the peripheral blood predict a better IVF treatment outcome. J Matern Fetal Neonatal Med 2019; 32(7): 1092–1097
https://doi.org/10.1080/14767058.2017.1400002 pmid: 29092663
153 T Zhang, J Zhou, GCW Man, KT Leung, B Liang, B Xiao, X Ma, S Huang, H Huang, VL Hegde, Y Zhong, Y Li, GWS Kong, AKW Yiu, J Kwong, PC Ng, BA Lessey, PS Nagarkatti, M Nagarkatti, CC Wang. MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur J Immunol 2018; 48(6): 1059–1073
https://doi.org/10.1002/eji.201747417 pmid: 29460338
154 S Casacuberta-Serra, C Costa, H Eixarch, MJ Mansilla, S López-Estévez, L Martorell, M Parés, X Montalban, C Espejo, J Barquinero. Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Exp Neurol 2016; 286: 50–60
https://doi.org/10.1016/j.expneurol.2016.09.012 pmid: 27693617
155 V Moliné-Velázquez, V Vila-Del Sol, F de Castro, D Clemente. Myeloid cell distribution and activity in multiple sclerosis. Histol Histopathol 2016; 31(4): 357–370
pmid: 26592711
156 C Cantoni, F Cignarella, L Ghezzi, B Mikesell, B Bollman, MM Berrien-Elliott, AR Ireland, TA Fehniger, GF Wu, L Piccio. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2017; 133(1): 61–77
https://doi.org/10.1007/s00401-016-1621-6 pmid: 27704281
157 DM Elliott, N Singh, M Nagarkatti, PS Nagarkatti. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front Immunol 2018; 9: 1782
https://doi.org/10.3389/fimmu.2018.01782 pmid: 30123217
158 M Ioannou, T Alissafi, I Lazaridis, G Deraos, J Matsoukas, A Gravanis, V Mastorodemos, A Plaitakis, A Sharpe, D Boumpas, P Verginis. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 2012; 188(3): 1136–1146
https://doi.org/10.4049/jimmunol.1101816 pmid: 22210912
159 H Yi, C Guo, X Yu, D Zuo, XY Wang. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 2012; 189(9): 4295–4304
https://doi.org/10.4049/jimmunol.1200086 pmid: 23034169
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed