Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (6): 922-932   https://doi.org/10.1007/s11684-020-0804-7
  本期目录
Orlistat induces ferroptosis-like cell death of lung cancer cells
Wenjing Zhou1, Jing Zhang3, Mingkun Yan4, Jin Wu1, Shuo Lian4, Kang Sun1, Baiqing Li5, Jia Ma2, Jun Xia2(), Chaoqun Lian2()
1. Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu 233030, China
2. Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
3. Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu 233000, China
4. Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
5. Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233030, China
 全文: PDF(5530 KB)   HTML
Abstract

Aberrant de novo lipid synthesis is involved in the progression and treatment resistance of many types of cancers, including lung cancer; however, targeting the lipogenetic pathways for cancer therapy remains an unmet clinical need. In this study, we tested the anticancer activity of orlistat, an FDA-approved anti-obesity drug, in human and mouse cancer cells in vitro and in vivo, and we found that orlistat, as a single agent, inhibited the proliferation and viabilities of lung cancer cells and induced ferroptosis-like cell death in vitro. Mechanistically, we found that orlistat reduced the expression of GPX4, a central ferroptosis regulator, and induced lipid peroxidation. In addition, we systemically analyzed the genome-wide gene expression changes affected by orlistat treatment using RNA-seq and identified FAF2, a molecule regulating the lipid droplet homeostasis, as a novel target of orlistat. Moreover, in a mouse xenograft model, orlistat significantly inhibited tumor growth and reduced the tumor volumes compared with vehicle control (P<0.05). Our study showed a novel mechanism of the anticancer activity of orlistat and provided the rationale for repurposing this drug for the treatment of lung cancer and other types of cancer.

Key wordsorlistat    ferroptosis    FAF2    lung cancer
收稿日期: 2020-03-27      出版日期: 2021-12-27
Corresponding Author(s): Jun Xia,Chaoqun Lian   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(6): 922-932.
Wenjing Zhou, Jing Zhang, Mingkun Yan, Jin Wu, Shuo Lian, Kang Sun, Baiqing Li, Jia Ma, Jun Xia, Chaoqun Lian. Orlistat induces ferroptosis-like cell death of lung cancer cells. Front. Med., 2021, 15(6): 922-932.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-020-0804-7
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I6/922
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
https://doi.org/10.3322/caac.21492 pmid: 30207593
2 AM Gouw, LS Eberlin, K Margulis, DK Sullivan, GG Toal, L Tong, RN Zare, DW Felsher. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc Natl Acad Sci USA 2017; 114(17): 4300–4305
https://doi.org/10.1073/pnas.1617709114 pmid: 28400509
3 C Lu, J Ma, D Cai. Increased HAGLR expression promotes non-small cell lung cancer proliferation and invasion via enhanced de novo lipogenesis. Tumour Biol 2017; 39(4): 1010428317697574
https://doi.org/10.1177/1010428317697574 pmid: 28443464
4 A Singh, C Ruiz, K Bhalla, JA Haley, QK Li, G Acquaah-Mensah, E Montal, KR Sudini, F Skoulidis, II Wistuba II, V Papadimitrakopoulou, JV Heymach, LG Boros, E Gabrielson, J Carretero, KK Wong, JD Haley, S Biswal, GD Girnun. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer. FASEB J 2018; 32(12): 7018−7027
https://doi.org/10.1096/fj.201800204 pmid: 29906244
5 A Ali, E Levantini, JT Teo, J Goggi, JG Clohessy, CS Wu, L Chen, H Yang, I Krishnan, O Kocher, J Zhang, RA Soo, K Bhakoo, TM Chin, DG Tenen. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med 2018; 10(3): e8313
https://doi.org/10.15252/emmm.201708313 pmid: 29449326
6 VI Sayin, SE LeBoeuf, T Papagiannakopoulos. Targeting metabolic bottlenecks in lung cancer. Trends Cancer 2019; 5(8): 457–459
https://doi.org/10.1016/j.trecan.2019.06.001 pmid: 31421901
7 ML Drent, I Larsson, T William-Olsson, F Quaade, F Czubayko, K von Bergmann, W Strobel, L Sjöström, EA van der Veen. Orlistat (Ro 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obes Relat Metab Disord 1995; 19(4): 221–226
pmid: 7627244
8 JB Harp. Orlistat for the long-term treatment of obesity. Drugs Today (Barc) 1999; 35(2): 139–145
https://doi.org/10.1358/dot.1999.35.2.527969 pmid: 12973416
9 A Schcolnik-Cabrera, A Chávez-Blanco, G Domínguez-Gómez , L Taja-Chayeb, R Morales-Barcenas, C Trejo-Becerril, E Perez-Cardenas, A Gonzalez-Fierro, A Dueñas-González. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018; 27(5): 475–489
https://doi.org/10.1080/13543784.2018.1471132 pmid: 29723075
10 E Sokolowska, M Presler, E Goyke, R Milczarek, J Swierczynski, T Sledzinski. Orlistat reduces proliferation and enhances apoptosis in human pancreatic cancer cells (PANC-1). Anticancer Res 2017; 37(11): 6321–6327
pmid: 29061815
11 X Xiao, H Liu, X Li. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells. Microb Pathog 2017; 112: 15–19
https://doi.org/10.1016/j.micpath.2017.09.001 pmid: 28882785
12 A Czumaj, J Zabielska, A Pakiet, A Mika, O Rostkowska, W Makarewicz, J Kobiela, T Sledzinski, E Stelmanska. In vivo effectiveness of orlistat in the suppression of human colorectal cancer cell proliferation. Anticancer Res 2019; 39(7): 3815–3822
https://doi.org/10.21873/anticanres.13531 pmid: 31262909
13 BJ You, LY Chen, PH Hsu, PH Sung, YC Hung, HZ Lee. Orlistat displays antitumor activity and enhances the efficacy of paclitaxel in human hepatoma Hep3B cells. Chem Res Toxicol 2019; 32(2): 255–264
https://doi.org/10.1021/acs.chemrestox.8b00269 pmid: 30667213
14 LY de Almeida, FS Mariano, DC Bastos, KA Cavassani, J Raphelson, VS Mariano, M Agostini, FS Moreira, RD Coletta, RO Mattos-Graner, E Graner. The antimetastatic activity of orlistat is accompanied by an antitumoral immune response in mouse melanoma. Cancer Chemother Pharmacol 2020; 85(2): 321–330
https://doi.org/10.1007/s00280-019-04010-1 pmid: 31863126
15 C Zhang, L Sheng, M Yuan, J Hu, Y Meng, Y Wu, L Chen, H Yu, S Li, G Zheng, Z Qiu. Orlistat delays hepatocarcinogenesis in mice with hepatic co-activation of AKT and c-Met. Toxicol Appl Pharmacol 2020; 392: 114918
https://doi.org/10.1016/j.taap.2020.114918 pmid: 32045588
16 G Cioccoloni, A Aquino, M Notarnicola, MG Caruso, E Bonmassar, M Zonfrillo, S Caporali, I Faraoni, C Villivà, MP Fuggetta, O Franzese. Fatty acid synthase inhibitor orlistat impairs cell growth and down-regulates PD-L1 expression of a human T-cell leukemia line. J Chemother 2020; 32(1): 30–40
https://doi.org/10.1080/1120009X.2019.1694761 pmid: 31775585
17 GP Drummen, LC van Liebergen, JA Op den Kamp, JA Post. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 2002; 33(4): 473–490
https://doi.org/10.1016/S0891-5849(02)00848-1 pmid: 12160930
18 TS Angeles, RL Hudkins. Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors. Expert Opin Drug Discov 2016; 11(12): 1187–1199
https://doi.org/10.1080/17460441.2016.1245286 pmid: 27701891
19 D Calderón Guzmán, E Hernández García, A Juárez Jacobo, L Segura Abarca, G Barragán Mejía, R Rodríguez Pérez , H Juárez Olguín. Effect of orlistat on lipid peroxidation, Na+, K+ ATPase, glutathione and serotonin in rat brain. Proc West Pharmacol Soc 2011; 54: 73–77
pmid: 22423586
20 H Imai, M Matsuoka, T Kumagai, T Sakamoto, T Koumura. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 2017; 403: 143–170
https://doi.org/10.1007/82_2016_508 pmid: 28204974
21 WS Yang, R SriRamaratnam, ME Welsch, K Shimada, R Skouta, VS Viswanathan, JH Cheah, PA Clemons, AF Shamji, CB Clish, LM Brown, AW Girotti, VW Cornish, SL Schreiber, BR Stockwell. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156(1-2): 317–331
https://doi.org/10.1016/j.cell.2013.12.010 pmid: 24439385
22 J Wu, AM Minikes, M Gao, H Bian, Y Li, BR Stockwell, ZN Chen, X Jiang. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 2019; 572(7769): 402–406
https://doi.org/10.1038/s41586-019-1426-6 pmid: 31341276
23 I Poursaitidis, X Wang, T Crighton, C Labuschagne, D Mason, SL Cramer, K Triplett, R Roy, OE Pardo, MJ Seckl, SW Rowlinson, E Stone, RF Lamb. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep 2017; 18(11): 2547–2556
https://doi.org/10.1016/j.celrep.2017.02.054 pmid: 28297659
24 Y Li, X Yang, J Yang, H Wang, W Wei. An 11-gene-based prognostic signature for uveal melanoma metastasis based on gene expression and DNA methylation profile. J Cell Biochem 2019; 120: 8630–8639
https://doi.org/10.1002/jcb.28151 pmid: 30556166
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed