Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (2): 221-231   https://doi.org/10.1007/s11684-020-0812-7
  本期目录
mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?
Shi-Yong Sun()
Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
 全文: PDF(984 KB)   HTML
Abstract

The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.

Key wordsmTOR    cancer therapy    resistance    GSK3    protein degradation    E3 ubiquitin ligase    PD-L1
收稿日期: 2020-05-06      出版日期: 2021-04-23
Corresponding Author(s): Shi-Yong Sun   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(2): 221-231.
Shi-Yong Sun. mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?. Front. Med., 2021, 15(2): 221-231.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-020-0812-7
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I2/221
Fig.1  
Fig.2  
Fig.3  
1 DA Guertin, DM Sabatini. Defining the role of mTOR in cancer. Cancer Cell 2007; 12(1): 9–22
https://doi.org/10.1016/j.ccr.2007.05.008 pmid: 17613433
2 WJ Oh, E Jacinto. mTOR complex 2 signaling and functions. Cell Cycle 2011; 10(14): 2305–2316
https://doi.org/10.4161/cc.10.14.16586 pmid: 21670596
3 M Laplante, DM Sabatini. mTOR signaling at a glance. J Cell Sci 2009; 122(Pt 20): 3589–3594
https://doi.org/10.1242/jcs.051011 pmid: 19812304
4 W Cai, Q Ye, QB She. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget 2014; 5(15): 6015–6027
https://doi.org/10.18632/oncotarget.2109 pmid: 24970798
5 DA Guertin, DM Stevens, M Saitoh, S Kinkel, K Crosby, JH Sheen, DJ Mullholland, MA Magnuson, H Wu, DM Sabatini. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009; 15(2): 148–159
https://doi.org/10.1016/j.ccr.2008.12.017 pmid: 19185849
6 K Lee, KT Nam, SH Cho, P Gudapati, Y Hwang, DS Park, R Potter, J Chen, E Volanakis, M Boothby. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J Exp Med 2012; 209(4): 713–728
https://doi.org/10.1084/jem.20111470 pmid: 22473959
7 D Roulin, Y Cerantola, A Dormond-Meuwly, N Demartines, O Dormond. Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Mol Cancer 2010; 9(1): 57
https://doi.org/10.1186/1476-4598-9-57 pmid: 20226010
8 SY Sun. Impact of genetic alterations on mTOR-targeted cancer therapy. Chin J Cancer 2013; 32(5): 270–274
https://doi.org/10.5732/cjc.013.10005 pmid: 23489586
9 X Wang, SY Sun. Enhancing mTOR-targeted cancer therapy. Expert Opin Ther Targets 2009; 13(10): 1193–1203
https://doi.org/10.1517/14728220903225008 pmid: 19694499
10 RT Abraham, JJ Gibbons. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 2007; 13(11): 3109–3114
https://doi.org/10.1158/1078-0432.CCR-06-2798 pmid: 17545512
11 SY Sun. mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett 2013; 340(1): 1–8
https://doi.org/10.1016/j.canlet.2013.06.017 pmid: 23792225
12 YJ Zhang, Y Duan, XF Zheng. Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 2011; 16(7–8): 325–331
https://doi.org/10.1016/j.drudis.2011.02.008 pmid: 21333749
13 VS Rodrik-Outmezguine, M Okaniwa, Z Yao, CJ Novotny, C McWhirter, A Banaji, H Won, W Wong, M Berger, E de Stanchina, DG Barratt, S Cosulich, T Klinowska, N Rosen, KM Shokat. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016; 534(7606): 272–276
https://doi.org/10.1038/nature17963 pmid: 27279227
14 SY Sun, LM Rosenberg, X Wang, Z Zhou, P Yue, H Fu, FR Khuri. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65(16): 7052–7058
https://doi.org/10.1158/0008-5472.CAN-05-0917 pmid: 16103051
15 KE O’Reilly, F Rojo, QB She, D Solit, GB Mills, D Smith, H Lane, F Hofmann, DJ Hicklin, DL Ludwig, J Baselga, N Rosen. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66(3): 1500–1508
https://doi.org/10.1158/0008-5472.CAN-05-2925 pmid: 16452206
16 Y Shi, H Yan, P Frost, J Gera, A Lichtenstein. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005; 4(10): 1533–1540
https://doi.org/10.1158/1535-7163.MCT-05-0068 pmid: 16227402
17 X Wan, B Harkavy, N Shen, P Grohar, LJ Helman. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007; 26(13): 1932–1940
https://doi.org/10.1038/sj.onc.1209990 pmid: 17001314
18 X Wang, P Yue, YA Kim, H Fu, FR Khuri, SY Sun. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res 2008; 68(18): 7409–7418
https://doi.org/10.1158/0008-5472.CAN-08-1522 pmid: 18794129
19 I Duran, J Kortmansky, D Singh, H Hirte, W Kocha, G Goss, L Le, A Oza, T Nicklee, J Ho, D Birle, GR Pond, D Arboine, J Dancey, S Aviel-Ronen, MS Tsao, D Hedley, LL Siu. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 2006; 95(9): 1148–1154
https://doi.org/10.1038/sj.bjc.6603419 pmid: 17031397
20 J Tabernero, F Rojo, E Calvo, H Burris, I Judson, K Hazell, E Martinelli, S Ramon y Cajal, S Jones, L Vidal, N Shand, T Macarulla, FJ Ramos, S Dimitrijevic, U Zoellner, P Tang, M Stumm, HA Lane, D Lebwohl, J Baselga. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 2008; 26(10): 1603–1610
https://doi.org/10.1200/JCO.2007.14.5482 pmid: 18332469
21 JB Easton, RT Kurmasheva, PJ Houghton. IRS-1: auditing the effectiveness of mTOR inhibitors. Cancer Cell 2006; 9(3): 153–155
https://doi.org/10.1016/j.ccr.2006.02.027 pmid: 16530700
22 X Wang, P Yue, H Tao, SY Sun. Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin. Heliyon 2017; 3(8): e00378
https://doi.org/10.1016/j.heliyon.2017.e00378 pmid: 28831455
23 Y Li, X Wang, P Yue, H Tao, SS Ramalingam, TK Owonikoko, X Deng, Y Wang, H Fu, FR Khuri, SY Sun. Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation. J Biol Chem 2013; 288(19): 13215–13224
https://doi.org/10.1074/jbc.M113.463679 pmid: 23536185
24 A Carracedo, L Ma, J Teruya-Feldstein, F Rojo, L Salmena, A Alimonti, A Egia, AT Sasaki, G Thomas, SC Kozma, A Papa, C Nardella, LC Cantley, J Baselga, PP Pandolfi. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118(9): 3065–3074
https://doi.org/10.1172/JCI34739 pmid: 18725988
25 X Wang, N Hawk, P Yue, J Kauh, SS Ramalingam, H Fu, FR Khuri, SY Sun. Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors’ anticancer efficacy. Cancer Biol Ther 2008; 7(12): 1952–1958
https://doi.org/10.4161/cbt.7.12.6944 pmid: 18981735
26 X Wang, P Yue, CB Chan, K Ye, T Ueda, R Watanabe-Fukunaga, R Fukunaga, H Fu, FR Khuri, SY Sun. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3 kinase-dependent and Mnk-mediated eIF4E phosphorylation. Mol Cell Biol 2007; 27(21): 7405–7413
https://doi.org/10.1128/MCB.00760-07
27 S Frame, P Cohen. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359(Pt 1): 1–16
https://doi.org/10.1042/bj3590001 pmid: 11563964
28 CN Mills, S Nowsheen, JA Bonner, ES Yang. Emerging roles of glycogen synthase kinase 3 in the treatment of brain tumors. Front Mol Neurosci 2011; 4: 47
https://doi.org/10.3389/fnmol.2011.00047 pmid: 22275880
29 R Mishra. Glycogen synthase kinase 3β: can it be a target for oral cancer. Mol Cancer 2010; 9(1): 144
https://doi.org/10.1186/1476-4598-9-144 pmid: 20537194
30 P Cohen, S Frame. The renaissance of GSK3. Nat Rev Mol Cell Biol 2001; 2(10): 769–776
https://doi.org/10.1038/35096075 pmid: 11584304
31 JA McCubrey, NM Davis, SL Abrams, G Montalto, M Cervello, J Basecke, M Libra, F Nicoletti, L Cocco, AM Martelli, LS Steelman. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2014; 54: 176–196
https://doi.org/10.1016/j.jbior.2013.09.013 pmid: 24169510
32 M Medina, F Wandosell. Deconstructing GSK-3: the fine regulation of its activity. Int J Alzheimers Dis 2011; 2011: 479249
https://doi.org/10.4061/2011/479249 pmid: 21629747
33 S Shin, L Wolgamott, Y Yu, J Blenis, SO Yoon. Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 2011; 108(47): E1204–E1213
https://doi.org/10.1073/pnas.1110195108 pmid: 22065737
34 J Koo, X Wang, TK Owonikoko, SS Ramalingam, FR Khuri, SY Sun. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Oncotarget 2015; 6(11): 8974–8987
https://doi.org/10.18632/oncotarget.3291 pmid: 25797247
35 J Koo, P Yue, AA Gal, FR Khuri, SY Sun. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth. Cancer Res 2014; 74(9): 2555–2568
https://doi.org/10.1158/0008-5472.CAN-13-2946 pmid: 24626091
36 S Zhang, G Qian, QQ Zhang, Y Yao, D Wang, ZG Chen, LJ Wang, M Chen, SY Sun. mTORC2 suppresses GSK3-dependent Snail degradation to positively regulate cancer cell invasion and metastasis. Cancer Res 2019; 79(14): 3725–3736
https://doi.org/10.1158/0008-5472.CAN-19-0180 pmid: 31142514
37 K Inoki, H Ouyang, T Zhu, C Lindvall, Y Wang, X Zhang, Q Yang, C Bennett, Y Harada, K Stankunas, CY Wang, X He, OA MacDougald, M You, BO Williams, KL Guan. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126(5): 955–968
https://doi.org/10.1016/j.cell.2006.06.055 pmid: 16959574
38 HH Zhang, AI Lipovsky, CC Dibble, M Sahin, BD Manning. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 2006; 24(2): 185–197
https://doi.org/10.1016/j.molcel.2006.09.019 pmid: 17052453
39 J Koo, P Yue, X Deng, FR Khuri, SY Sun. mTOR complex 2 stabilizes Mcl-1 protein by suppressing its GSK3-dependent and SCF-FBXW7-mediated degradation. Mol Cell Biol 2015; 35: 2344–2355
https://doi.org/10.1128/MCB.01525-14 pmid: 25918246
40 S Li, YT Oh, P Yue, FR Khuri, SY Sun. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene 2016; 35(5): 642–650
https://doi.org/10.1038/onc.2015.123 pmid: 25893295
41 M Welcker, BE Clurman. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8(2): 83–93
https://doi.org/10.1038/nrc2290 pmid: 18094723
42 H Inuzuka, S Shaik, I Onoyama, D Gao, A Tseng, RS Maser, B Zhai, L Wan, A Gutierrez, AW Lau, Y Xiao, AL Christie, J Aster, J Settleman, SP Gygi, AL Kung, T Look, KI Nakayama, RA DePinho, W Wei. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011; 471(7336): 104–109
https://doi.org/10.1038/nature09732 pmid: 21368833
43 F Takahashi-Yanaga, T Sasaguri. GSK-3β regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008; 20(4): 581–589
https://doi.org/10.1016/j.cellsig.2007.10.018 pmid: 18023328
44 A Cuadrado. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic Biol Med 2015; 88(Pt B): 147–157
https://doi.org/10.1016/j.freeradbiomed.2015.04.029 pmid: 25937177
45 C Xu, NG Kim, BM Gumbiner. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 2009; 8(24): 4032–4039
https://doi.org/10.4161/cc.8.24.10111 pmid: 19923896
46 BP Zhou, J Deng, W Xia, J Xu, YM Li, M Gunduz, MC Hung. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 2004; 6(10): 931–940
https://doi.org/10.1038/ncb1173 pmid: 15448698
47 DD Sarbassov, SM Ali, S Sengupta, JH Sheen, PP Hsu, AF Bagley, AL Markhard, DM Sabatini. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22(2): 159–168
https://doi.org/10.1016/j.molcel.2006.03.029 pmid: 16603397
48 A Barilli, R Visigalli, R Sala, GC Gazzola, A Parolari, E Tremoli, S Bonomini, A Simon, EI Closs, V Dall’Asta, O Bussolati. In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovasc Res 2008; 78(3): 563–571
https://doi.org/10.1093/cvr/cvn024 pmid: 18250144
49 M Rosner, M Hengstschläger. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008; 17(19): 2934–2948
https://doi.org/10.1093/hmg/ddn192 pmid: 18614546
50 A Barquilla, JL Crespo, M Navarro. Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci USA 2008; 105(38): 14579–14584
https://doi.org/10.1073/pnas.0802668105 pmid: 18796613
51 AD Barlow, J Xie, CE Moore, SC Campbell, JA Shaw, ML Nicholson, TP Herbert. Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 2012; 55(5): 1355–1365
https://doi.org/10.1007/s00125-012-2475-7 pmid: 22314813
52 DW Lamming, L Ye, P Katajisto, MD Goncalves, M Saitoh, DM Stevens, JG Davis, AB Salmon, A Richardson, RS Ahima, DA Guertin, DM Sabatini, JA Baur. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335(6076): 1638–1643
https://doi.org/10.1126/science.1215135 pmid: 22461615
53 SM Hong, CW Park, HJ Cha, JH Kwon, YS Yun, NG Lee, DG Kim, HG Nam, KY Choi. Rapamycin inhibits both motility through down-regulation of p-STAT3 (S727) by disrupting the mTORC2 assembly and peritoneal dissemination in sarcomatoid cholangiocarcinoma. Clin Exp Metastasis 2013; 30(2): 177–187
https://doi.org/10.1007/s10585-012-9526-9 pmid: 22875246
54 Q Ding, X He, W Xia, JM Hsu, CT Chen, LY Li, DF Lee, JY Yang, X Xie, JC Liu, MC Hung. Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3β activity and associates with poor prognosis in human breast cancer. Cancer Res 2007; 67(10): 4564–4571
https://doi.org/10.1158/0008-5472.CAN-06-1788 pmid: 17495324
55 R Chung, AC Peters, H Armanious, M Anand, P Gelebart, R Lai. Biological and clinical significance of GSK-3β in mantle cell lymphoma—an immunohistochemical study. Int J Clin Exp Pathol 2010; 3(3): 244–253 PMID:20224723
56 YJ Cho, JH Kim, J Yoon, SJ Cho, YS Ko, JW Park, HS Lee, HE Lee, WH Kim, BL Lee. Constitutive activation of glycogen synthase kinase-3β correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer. BMC Gastroenterol 2010; 10(1): 91
https://doi.org/10.1186/1471-230X-10-91 pmid: 20704706
57 G Qiao, Y Le, J Li, L Wang, F Shen. Glycogen synthase kinase-3β is associated with the prognosis of hepatocellular carcinoma and may mediate the influence of type 2 diabetes mellitus on hepatocellular carcinoma. PLoS One 2014; 9(8): e105624
https://doi.org/10.1371/journal.pone.0105624 pmid: 25157753
58 CH Yeh, M Bellon, C Nicot. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17(1): 115
https://doi.org/10.1186/s12943-018-0857-2 pmid: 30086763
59 RJ Davis, M Welcker, BE Clurman. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell 2014; 26(4): 455–464
https://doi.org/10.1016/j.ccell.2014.09.013 pmid: 25314076
60 J Guan, KS Lim, T Mekhail, CC Chang. Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: a key player against various cancers. Arch Pathol Lab Med 2017; 141(6): 851–861
https://doi.org/10.5858/arpa.2016-0361-RA pmid: 28418281
61 DM Benson Jr, CE Bakan, A Mishra, CC Hofmeister, Y Efebera, B Becknell, RA Baiocchi, J Zhang, J Yu, MK Smith, CN Greenfield, P Porcu, SM Devine, R Rotem-Yehudar, G Lozanski, JC Byrd, MA Caligiuri. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116(13): 2286–2294
https://doi.org/10.1182/blood-2010-02-271874 pmid: 20460501
62 SR Gordon, RL Maute, BW Dulken, G Hutter, BM George, MN McCracken, R Gupta, JM Tsai, R Sinha, D Corey, AM Ring, AJ Connolly, IL Weissman. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545(7655): 495–499
https://doi.org/10.1038/nature22396 pmid: 28514441
63 Y Iwai, J Hamanishi, K Chamoto, T Honjo. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 2017; 24(1): 26
https://doi.org/10.1186/s12929-017-0329-9 pmid: 28376884
64 A Somasundaram, TF Burns. The next generation of immunotherapy: keeping lung cancer in check. J Hematol Oncol 2017; 10(1): 87
https://doi.org/10.1186/s13045-017-0456-5 pmid: 28434399
65 PJ Stambrook, J Maher, F Farzaneh. Cancer immunotherapy: whence and whither. Mol Cancer Res 2017; 15(6): 635–650
https://doi.org/10.1158/1541-7786.MCR-16-0427 pmid: 28356330
66 KJ Lastwika, W Wilson 3rd, QK Li, J Norris, H Xu, SR Ghazarian, H Kitagawa, S Kawabata, JM Taube, S Yao, LN Liu, JJ Gills, PA Dennis. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 2016; 76(2): 227–238
https://doi.org/10.1158/0008-5472.CAN-14-3362 pmid: 26637667
67 L Deng, G Qian, S Zhang, H Zheng, S Fan, GB Lesinski, TK Owonikoko, SS Ramalingam, SY Sun. Inhibition of mTOR complex 1/p70 S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhancing protein stabilization accompanied with enhanced β-TrCP degradation. Oncogene 2019; 38(35): 6270–6282
https://doi.org/10.1038/s41388-019-0877-4 pmid: 31316145
68 Y Hirayama, M Gi, S Yamano, H Tachibana, T Okuno, S Tamada, T Nakatani, H Wanibuchi. Anti-PD-L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma. Cancer Sci 2016; 107(12): 1736–1744
https://doi.org/10.1111/cas.13099 pmid: 27712020
69 C Zhang, Y Duan, M Xia, Y Dong, Y Chen, L Zheng, S Chai, Q Zhang, Z Wei, N Liu, J Wang, C Sun, Z Tang, X Cheng, J Wu, G Wang, F Zheng, A Laurence, B Li, XP Yang. TFEB mediates immune evasion and resistance to mTOR inhibition of renal cell carcinoma via induction of PD-L1. Clin Cancer Res 2019; 25(22): 6827–6838
https://doi.org/10.1158/1078-0432.CCR-19-0733 pmid: 31383732
70 H Hua, Q Kong, H Zhang, J Wang, T Luo, Y Jiang. Targeting mTOR for cancer therapy. J Hematol Oncol 2019; 12(1): 71
https://doi.org/10.1186/s13045-019-0754-1 pmid: 31277692
71 AM Holder, A Akcakanat, F Adkins, K Evans, H Chen, C Wei, DR Milton, Y Li, KA Do, F Janku, F Meric-Bernstam. Epithelial to mesenchymal transition is associated with rapamycin resistance. Oncotarget 2015; 6(23): 19500–19513
https://doi.org/10.18632/oncotarget.3669 pmid: 25944619
72 S Venkatesan, M Hoogstraat, E Caljouw, T Pierson, JK Spoor, L Zeneyedpour, HJ Dubbink, LJ Dekker, M van der Kaaij, J Kloezeman, LM Berghauser Pont, NJ Besselink, TM Luider, J Joore, JW Martens, ML Lamfers, S Sleijfer, S Leenstra. TP53 mutated glioblastoma stem-like cell cultures are sensitive to dual mTORC1/2 inhibition while resistance in TP53 wild type cultures can be overcome by combined inhibition of mTORC1/2 and Bcl-2. Oncotarget 2016; 7(36): 58435–58444
https://doi.org/10.18632/oncotarget.11205 pmid: 27533080
73 J Tan, Z Li, PL Lee, P Guan, MY Aau, ST Lee, M Feng, CZ Lim, EY Lee, ZN Wee, YC Lim, RK Karuturi, Q Yu. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discov 2013; 3(10): 1156–1171
https://doi.org/10.1158/2159-8290.CD-12-0595 pmid: 23887393
74 Y Liu, X Zhang, P Liu, J Zhang. Drug sensitivity research of mTOR inhibitor on breast cancer stem cells. Natl Med J China (Zhonghua Yi Xue Za Zhi) 2015; 95(24): 1910–1914 (in Chinese)
pmid: 26710692
75 F Lin, MC de Gooijer, D Hanekamp, G Chandrasekaran, LC Buil, N Thota, RW Sparidans, JH Beijnen, T Würdinger, O van Tellingen. PI3K-mTOR pathway inhibition exhibits efficacy against high-grade glioma in clinically relevant mouse models. Clin Cancer Res 2017; 23(5): 1286–1298
https://doi.org/10.1158/1078-0432.CCR-16-1276 pmid: 27553832
76 J Wang, DH Yang, Y Yang, JQ Wang, CY Cai, ZN Lei, QX Teng, ZX Wu, L Zhao, ZS Chen. Overexpression of ABCB1 transporter confers resistance to mTOR inhibitor WYE-354 in cancer cells. Int J Mol Sci 2020; 21(4): E1387
https://doi.org/10.3390/ijms21041387 pmid: 32092870
77 F Lin, L Buil, D Sherris, JH Beijnen, O van Tellingen. Dual mTORC1 and mTORC2 inhibitor Palomid 529 penetrates the blood-brain barrier without restriction by ABCB1 and ABCG2. Int J Cancer 2013; 133(5): 1222–1233
https://doi.org/10.1002/ijc.28126 pmid: 23436212
78 E Lauretti, O Dincer, D Praticò. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res 2020; 1867(5): 118664
https://doi.org/10.1016/j.bbamcr.2020.118664 pmid: 32006534
79 P Duda, J Wiśniewski, T Wójtowicz, O Wójcicka, M Jaśkiewicz, D Drulis-Fajdasz, D Rakus, JA McCubrey, A Gizak. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 2018; 22(10): 833–848
https://doi.org/10.1080/14728222.2018.1526925 pmid: 30244615
80 JT Lynch, UM Polanska, U Hancox, O Delpuech, J Maynard, C Trigwell, C Eberlein, C Lenaghan, R Polanski, A Avivar-Valderas, M Cumberbatch, T Klinowska, SE Critchlow, F Cruzalegui, ST Barry. Combined inhibition of PI3Kβ and mTOR inhibits growth of PTEN-null tumors. Mol Cancer Ther 2018; 17(11): 2309–2319
https://doi.org/10.1158/1535-7163.MCT-18-0183 pmid: 30097489
81 H Kim, SJ Lee, IK Lee, SC Min, HH Sung, BC Jeong, J Lee, SH Park. Synergistic effects of combination therapy with AKT and mTOR inhibitors on bladder cancer cells. Int J Mol Sci 2020; 21(8): E2825
https://doi.org/10.3390/ijms21082825 pmid: 32325639
82 M Mazzoletti, F Bortolin, L Brunelli, R Pastorelli, S Di Giandomenico, E Erba, P Ubezio, M Broggini. Combination of PI3K/mTOR inhibitors: antitumor activity and molecular correlates. Cancer Res 2011; 71(13): 4573–4584
https://doi.org/10.1158/0008-5472.CAN-10-4322 pmid: 21602434
83 J Mise, V Dembitz, H Banfic, D Visnjic. Combined inhibition of PI3K and mTOR exerts synergistic antiproliferative effect, but diminishes differentiative properties of rapamycin in acute myeloid leukemia cells. Pathol Oncol Res 2011; 17(3): 645–656
https://doi.org/10.1007/s12253-011-9365-z pmid: 21336564
84 A Arnold, M Yuan, A Price, L Harris, CG Eberhart, EH Raabe. Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro-oncol 2020; 22(4): 563–574
https://doi.org/10.1093/neuonc/noz230 pmid: 31841591
85 X Liu, J Hu, X Song, K Utpatel, Y Zhang, P Wang, X Lu, J Zhang, M Xu, T Su, L Che, J Wang, M Evert, DF Calvisi, X Chen. Combined treatment with MEK and mTOR inhibitors is effective in in vitro and in vivo models of hepatocellular carcinoma. Cancers (Basel) 2019; 11(7): E930
https://doi.org/10.3390/cancers11070930 pmid: 31277283
86 ML Chadwick, A Lane, D Thomas, AR Smith, AR White, D Davidson, Y Feng, E Boscolo, Y Zheng, DM Adams, A Gupta, A Veillette, LML Chow. Combined mTOR and MEK inhibition is an effective therapy in a novel mouse model for angiosarcoma. Oncotarget 2018; 9(37): 24750–24765
https://doi.org/10.18632/oncotarget.25345 pmid: 29872503
87 NJ Andersen, EB Boguslawski, CY Kuk, CM Chambers, NS Duesbery. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol 2015; 47(1): 71–80
https://doi.org/10.3892/ijo.2015.2989 pmid: 25955301
88 K Araki, B Youngblood, R Ahmed. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev 2010; 235(1): 234–243
https://doi.org/10.1111/j.0105-2896.2010.00898.x pmid: 20536567
89 H Chi. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 2012; 12(5): 325–338
https://doi.org/10.1038/nri3198 pmid: 22517423
90 NM Chapman, H Chi. mTOR signaling, Tregs and immune modulation. Immunotherapy 2014; 6(12): 1295–1311
https://doi.org/10.2217/imt.14.84 pmid: 25524385
91 D Fantus, AW Thomson. Evolving perspectives of mTOR complexes in immunity and transplantation. Am J Transplant 2015; 15(4): 891–902
https://doi.org/10.1111/ajt.13151 pmid: 25737114
92 K Araki, AP Turner, VO Shaffer, S Gangappa, SA Keller, MF Bachmann, CP Larsen, R Ahmed. mTOR regulates memory CD8 T-cell differentiation. Nature 2009; 460(7251): 108–112
https://doi.org/10.1038/nature08155 pmid: 19543266
93 JB Mannick, G Del Giudice, M Lattanzi, NM Valiante, J Praestgaard, B Huang, MA Lonetto, HT Maecker, J Kovarik, S Carson, DJ Glass, LB Klickstein. mTOR inhibition improves immune function in the elderly. Sci Transl Med 2014; 6(268): 268ra179
https://doi.org/10.1126/scitranslmed.3009892 pmid: 25540326
94 L Beziaud, L Mansi, P Ravel, EL Marie-Joseph, C Laheurte, L Rangan, F Bonnefoy, JR Pallandre, L Boullerot, C Gamonet, S Vrecko, L Queiroz, T Maurina, G Mouillet, TN Hon, E Curtit, B Royer, B Gaugler, J Bayry, E Tartour, A Thiery-Vuillemin, X Pivot, C Borg, Y Godet, O Adotévi. Rapalogs efficacy relies on the modulation of antitumor T-cell immunity. Cancer Res 2016; 76(14): 4100–4112
https://doi.org/10.1158/0008-5472.CAN-15-2452 pmid: 27197194
95 E Amiel, B Everts, TC Freitas, IL King, JD Curtis, EL Pearce, EJ Pearce. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol 2012; 189(5): 2151–2158
https://doi.org/10.4049/jimmunol.1103741 pmid: 22826320
96 DL Thomas, R Doty, V Tosic, J Liu, DM Kranz, G McFadden, AL Macneill, EJ Roy. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors. Cancer Immunol Immunother 2011; 60(10): 1461–1472
https://doi.org/10.1007/s00262-011-1045-z pmid: 21656158
97 M Diken, S Kreiter, F Vascotto, A Selmi, S Attig, J Diekmann, C Huber, Ö Türeci, U Sahin. mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA. Cancer Immunol Res 2013; 1(6): 386–392
https://doi.org/10.1158/2326-6066.CIR-13-0046 pmid: 24778131
98 Y Mineharu, N Kamran, PR Lowenstein, MG Castro. Blockade of mTOR signaling via rapamycin combined with immunotherapy augments antiglioma cytotoxic and memory T-cell functions. Mol Cancer Ther 2014; 13(12): 3024–3036
https://doi.org/10.1158/1535-7163.MCT-14-0400 pmid: 25256739
99 EC Moore, HA Cash, AM Caruso, R Uppaluri, JW Hodge, C Van Waes, CT Allen. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers. Cancer Immunol Res 2016; 4(7): 611–620
https://doi.org/10.1158/2326-6066.CIR-15-0252 pmid: 27076449
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed