Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (5): 657-678   https://doi.org/10.1007/s11684-021-0829-6
  本期目录
Primary cilia in hard tissue development and diseases
Sijin Li1, Han Zhang2, Yao Sun2()
1. Department of Orthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
2. Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
 全文: PDF(5843 KB)   HTML
Abstract

Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.

Key wordsprimary cilia    bone    mechanical sensing    hard tissue    cilium-related bone disease    tooth
收稿日期: 2020-06-14      出版日期: 2021-11-01
Corresponding Author(s): Yao Sun   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(5): 657-678.
Sijin Li, Han Zhang, Yao Sun. Primary cilia in hard tissue development and diseases. Front. Med., 2021, 15(5): 657-678.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0829-6
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I5/657
Fig.1  
Fig.2  
Fig.3  
Diseases Mutant genes Clinical manifestation
Craniofacial deformity Skeletal deformity
MZSDS IFT140, IFT172 No reports found Cone-shaped epiphyses of phalanges
OFD    
?OFDI CXORF5 Lobed tongue; tongue nodules; ?median pseudoclefting of the upper ?lip; clefts of the palate and tongue; ?micrognathia; abnormal dentition; ?telecanthus; hypoplasia of the alae ?nasi Syndactyly; branchydactyly
?OFDVI C5ORF42 Cleft or hamartoma of the tongue; ?micrognathia; additional frenula; ?cleft lip/palate Polydactyly; skeletal dysplasia
Sensenbrenner syndrome/CED WDR19, IFT122, WDR35, ?SPAGE17, IFT43 Dolichocephaly; high forehead; full ?cheeks; telecanthus; hypodontia ?and/or microdontia Narrow thorax; brachydactyly; short ?limbs
Weyers acrofacial dysostosis IFT80, EVC, EVC2 Median cleft; conical teeth; fused ?teeth; abnormal shape and number ?of lower and upper incisors; ?hypodontia; enamel hypoplasia Postaxial polydactyly; mild shortness ?of stature with short limbs
SRPsa
?SRPI Unknown Cleft lip/palate; lobed tongue Postaxial polydactyly (++); severely ?shortened and flipper-like limbs; ?striking metaphyseal dysplasia of ?tubular bones; defective ossification in ?the calvaria, vertebrae, pelvis, and ?bones of the hands and feet
?SRPII DYNC2H1, NEK1 Cleft lip/palate Pre- and postaxial polysyndactyly ?(+++); short and narrow thorax with ?horizontally oriented ribs; short ?tubular bones with smooth ends; tibial ?agenesis or ovoid tibiae shorter than ?fibulae
?SRP III IFT80, DYNC2H1 Cleft lip/palate Polydactyly (++); extreme narrowness ?of the thorax; severely shortened ?tubular bones with round metaphyseal ?ends and lateral spikes
?SRP IV Unknown Flat face; hamartoma of the ?tongue; lobed tongue; cleft ?lip/palate; natal tooth Polydactyly (+); short and narrow ?thorax with horizontally oriented ribs; ?small iliac bones; short tubular bones ?with smooth metaphyseal margins; ?bowed radii and ulna
EVC EVC, EVC2 Dysplastic teeth; natal tooth; ?labiogingival adhesions Polydactyly (+++); short ribs; short ?limbs
ATD WDR34, IFT80, DYNC2H1, ?TTC21B, WDR19 Dental abnormalities Inconstant polydactyly; short ribs and ?limbs; short stature; trident acetabular ?roof
?SRP type V WDR35 Facial abnormalities Polydactyly (+); acromesomelic ?hypomineralization; and campomelia
BBS BBSome1–19 Brachycephaly/macrocephaly; ?bitemporal narrowing; male ?frontal balding; short and narrow ?palpebral fissures; long shallow ?philtrum; nasal anomalies; dental ?crowding; midfacial hypoplasia; ?mild retrognathia Postaxial polydactyly
JS INPP5E, ARL13B, CC2D2A, ?RPGRIP1L, TMEM67, NPHP1, ?AHI1, CEP290, CXORF5, ?TMEM216… Large head and frontal prominence; ?arched eyebrows; drooping upper ?eyelids; widened eyes; low ears; ?triangular mouths; cleft lip/palate Polydactyly (10%–15%); scoliosis
Tab.1  
Diseases Mutant genes Other deformities
MZSDS IFT140, IFT172 Chronic renal failure; retinal dystrophy; cerebellar ?ataxia
OFD    
?OFDI CXORF5 Cystic renal disease
?OFDVI C5ORF42 Mental retardation; cerebellar anomalies; conductive ?loss of hearing; congenital heart anomalies; micro-?penis; cryptorchidism
Sensenbrenner syndrome/CED WDR19, IFT122, WDR35, SPAGE17, IFT43 Ectodermal manifestations, including sparse hair, ?abnormal nails, skin laxity, and bilateral inguinal ?hernia; nephronophtisis, hepatic fibrosis, retinitis ?pigmentosa, and/or brain anomalies
Weyers acrofacial dysostosis IFT80, EVC, EVC2 Hypoplastic and dysplastic nails
SRPs    
?SRPI Unknown Polycystic kidney; transposition of great vessels; ?atretic lesions of the gastrointestinal and ?genitourinary systems
?SRPII DYNC2H1, NEK1 Malformed epiglottis and larynx; renal cysts; genital, ?cardiac and intestinal abnormalities
?SRP III IFT80, DYNC2H1 Anomalies of the heart, intestine, genitalia, kidney, ?liver, and pancreas
?SRP IV Unknown Brain defects; absent internal genitalia; renal, bile, ?and pancreatic cysts
?EVC EVC, EVC2 Dysplastic nails; congenital cardiac defects; ?urogenital anomalies
?ATD WDR34, IFT80, DYNC2H1, TTC21B, WDR19 Retinal degeneration; cystic renal disease; and liver ?diseases
?SRP type V WDR35 Extreme micromelia; polycystic kidney
BBS BBSome1–19 Progressive vision loss; polycystic kidney; obesity; ?retinitis pigmentosa; congenital cardiac defects; ?learning difficulties
JS INPP5E, ARL13B, CC2D2A, RPGRIP1L, ?TMEM67, NPHP1, AHI1, CEP290, ?CXORF5, TMEM216… Cerebellar and brainstem malformation with molar ?tooth sign; ataxia; mental retardation; breathing ?dysregulation; retinal dystrophy; kidney and liver ?anomalies
Tab.2  
Fig.4  
Genes Encode protein Function Mutant model Deformity
Basal body        
?BBSome1–21 BBS1–21 BBS1, BBS2, BBS4, BBS5, ?BBS7, BBS8, and BBS9 along ?with an interacting protein BBIP?10 form a complex called the ?BBSome, which is involved in ?ciliary membrane biogenesis Knockdown of bbs1 in zebrafish Disruption of Kupffer’s vesicle ?formation, heart laterality defects ?(jogging and looping), and delay in ?melanosome retrograde transport
Mouse BBS model (Bbs7 and ?Ift88orpk double mutants) Embryonic lethality
BBS4, BBS6, and BBS8 are ?expressed in ciliated epithelia ?and localize to the centrosome ?and basal bodies Mouse BBS models (Bbs4−/−and ?Bbs6−/−) Increased face width, upward nasal ?displacement, midfacial flattening, ?and retrognathia
bbs4, bbs6, and bbs8 zebrafish ?morphants Shortened anterior neurocranium, ?reduced mandibles, and few ?hypoplastic branchial arches
?EVC Evc and Evc2 Evc and Evc2 are mutually ?required for localizing to primary ?cilia and for maintaining ?their normal protein levels Mouse BBS model (Evc−/−) Decreased Ptch1 and Gli1 ?expression, delayed bone collar ?formation, and advanced ?chondrocyte maturation in the ?growth plate
?EVC2 Evc and Evc2 Evc and Evc2 are mutually ?required for localizing to primary ?cilia and for maintaining ?their normal protein levels Mouse BBS model (Evc2−/−) Reduced Ptch1, Gli1, and Pthrp ?expression; distalward shortening ?of the limbs and short ribs; delayed ?perichondrial osteoblast ?differentiation in the mutant growth ?plate
?CXORF5 OFD1 Maintaining the microtubule ?length stability of centrioles OFD1-mutated human (formerly ?named “Cxorf5/71-7a”) Craniofacial anomalies (facial skin ?milia and broadened nasal ridge), ?facial asymmetry and oral ?anomalies (hamartomas, clefts of ?the lip and palate, and dental ?abnormalities)
Transition zone        
?CEP290 (also
?known as NPHP6 ?and MKS4)
CEP290 CEP290 controls ciliary protein ?composition and signaling CEP290 nonsense mutations in ?fibroblast cells Cilial elongation, impaired ?ciliogenesis, and ciliary ?composition defects
Motors        
?DYNC2H1 DYNC2H1 DYNC2H1 plays a role in ?retrograde transport in the cilia. ?The loss of DYNC2H1 function can ?affect the movement of organelles ?and the transport of critical cargo ?necessary for signal transduction ?and skeletal development DYNC2H1-mutated human Perinatal lethality, skeletal disorders, ?polydactyly and multisystem organ ?abnormalities; shortened cilia and ?abnormal cytoskeletal microtubule ?architecture in chondrocytes
?WDR34 WDR34 WDR34 is a dynein intermediate ?chain that is associated with the ?retrograde IFT motor WDR34-mutated human Protruding abdomen, narrow thorax, ?short horizontal ribs, acetabular ?spurs, shortened femora, and ?handlebar clavicles
IFT        
?IFT122 IFT122 Part of IFT-A Loss of ift122 in zebrafish Shortened body axis and curvature, ?cardiac edema, and small eyes
?IFT140 IFT140 Part of IFT-A Mouse model (Ift140 mutant ?or knockout) Perinatal lethality, slowed embryo ?development, exencephaly, ?polydactyly, severe rib defects, ?calvarial development failure, and ?cervical vertebral fusion
?TTC21B/IFT139 IFT139 Part of IFT-A ttc21b tb-MO in zebrafish Shortening of the embryonic axis, ?widening and kinking of the ?notochord, broadening and thinning ?of the somites
?WDR19 IFT144 Part of IFT-A WDR19-mutated human Skeletal anomalies, chronic renal ?failure, and retinitis pigmentosa
?IFT172 IFT172 Part of IFT-B Knockdown of ift172 in ?zebrafish Ventral body axis curvature, kidney ?cysts, otolith defects, retinal ?degeneration, hydrocephaly, and ?ciliogenesis defects
?IFT80 IFT80 Part of IFT-B Mouse model (Ift80gt/gt) Embryonic lethality, growth ?retardation, constricted thoracic ?cages, shortened long bones, and ?characteristic bilateral preaxial ?polydactyly
Tab.3  
1 AD Berendsen, BR Olsen. Bone development. Bone 2015; 80: 14–18
https://doi.org/10.1016/j.bone.2015.04.035 pmid: 26453494
2 DW Buck 2nd, GA Dumanian. Bone biology and physiology: part I. The fundamentals. Plast Reconstr Surg 2012; 129(6): 1314–1320
https://doi.org/10.1097/PRS.0b013e31824eca94 pmid: 22634648
3 DJ Hadjidakis, II Androulakis. Bone remodeling. Ann N Y Acad Sci 2006; 1092(1): 385–396
https://doi.org/10.1196/annals.1365.035 pmid: 17308163
4 B Clarke. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3(Suppl 3): S131–S139
https://doi.org/10.2215/CJN.04151206 pmid: 18988698
5 M Owen. The origin of bone cells in the postnatal organism. Arthritis Rheum 1980; 23(10): 1073–1080
https://doi.org/10.1002/art.1780231002 pmid: 7000078
6 GG Walmsley, RC Ransom, ER Zielins, T Leavitt, JS Flacco, MS Hu, AS Lee, MT Longaker, DC Wan. Stem cells in bone regeneration. Stem Cell Rev Rep 2016; 12(5): 524–529
https://doi.org/10.1007/s12015-016-9665-5 pmid: 27250635
7 JP Scherft, WT Daems. Single cilia in chondrocytes. J Ultrastruct Res 1967; 19(5): 546–555
8 DR Rich, AL Clark. Chondrocyte primary cilia shorten in response to osmotic challenge and are sites for endocytosis. Osteoarthritis Cartilage 2012; 20(8): 923–930
https://doi.org/10.1016/j.joca.2012.04.017 pmid: 22554793
9 S Wang, Q Wei, G Dong, Z Dong. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim Biophys Acta 2013; 1832(10): 1582–1590
https://doi.org/10.1016/j.bbadis.2013.05.023 pmid: 23727409
10 P Tummala, EJ Arnsdorf, CR Jacobs. The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment. Cell Mol Bioeng 2010; 3(3): 207–212
https://doi.org/10.1007/s12195-010-0127-x pmid: 20823950
11 Z Xiao, S Zhang, J Mahlios, G Zhou, BS Magenheimer, D Guo, SL Dallas, R Maser, JP Calvet, L Bonewald, LD Quarles. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 2006; 281(41): 30884–30895
https://doi.org/10.1074/jbc.M604772200 pmid: 16905538
12 AM Malone, CT Anderson, P Tummala, RY Kwon, TR Johnston, T Stearns, CR Jacobs. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 2007; 104(33): 13325–13330
https://doi.org/10.1073/pnas.0700636104 pmid: 17673554
13 M Federman, G Nichols Jr. Bone cell cilia: vestigial or functional organelles? Calcif Tissue Res 1974; 17(1): 81–85
https://doi.org/10.1007/BF02547216 pmid: 4451879
14 X Yuan, RA Serra, S Yang. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335(1): 78–99
https://doi.org/10.1111/nyas.12463 pmid: 24961486
15 JT Eggenschwiler, KV Anderson. Cilia and developmental signaling. Annu Rev Cell Dev Biol 2007; 23(1): 345–373
https://doi.org/10.1146/annurev.cellbio.23.090506.123249 pmid: 17506691
16 AM Fry, MJ Leaper, R Bayliss. The primary cilium: guardian of organ development and homeostasis. Organogenesis 2014; 10(1): 62–68
https://doi.org/10.4161/org.28910 pmid: 24743231
17 SP Sorokin. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 1968; 3(2): 207–230
pmid: 5661997
18 NF Berbari, AK O’Connor, CJ Haycraft, BK Yoder. The primary cilium as a complex signaling center. Curr Biol 2009; 19(13): R526–R535
https://doi.org/10.1016/j.cub.2009.05.025 pmid: 19602418
19 I Izawa, H Goto, K Kasahara, M Inagaki. Current topics of functional links between primary cilia and cell cycle. Cilia 2015; 4(1): 12
https://doi.org/10.1186/s13630-015-0021-1 pmid: 26719793
20 G Wheway, L Nazlamova, JT Hancock. Signaling through the primary cilium. Front Cell Dev Biol 2018; 6: 8
https://doi.org/10.3389/fcell.2018.00008 pmid: 29473038
21 P Satir, ST Christensen. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007; 69(1): 377–400
https://doi.org/10.1146/annurev.physiol.69.040705.141236 pmid: 17009929
22 YH Youn, YG Han. Primary cilia in brain development and diseases. Am J Pathol 2018; 188(1): 11–22
https://doi.org/10.1016/j.ajpath.2017.08.031 pmid: 29030052
23 A Desai, TJ Mitchison. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13(1): 83–117
https://doi.org/10.1146/annurev.cellbio.13.1.83 pmid: 9442869
24 SY Yoon, JE Choi, JM Choi, DH Kim. Dynein cleavage and microtubule accumulation in okadaic acid-treated neurons. Neurosci Lett 2008; 437(2): 111–115
https://doi.org/10.1016/j.neulet.2008.03.083 pmid: 18448253
25 S Kim, NA Zaghloul, E Bubenshchikova, EC Oh, S Rankin, N Katsanis, T Obara, L Tsiokas. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 2011; 13(4): 351–360
https://doi.org/10.1038/ncb2183 pmid: 21394081
26 M Cao, Q Zhong. Cilia in autophagy and cancer. Cilia 2016; 5(1): 4
https://doi.org/10.1186/s13630-016-0027-3 pmid: 26848389
27 Q Hu, WJ Nelson. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 2011; 68(6): 313–324
https://doi.org/10.1002/cm.20514 pmid: 21634025
28 KJ Christopher, B Wang, Y Kong, SD Weatherbee. Forward genetics uncovers transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic hedgehog signaling. Dev Biol 2012; 368(2): 382–392
https://doi.org/10.1016/j.ydbio.2012.06.008 pmid: 22698544
29 P Satir, LB Pedersen, ST Christensen. The primary cilium at a glance. J Cell Sci 2010; 123(4): 499–503
https://doi.org/10.1242/jcs.050377 pmid: 20144997
30 JL Rosenbaum, GB Witman. Intraflagellar transport. Nat Rev Mol Cell Biol 2002; 3(11): 813–825
https://doi.org/10.1038/nrm952 pmid: 12415299
31 S Yang, C Wang. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 2012; 51(3): 407–417
https://doi.org/10.1016/j.bone.2012.06.021 pmid: 22771375
32 IR Veland, A Awan, LB Pedersen, BK Yoder, ST Christensen. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 2009; 111(3): 39–53
https://doi.org/10.1159/000208212 pmid: 19276629
33 X Yuan, S Yang. Primary cilia and intraflagellar transport proteins in bone and cartilage. J Dent Res 2016; 95(12): 1341–1349
https://doi.org/10.1177/0022034516652383 pmid: 27250654
34 SC Goetz, PJ Ocbina, KV Anderson. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol 2009; 94: 199–222
https://doi.org/10.1016/S0091-679X(08)94010-3 pmid: 20362092
35 S Cai, JC Bodle, PS Mathieu, A Amos, M Hamouda, S Bernacki, G McCarty, EG Loboa. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells. FASEB J 2017; 31(1): 346–355
https://doi.org/10.1096/fj.201600560r pmid: 27825103
36 RJ McMurray, AK Wann, CL Thompson, JT Connelly, MM Knight. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 2013; 3(1): 3545
https://doi.org/10.1038/srep03545 pmid: 24346024
37 X Yuan, J Cao, X He, R Serra, J Qu, X Cao, S Yang. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun 2016; 7(1): 11024
https://doi.org/10.1038/ncomms11024 pmid: 26996322
38 C Huber, V Cormier-Daire. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet 2012; 160C(3): 165–174
https://doi.org/10.1002/ajmg.c.31336 pmid: 22791528
39 TF Day, Y Yang. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am 2008; 90(Suppl 1): 19–24
https://doi.org/10.2106/JBJS.G.01174 pmid: 18292352
40 R Rohatgi, L Milenkovic, MP Scott. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007; 317(5836): 372–376
https://doi.org/10.1126/science.1139740 pmid: 17641202
41 CJ Haycraft, Q Zhang, B Song, WS Jackson, PJ Detloff, R Serra, BK Yoder. Intraflagellar transport is essential for endochondral bone formation. Development 2007; 134(2): 307–316
https://doi.org/10.1242/dev.02732 pmid: 17166921
42 A Kikuchi, H Yamamoto. Tumor formation due to abnormalities in the β-catenin-independent pathway of Wnt signaling. Cancer Sci 2008; 99(2): 202–208
https://doi.org/10.1111/j.1349-7006.2007.00675.x pmid: 18271916
43 R Baron, M Kneissel. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19(2): 179–192
https://doi.org/10.1038/nm.3074 pmid: 23389618
44 MA Lancaster, J Schroth, JG Gleeson. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol 2011; 13(6): 700–707
https://doi.org/10.1038/ncb2259 pmid: 21602792
45 MA Corrigan, TM Ferradaes, M Riffault, DA Hoey. Ciliotherapy treatments to enhance biochemically- and biophysically-induced mesenchymal stem cell osteogenesis: a comparison study. Cell Mol Bioeng 2018; 12(1): 53–67
https://doi.org/10.1007/s12195-018-00561-0 pmid: 31719899
46 KC Corbit, AE Shyer, WE Dowdle, J Gaulden, V Singla, MH Chen, PT Chuang, JF Reiter. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 2008; 10(1): 70–76
https://doi.org/10.1038/ncb1670 pmid: 18084282
47 S Lienkamp, A Ganner, G Walz. Inversin, Wnt signaling and primary cilia. Differentiation 2012; 83(2): S49–S55
https://doi.org/10.1016/j.diff.2011.11.012 pmid: 22206729
48 A Pitaval, Q Tseng, M Bornens, M Théry. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 2010; 191(2): 303–312
https://doi.org/10.1083/jcb.201004003 pmid: 20956379
49 A Li, X Xia, J Yeh, H Kua, H Liu, Y Mishina, A Hao, B Li. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9(12): e113785
https://doi.org/10.1371/journal.pone.0113785 pmid: 25470749
50 FM Schmid, KB Schou, MJ Vilhelm, MS Holm, L Breslin, P Farinelli, LA Larsen, JS Andersen, LB Pedersen, ST Christensen. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. J Cell Biol 2018; 217(1): 151–161
https://doi.org/10.1083/jcb.201611050 pmid: 29237719
51 S Graham, A Leonidou, M Lester, M Heliotis, A Mantalaris, E Tsiridis. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs 2009; 18(11): 1633–1654
https://doi.org/10.1517/13543780903241607 pmid: 19747084
52 K Noda, M Kitami, K Kitami, M Kaku, Y Komatsu. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A 2016; 113(19): E2589–E2597
https://doi.org/10.1073/pnas.1519458113 pmid: 27118846
53 L Schneider, CA Clement, SC Teilmann, GJ Pazour, EK Hoffmann, P Satir, ST Christensen. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr Biol 2005; 15(20): 1861–1866
https://doi.org/10.1016/j.cub.2005.09.012 pmid: 16243034
54 NL Umberger, T Caspary, M Bettencourt-Dias. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell 2015; 26(2): 350–358
https://doi.org/10.1091/mbc.E14-05-0952 pmid: 25392303
55 ŁA Poniatowski, P Wojdasiewicz, R Gasik, D Szukiewicz. Transforming growth factor β family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015: 137823
https://doi.org/10.1155/2015/137823 pmid: 25709154
56 Z Anvarian, K Mykytyn, S Mukhopadhyay, LB Pedersen, ST Christensen. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 2019; 15(4): 199–219
https://doi.org/10.1038/s41581-019-0116-9 pmid: 30733609
57 ER Moore, CR Jacobs. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36(2): 533–545
pmid: 28901584
58 M Liu, M Alharbi, D Graves, S Yang. IFT80 is required for fracture healing through controlling the regulation of TGF-β signaling in chondrocyte differentiation and function. J Bone Miner Res 2020; 35(3): 571–582
https://doi.org/10.1002/jbmr.3902 pmid: 31643106
59 RH Aspera-Werz, T Chen, S Ehnert, S Zhu, T Fröhlich, AK Nussler. Cigarette smoke induces the risk of metabolic bone diseases: transforming growth factor β signaling impairment via dysfunctional primary cilia affects migration, proliferation, and differentiation of human mesenchymal stem cells. Int J Mol Sci 2019; 20(12): 2915
https://doi.org/10.3390/ijms20122915 pmid: 31207955
60 YF Xie, WG Shi, J Zhou, YH Gao, SF Li, QQ Fang, MG Wang, HP Ma, JF Wang, CJ Xian, KM Chen. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 2016; 93: 22–32
https://doi.org/10.1016/j.bone.2016.09.008 pmid: 27622883
61 MN Labour, M Riffault, ST Christensen, DA Hoey. TGFβ1-induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner. Sci Rep 2016; 6(1): 35542
https://doi.org/10.1038/srep35542 pmid: 27748449
62 RE Uzbekov, DB Maurel, PC Aveline, S Pallu, CL Benhamou, GY Rochefort. Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc Microanal 2012; 18(6): 1430–1441
https://doi.org/10.1017/S1431927612013281 pmid: 23171702
63 D Sharma, C Ciani, PA Marin, JD Levy, SB Doty, SP Fritton. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 2012; 51(3): 488–497
https://doi.org/10.1016/j.bone.2012.05.014 pmid: 22634177
64 RP Main. Osteocytes and the bone lacunar-canalicular system: insights into bone biology and skeletal function using bone tissue microstructure. Int J Paleopathol 2017; 18: 44–46
https://doi.org/10.1016/j.ijpp.2017.05.002 pmid: 28888391
65 UA Gurkan, O Akkus. The mechanical environment of bone marrow: a review. Ann Biomed Eng 2008; 36(12): 1978–1991
https://doi.org/10.1007/s10439-008-9577-x pmid: 18855142
66 JF Whitfield. Primary cilium—is it an osteocyte’s strain-sensing flowmeter? J Cell Biochem 2003; 89(2): 233–237
https://doi.org/10.1002/jcb.10509 pmid: 12704786
67 FM Pavalko, SM Norvell, DB Burr, CH Turner, RL Duncan, JP Bidwell. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 2003; 88(1): 104–112
https://doi.org/10.1002/jcb.10284 pmid: 12461779
68 LF Bonewald. Mechanosensation and transduction in osteocytes. Bonekey Osteovision 2006; 3(10): 7–15
https://doi.org/10.1138/20060233 pmid: 17415409
69 E Stavenschi, MN Labour, DA Hoey. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: the effect of shear stress magnitude, frequency, and duration. J Biomech 2017; 55: 99–106
https://doi.org/10.1016/j.jbiomech.2017.02.002 pmid: 28256244
70 RC Riddle, AF Taylor, DC Genetos, HJ Donahue. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 2006; 290(3): C776–C784
https://doi.org/10.1152/ajpcell.00082.2005 pmid: 16267109
71 TA Metzger, TC Kreipke, TJ Vaughan, LM McNamara, GL Niebur. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng 2015; 137(1): 011006
https://doi.org/10.1115/1.4028985 pmid: 25363343
72 K Hu, H Sun, B Gui, C Sui. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed Pharmacother 2017; 91: 841–848
https://doi.org/10.1016/j.biopha.2017.04.094 pmid: 28501773
73 G Yourek, SM McCormick, JJ Mao, GC Reilly. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 2010; 5(5): 713–724
https://doi.org/10.2217/rme.10.60 pmid: 20868327
74 S Sonam, SR Sathe, EK Yim, MP Sheetz, CT Lim. Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Sci Rep 2016; 6(1): 20415
https://doi.org/10.1038/srep20415 pmid: 26879739
75 W Shi, Y Zhang, K Chen, J He, X Feng, W Wei, J Hua, J Wang. Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization. Bone 2020; 136: 115346
https://doi.org/10.1016/j.bone.2020.115346 pmid: 32240849
76 HA Praetorius, KR Spring. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 2001; 184(1): 71–79
https://doi.org/10.1007/s00232-001-0075-4 pmid: 11687880
77 Y Uda, E Azab, N Sun, C Shi, PD Pajevic. Osteocyte mechanobiology. Curr Osteoporos Rep 2017; 15(4): 318–325
https://doi.org/10.1007/s11914-017-0373-0 pmid: 28612339
78 JC Chen, DA Hoey, M Chua, R Bellon, CR Jacobs. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J 2016; 30(4): 1504–1511
https://doi.org/10.1096/fj.15-276402 pmid: 26675708
79 ER Moore, YX Zhu, HS Ryu, CR Jacobs. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Res Ther 2018; 9(1): 190
https://doi.org/10.1186/s13287-018-0930-1 pmid: 29996901
80 Y Kitase, L Barragan, H Qing, S Kondoh, JX Jiang, ML Johnson, LF Bonewald. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. J Bone Miner Res 2010; 25(12): 2657–2668
https://doi.org/10.1002/jbmr.168 pmid: 20578217
81 RM Delaine-Smith, A Sittichokechaiwut, GC Reilly. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 2014; 28(1): 430–439
https://doi.org/10.1096/fj.13-231894 pmid: 24097311
82 M Kaku, Y Komatsu. Functional diversity of ciliary proteins in bone development and disease. Curr Osteoporos Rep 2017; 15(2): 96–102
https://doi.org/10.1007/s11914-017-0351-6 pmid: 28236036
83 W Liu, S Xu, C Woda, P Kim, S Weinbaum, LM Satlin. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003; 285(5): F998–F1012
https://doi.org/10.1152/ajprenal.00067.2003 pmid: 12837680
84 SR McGlashan, MM Knight, TT Chowdhury, P Joshi, CG Jensen, S Kennedy, CA Poole. Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 2010; 34(5): 441–446
https://doi.org/10.1042/CBI20090094 pmid: 20100169
85 K Gardner, SP Arnoczky, M Lavagnino. Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 2011; 29(4): 582–587
https://doi.org/10.1002/jor.21271 pmid: 20957738
86 F Lin, T Hiesberger, K Cordes, AM Sinclair, LS Goldstein, S Somlo, P Igarashi. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 2003; 100(9): 5286–5291
https://doi.org/10.1073/pnas.0836980100 pmid: 12672950
87 N Qiu, Z Xiao, L Cao, MM Buechel, V David, E Roan, LD Quarles. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci 2012; 125(8): 1945–1957
https://doi.org/10.1242/jcs.095893 pmid: 22357948
88 E Kolpakova-Hart, M Jinnin, B Hou, N Fukai, BR Olsen. Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms. Dev Biol 2007; 309(2): 273–284
https://doi.org/10.1016/j.ydbio.2007.07.018 pmid: 17698054
89 S Temiyasathit, WJ Tang, P Leucht, CT Anderson, SD Monica, AB Castillo, JA Helms, T Stearns, CR Jacobs. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 2012; 7(3): e33368
https://doi.org/10.1371/journal.pone.0033368 pmid: 22428034
90 P Leucht, SD Monica, S Temiyasathit, K Lenton, A Manu, MT Longaker, CR Jacobs, RL Spilker, H Guo, JB Brunski, JA Helms. Primary cilia act as mechanosensors during bone healing around an implant. Med Eng Phys 2013; 35(3): 392–402
https://doi.org/10.1016/j.medengphy.2012.06.005 pmid: 22784673
91 H Li. TRP channel classification. Adv Exp Med Biol 2017; 976: 1–8
https://doi.org/10.1007/978-94-024-1088-4_1 pmid: 28508308
92 BJ Siroky, NK Kleene, SJ Kleene, CD Varnell Jr, RG Comer, J Liu, L Lu, NW Pachciarz, JJ Bissler, BP Dixon. Primary cilia regulate the osmotic stress response of renal epithelial cells through TRPM3. Am J Physiol Renal Physiol 2017; 312(4): F791–F805
https://doi.org/10.1152/ajprenal.00465.2015 pmid: 28122715
93 MA Corrigan, GP Johnson, E Stavenschi, M Riffault, MN Labour, DA Hoey. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium. Sci Rep 2018; 8(1): 3824
https://doi.org/10.1038/s41598-018-22174-3 pmid: 29491434
94 F Mizoguchi, A Mizuno, T Hayata, K Nakashima, S Heller, T Ushida, M Sokabe, N Miyasaka, M Suzuki, Y Ezura, M Noda. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 2008; 216(1): 47–53
https://doi.org/10.1002/jcp.21374 pmid: 18264976
95 R Masuyama, J Vriens, T Voets, Y Karashima, G Owsianik, R Vennekens, L Lieben, S Torrekens, K Moermans, A Vanden Bosch, R Bouillon, B Nilius, G Carmeliet. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 2008; 8(3): 257–265
https://doi.org/10.1016/j.cmet.2008.08.002 pmid: 18762026
96 MM Winslow, M Pan, M Starbuck, EM Gallo, L Deng, G Karsenty, GR Crabtree. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 2006; 10(6): 771–782
https://doi.org/10.1016/j.devcel.2006.04.006 pmid: 16740479
97 H Takayanagi, S Kim, T Koga, H Nishina, M Isshiki, H Yoshida, A Saiura, M Isobe, T Yokochi, J Inoue, EF Wagner, TW Mak, T Kodama, T Taniguchi. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3(6): 889–901
https://doi.org/10.1016/S1534-5807(02)00369-6 pmid: 12479813
98 CJ O’Conor, TM Griffin, W Liedtke, F Guilak. Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann Rheum Dis 2013; 72(2): 300–304
https://doi.org/10.1136/annrheumdis-2012-202272 pmid: 23178209
99 R Masuyama, A Mizuno, H Komori, H Kajiya, A Uekawa, H Kitaura, K Okabe, K Ohyama, T Komori. Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J Bone Miner Res 2012; 27(8): 1708–1721
https://doi.org/10.1002/jbmr.1629 pmid: 22492541
100 KL Lee, MD Guevarra, AM Nguyen, MC Chua, Y Wang, CR Jacobs. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 2015; 4(1): 7
https://doi.org/10.1186/s13630-015-0016-y pmid: 26029358
101 MN Phan, HA Leddy, BJ Votta, S Kumar, DS Levy, DB Lipshutz, SH Lee, W Liedtke, F Guilak. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 2009; 60(10): 3028–3037
https://doi.org/10.1002/art.24799 pmid: 19790068
102 SJ Han, JI Kim, KM Park. P26 Hydrogen sulfide elongates primary cilia in the kidney tubular epithelial cells. Nitric Oxide 2014; 39(Supplement): S24
https://doi.org/10.1016/j.niox.2014.03.076
103 K Miyoshi, K Kasahara, I Miyazaki, M Asanuma. Factors that influence primary cilium length. Acta Med Okayama 2011; 65(5): 279–285
pmid: 22037264
104 ZS Xiao, LD Quarles. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci 2010; 1192(1): 410–421
https://doi.org/10.1111/j.1749-6632.2009.05239.x pmid: 20392267
105 Q Li, N Montalbetti, Y Wu, A Ramos, MK Raychowdhury, XZ Chen, HF Cantiello. Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 2006; 281(49): 37566–37575
https://doi.org/10.1074/jbc.M603643200 pmid: 16950792
106 SM Nauli, FJ Alenghat, Y Luo, E Williams, P Vassilev, X Li, AE Elia, W Lu, EM Brown, SJ Quinn, DE Ingber, J Zhou. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33(2): 129–137
https://doi.org/10.1038/ng1076 pmid: 12514735
107 M Spasic, CR Jacobs. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol 2017; 71: 42–52
https://doi.org/10.1016/j.semcdb.2017.08.036 pmid: 28843978
108 N Qiu, L Cao, V David, LD Quarles, Z Xiao. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS One 2010; 5(12): e15240
https://doi.org/10.1371/journal.pone.0015240 pmid: 21151991
109 X Jin, AM Mohieldin, BS Muntean, JA Green, JV Shah, K Mykytyn, SM Nauli. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 2014; 71(11): 2165–2178
https://doi.org/10.1007/s00018-013-1483-1 pmid: 24104765
110 MM Saunders, J You, Z Zhou, Z Li, CE Yellowley, EL Kunze, CR Jacobs, HJ Donahue. Fluid flow-induced prostaglandin E2 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium. Bone 2003; 32(4): 350–356
https://doi.org/10.1016/S8756-3282(03)00025-5 pmid: 12689677
111 D Jing, G Shen, J Huang, K Xie, J Cai, Q Xu, X Wu, E Luo. Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 2010; 46(2): 487–495
https://doi.org/10.1016/j.bone.2009.09.021 pmid: 19782781
112 DE Garland, RH Adkins, NN Matsuno, CA Stewart. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J Spinal Cord Med 1999; 22(4): 239–245
https://doi.org/10.1080/10790268.1999.11719576 pmid: 10751127
113 FL Tabrah, P Ross, M Hoffmeier, F Gilbert Jr. Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 1998; 19(2): 75–78
https://doi.org/10.1002/(SICI)1521-186X(1998)19:2<75::AID-BEM3>3.0.CO;2-0 pmid: 9492162
114 RH Funk, T Monsees, N Ozkucur. Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 2009; 43(4): 177–264
https://doi.org/10.1016/j.proghi.2008.07.001 pmid: 19167986
115 JL Yan, J Zhou, HP Ma, XN Ma, YH Gao, WG Shi, QQ Fang, Q Ren, CJ Xian, KM Chen. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 2015; 404: 132–140
https://doi.org/10.1016/j.mce.2015.01.031 pmid: 25661534
116 YY Wang, XY Pu, WG Shi, QQ Fang, XR Chen, HR Xi, YH Gao, J Zhou, CJ Xian, KM Chen. Pulsed electromagnetic fields promote bone formation by activating the sAC-cAMP-PKA-CREB signaling pathway. J Cell Physiol 2019; 234(3): 2807–2821
https://doi.org/10.1002/jcp.27098 pmid: 30067871
117 W Shi, Y Gao, Y Wang, J Zhou, Z Wei, X Ma, H Ma, CJ Xian, J Wang, K Chen. The flavonol glycoside icariin promotes bone formation in growing rats by activating the cAMP signaling pathway in primary cilia of osteoblasts. J Biol Chem 2017; 292(51): 20883–20896
https://doi.org/10.1074/jbc.M117.809517 pmid: 29089388
118 J Zhou, YH Gao, BY Zhu, JL Shao, HP Ma, CJ Xian, KM Chen. Sinusoidal electromagnetic fields increase peak bone mass in rats by activating Wnt10b/-catenin in primary cilia of osteoblasts. J Bone Miner Res 2019; 34(7): 1336–1351
119 SD McCullen, JP McQuilling, RM Grossfeld, JL Lubischer, LI Clarke, EG Loboa. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng Part C Methods 2010; 16(6): 1377–1386
https://doi.org/10.1089/ten.tec.2009.0751 pmid: 20367249
120 S Sun, Y Liu, S Lipsky, M Cho. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 2007; 21(7): 1472–1480
https://doi.org/10.1096/fj.06-7153com pmid: 17264165
121 L Khatib, DE Golan, M Cho. Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J 2004; 18(15): 1903–1905
https://doi.org/10.1096/fj.04-1814fje pmid: 15385433
122 J Zhang, M Li, ET Kang, KG Neoh. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater 2016; 32: 46–56
https://doi.org/10.1016/j.actbio.2015.12.024 pmid: 26703122
123 J Xu, W Wang, CC Clark, CT Brighton. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartilage 2009; 17(3): 397–405
https://doi.org/10.1016/j.joca.2008.07.001 pmid: 18993082
124 JJ Bergh, Y Xu, MC Farach-Carson. Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. Endocrinology 2004; 145(1): 426–436
https://doi.org/10.1210/en.2003-0319 pmid: 14525906
125 JF Reiter, MR Leroux. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 2017; 18(9): 533–547
https://doi.org/10.1038/nrm.2017.60 pmid: 28698599
126 G Novarino, N Akizu, JG Gleeson. Modeling human disease in humans: the ciliopathies. Cell 2011; 147(1): 70–79
https://doi.org/10.1016/j.cell.2011.09.014 pmid: 21962508
127 G Wheway, DA Parry, CA Johnson. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10(1): 69–85
https://doi.org/10.4161/org.26710 pmid: 24162842
128 AM Waters, PL Beales. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 2011; 26(7): 1039–1056
https://doi.org/10.1007/s00467-010-1731-7 pmid: 21210154
129 I Perrault, S Saunier, S Hanein, E Filhol, AA Bizet, F Collins, MA Salih, S Gerber, N Delphin, K Bigot, C Orssaud, E Silva, V Baudouin, MM Oud, N Shannon, M Le Merrer, O Roche, C Pietrement, J Goumid, C Baumann, C Bole-Feysot, P Nitschke, M Zahrate, P Beales, HH Arts, A Munnich, J Kaplan, C Antignac, V Cormier-Daire, JM Rozet. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 2012; 90(5): 864–870
https://doi.org/10.1016/j.ajhg.2012.03.006 pmid: 22503633
130 S Rix, A Calmont, PJ Scambler, PL Beales. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet 2011; 20(7): 1306–1314
https://doi.org/10.1093/hmg/ddr013 pmid: 21227999
131 N Dagoneau, M Goulet, D Geneviève, Y Sznajer, J Martinovic, S Smithson, C Huber, G Baujat, E Flori, L Tecco, D Cavalcanti, AL Delezoide, V Serre, M Le Merrer, A Munnich, V Cormier-Daire. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 2009; 84(5): 706–711
https://doi.org/10.1016/j.ajhg.2009.04.016 pmid: 19442771
132 RM Saldino, CD Noonan. Severe thoracic dystrophy with striking micromelia, abnormal osseous development, including the spine, and multiple visceral anomalies. Am J Roentgenol Radium Ther Nucl Med 1972; 114(2): 257–263
https://doi.org/10.2214/ajr.114.2.257 pmid: 5058513
133 SS Yang, JA Roth, LO Langer Jr. Short rib syndrome Beemer-Langer type with polydactyly: a multiple congenital anomalies syndrome. Am J Med Genet 1991; 39(3): 243–246
https://doi.org/10.1002/ajmg.1320390302 pmid: 1867272
134 NH Elçioglu, CM Hall. Diagnostic dilemmas in the short rib-polydactyly syndrome group. Am J Med Genet 2002; 111(4): 392–400
https://doi.org/10.1002/ajmg.10562 pmid: 12210298
135 F Majewski, RA Pfeiffer, W Lenz, R Müller, G Feil, R Seiler. Polysyndactyly, short limbs, and genital malformations—a new syndrome? Z Kinderheilkd 1971; 111(2): 118–138 (in German)
https://doi.org/10.1007/BF00446428 pmid: 4331366
136 P Naumoff, LW Young, J Mazer, AJ Amortegui. Short rib-polydactyly syndrome type 3. Radiology 1977; 122(2): 443–447
https://doi.org/10.1148/122.2.443 pmid: 834893
137 I Meizner, Y Barnhard. Short-rib polydactyly syndrome (SRPS) type III diagnosed during routine prenatal ultrasonographic screening. A case report. Prenat Diagn 1995; 15(7): 665–668
https://doi.org/10.1002/pd.1970150713 pmid: 8532628
138 D Cideciyan, MM Rodriguez, RL Haun, GE Abdenour, JH Bruce. New findings in short rib syndrome. Am J Med Genet 1993; 46(3): 255–259
https://doi.org/10.1002/ajmg.1320460302 pmid: 8488867
139 M Schmidts, HH Arts, EMHF Bongers, Z Yap, MM Oud, D Antony, L Duijkers, RD Emes, J Stalker, JBL Yntema, V Plagnol, A Hoischen, C Gilissen, E Forsythe, E Lausch, JA Veltman, N Roeleveld, A Superti-Furga, A Kutkowska-Kazmierczak, EJ Kamsteeg, N Elçioğlu, MC van Maarle, LM Graul-Neumann, K Devriendt, SF Smithson, D Wellesley, NE Verbeek, RCM Hennekam, H Kayserili, PJ Scambler, PL Beales; UK10K, NV Knoers, R Roepman, HM Mitchison. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet 2013; 50(5): 309–323
https://doi.org/10.1136/jmedgenet-2012-101284 pmid: 23456818
140 G Baujat, C Huber, J El Hokayem, R Caumes, C Do Ngoc Thanh, A David, AL Delezoide, A Dieux-Coeslier, B Estournet, C Francannet, H Kayirangwa, F Lacaille, M Le Bourgeois, J Martinovic, R Salomon, S Sigaudy, V Malan, A Munnich, M Le Merrer, KH Le Quan Sang, V Cormier-Daire. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet 2013; 50(2): 91–98
https://doi.org/10.1136/jmedgenet-2012-101282 pmid: 23339108
141 M Schmidts, V Frank, T Eisenberger, S Al Turki, AA Bizet, D Antony, S Rix, C Decker, N Bachmann, M Bald, T Vinke, B Toenshoff, N Di Donato, T Neuhann, JL Hartley, ER Maher, R Bogdanović, A Peco-Antić, C Mache, ME Hurles, I Joksić, M Guć-Šćekić, J Dobricic, M Brankovic-Magic, HJ Bolz, GJ Pazour, PL Beales, PJ Scambler, S Saunier, HM Mitchison, C Bergmann. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat 2013; 34(5): 714–724
https://doi.org/10.1002/humu.22294 pmid: 23418020
142 B Tüysüz, S Bariş, F Aksoy, R Madazli, S Ungür, L Sever. Clinical variability of asphyxiating thoracic dystrophy (Jeune) syndrome: Evaluation and classification of 13 patients. Am J Med Genet A 2009; 149A(8): 1727–1733
https://doi.org/10.1002/ajmg.a.32962 pmid: 19610081
143 JA Jonassen, J SanAgustin, SP Baker, GJ Pazour. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol 2012; 23(4): 641–651
https://doi.org/10.1681/ASN.2011080829 pmid: 22282595
144 M Schmidts, J Vodopiutz, S Christou-Savina, CR Cortés, AM McInerney-Leo, RD Emes, HH Arts, B Tüysüz, J D’Silva, PJ Leo, TC Giles, MM Oud, JA Harris, M Koopmans, M Marshall, N Elçioglu, A Kuechler, D Bockenhauer, AT Moore, LC Wilson, AR Janecke, ME Hurles, W Emmet, B Gardiner, B Streubel, B Dopita, A Zankl, H Kayserili, PJ Scambler, MA Brown, PL Beales, C; UK10K, Wicking EL Duncan, HM Mitchison. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 2013; 93(5): 932–944
https://doi.org/10.1016/j.ajhg.2013.10.003 pmid: 24183451
145 F Oberklaid, DM Danks, V Mayne, P Campbell. Asphyxiating thoracic dysplasia. Clinical, radiological, and pathological information on 10 patients. Arch Dis Child 1977; 52(10): 758–765
https://doi.org/10.1136/adc.52.10.758 pmid: 931421
146 RK Beals, RG Weleber. Conorenal dysplasia: a syndrome of cone-shaped epiphysis, renal disease in childhood, retinitis pigmentosa and abnormality of the proximal femur. Am J Med Genet A 2007; 143A(20): 2444–2447
https://doi.org/10.1002/ajmg.a.31948 pmid: 17853467
147 T Eke, G Woodruff, ID Young. A new oculorenal syndrome: retinal dystrophy and tubulointerstitial nephropathy in cranioectodermal dysplasia. Br J Ophthalmol 1996; 80(5): 490–491
https://doi.org/10.1136/bjo.80.5.490 pmid: 8695580
148 J Walczak-Sztulpa, J Eggenschwiler, D Osborn, DA Brown, F Emma, C Klingenberg, RC Hennekam, G Torre, M Garshasbi, A Tzschach, M Szczepanska, M Krawczynski, J Zachwieja, D Zwolinska, PL Beales, HH Ropers, A Latos-Bielenska, AW Kuss. Cranioectodermal dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 2010; 86(6): 949–956
https://doi.org/10.1016/j.ajhg.2010.04.012 pmid: 20493458
149 C Bredrup, S Saunier, MM Oud, T Fiskerstrand, A Hoischen, D Brackman, SM Leh, M Midtbø, E Filhol, C Bole-Feysot, P Nitschké, C Gilissen, OH Haugen, JS Sanders, I Stolte-Dijkstra, DA Mans, EJ Steenbergen, BC Hamel, M Matignon, R Pfundt, C Jeanpierre, H Boman, E Rødahl, JA Veltman, PM Knappskog, NV Knoers, R Roepman, HH Arts. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 2011; 89(5): 634–643
https://doi.org/10.1016/j.ajhg.2011.10.001 pmid: 22019273
150 E Lee, E Sivan-Loukianova, DF Eberl, MJ Kernan. An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 2008; 18(24): 1899–1906
https://doi.org/10.1016/j.cub.2008.11.020 pmid: 19097904
151 AE Merrill, B Merriman, C Farrington-Rock, N Camacho, ET Sebald, VA Funari, MJ Schibler, MH Firestein, ZA Cohn, MA Priore, AK Thompson, DL Rimoin, SF Nelson, DH Cohn, D Krakow. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet 2009; 84(4): 542–549
https://doi.org/10.1016/j.ajhg.2009.03.015 pmid: 19361615
152 ME Porter, R Bower, JA Knott, P Byrd, W Dentler. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 1999; 10(3): 693–712
https://doi.org/10.1091/mbc.10.3.693 pmid: 10069812
153 KA Miller, CJ Ah-Cann, MF Welfare, TY Tan, K Pope, G Caruana, ML Freckmann, R Savarirayan, JF Bertram, MS Dobbie, JF Bateman, PG Farlie. Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome. PLoS Genet 2013; 9(8): e1003746
https://doi.org/10.1371/journal.pgen.1003746 pmid: 24009529
154 PL Beales, E Bland, JL Tobin, C Bacchelli, B Tuysuz, J Hill, S Rix, CG Pearson, M Kai, J Hartley, C Johnson, M Irving, N Elcioglu, M Winey, M Tada, PJ Scambler. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 2007; 39(6): 727–729
https://doi.org/10.1038/ng2038 pmid: 17468754
155 EE Davis, Q Zhang, Q Liu, BH Diplas, LM Davey, J Hartley, C Stoetzel, K Szymanska, G Ramaswami, CV Logan, DM Muzny, AC Young, DA Wheeler, P Cruz, M Morgan, LR Lewis, P Cherukuri, B Maskeri, NF Hansen, JC Mullikin, RW Blakesley, GG; NISC Comparative Sequencing Program, Bouffard G Gyapay, S Rieger, B Tönshoff, I Kern, NA Soliman, TJ Neuhaus, KJ Swoboda, H Kayserili, TE Gallagher, RA Lewis, C Bergmann, EA Otto, S Saunier, PJ Scambler, PL Beales, JG Gleeson, ER Maher, T Attié-Bitach, H Dollfus, CA Johnson, ED Green, RA Gibbs, F Hildebrandt, EA Pierce, N Katsanis, N Katsanis. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 2011; 43(3): 189–196
https://doi.org/10.1038/ng.756 pmid: 21258341
156 J Halbritter, AA Bizet, M Schmidts, JD Porath, DA Braun, HY Gee, AM McInerney-Leo, P Krug, E Filhol, EE Davis, R Airik, PG Czarnecki, AM Lehman, P Trnka, P Nitschké, C Bole-Feysot, M Schueler, B Knebelmann, S Burtey, AJ Szabó, K Tory, PJ Leo, B Gardiner, FA McKenzie, A Zankl, MA Brown, JL Hartley, ER Maher, C Li, MR Leroux, PJ Scambler, SH Zhan, SJ Jones, H Kayserili, B Tuysuz, KN Moorani, A Constantinescu, ID Krantz, BS Kaplan, JV; UK10K Consortium, Shah TW Hurd, D Doherty, N Katsanis, EL Duncan, EA Otto, PL Beales, HM Mitchison, S Saunier, F Hildebrandt. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 2013; 93(5): 915–925
https://doi.org/10.1016/j.ajhg.2013.09.012 pmid: 24140113
157 D Tao, H Xue, C Zhang, G Li, Y Sun. The role of IFT140 in osteogenesis of adult mice long bone. J Histochem Cytochem 2019; 67(8): 601–611
https://doi.org/10.1369/0022155419847188 pmid: 31034313
158 D Gao, R Wang, B Li, Y Yang, Z Zhai, DY Chen. WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. Cell Mol Life Sci 2009; 66(15): 2573–2584
https://doi.org/10.1007/s00018-009-0059-6 pmid: 19521662
159 BL Krock, I Mills-Henry, BD Perkins. Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci 2009; 50(11): 5463–5471
https://doi.org/10.1167/iovs.09-3828 pmid: 19474410
160 VL Ruiz-Perez, HJ Blair, ME Rodriguez-Andres, MJ Blanco, A Wilson, YN Liu, C Miles, H Peters, JA Goodship. Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development 2007; 134(16): 2903–2912
https://doi.org/10.1242/dev.007542 pmid: 17660199
161 JA Caparrós-Martín, M Valencia, E Reytor, M Pacheco, M Fernandez, A Perez-Aytes, E Gean, P Lapunzina, H Peters, JA Goodship, VL Ruiz-Perez. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum Mol Genet 2013; 22(1): 124–139
https://doi.org/10.1093/hmg/dds409 pmid: 23026747
162 ML Martik, ME Bronner. Regulatory logic underlying diversification of the neural crest. Trends Genet 2017; 33(10): 715–727
https://doi.org/10.1016/j.tig.2017.07.015 pmid: 28851604
163 CR Cortés, V Metzis, C Wicking. Unmasking the ciliopathies: craniofacial defects and the primary cilium. Wiley Interdiscip Rev Dev Biol 2015; 4(6): 637–653
https://doi.org/10.1002/wdev.199 pmid: 26173831
164 SF Wang, TJ Kowal, K Ning, EB Koo, AY Wu, VB Mahajan, Y Sun. Review of ocular manifestations of Joubert syndrome. Genes (Basel) 2018; 9(12): 605
https://doi.org/10.3390/genes9120605 pmid: 30518138
165 E Molinari, SA Ramsbottom, S Srivastava, P Booth, S Alkanderi, SM McLafferty, LA Devlin, K White, M Gunay-Aygun, CG Miles, JA Sayer. Targeted exon skipping rescues ciliary protein composition defects in Joubert syndrome patient fibroblasts. Sci Rep 2019; 9(1): 10828
https://doi.org/10.1038/s41598-019-47243-z pmid: 31346239
166 E Del Giudice, M Macca, F Imperati, A D’Amico, P Parent, L Pasquier, V Layet, S Lyonnet, V Stamboul-Darmency, C Thauvin-Robinet, B; Franco Oral-Facial-Digital Type I (OFD1) Collaborative Group. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study. Orphanet J Rare Dis 2014; 9(1): 74
https://doi.org/10.1186/1750-1172-9-74 pmid: 24884629
167 V Singla, M Romaguera-Ros, JM Garcia-Verdugo, JF Reiter. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell 2010; 18(3): 410–424
https://doi.org/10.1016/j.devcel.2009.12.022 pmid: 20230748
168 MI Ferrante, G Giorgio, SA Feather, A Bulfone, V Wright, M Ghiani, A Selicorni, L Gammaro, F Scolari, AS Woolf, O Sylvie, L Bernard, S Malcolm, R Winter, A Ballabio, B Franco. Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 2001; 68(3): 569–576
https://doi.org/10.1086/318802 pmid: 11179005
169 WM AlKattan, MM Al-Qattan, SA Bafaqeeh. The pathogenesis of the clinical features of oral-facial-digital syndrome type I. Saudi Med J 2015; 36(11): 1277–1284
https://doi.org/10.15537/smj.2015.11.12446 pmid: 26593159
170 MI Ferrante, A Zullo, A Barra, S Bimonte, N Messaddeq, M Studer, P Dollé, B Franco. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 2006; 38(1): 112–117
https://doi.org/10.1038/ng1684 pmid: 16311594
171 M Romani, F Mancini, A Micalizzi, A Poretti, E Miccinilli, P Accorsi, E Avola, E Bertini, R Borgatti, R Romaniello, S Ceylaner, G Coppola, S D’Arrigo, L Giordano, AR Janecke, M Lituania, K Ludwig, L Martorell, T Mazza, S Odent, L Pinelli, P Poo, M Santucci, S Signorini, A Simonati, R Spiegel, F Stanzial, M Steinlin, B Tabarki, NI Wolf, F Zibordi, E Boltshauser, EM Valente. Oral-facial-digital syndrome type VI: is C5orf42 really the major gene? Hum Genet 2015; 134(1): 123–126
https://doi.org/10.1007/s00439-014-1508-3 pmid: 25407461
172 A Poretti, G Vitiello, RC Hennekam, F Arrigoni, E Bertini, R Borgatti, F Brancati, S D’Arrigo, F Faravelli, L Giordano, TA Huisman, M Iannicelli, G Kluger, M Kyllerman, M Landgren, MM Lees, L Pinelli, R Romaniello, I Scheer, CE Schwarz, R Spiegel, D Tibussek, EM Valente, E Boltshauser. Delineation and diagnostic criteria of oral-facial-digital syndrome type VI. Orphanet J Rare Dis 2012; 7(1): 4
https://doi.org/10.1186/1750-1172-7-4 pmid: 22236771
173 R Asadollahi, JE Strauss, M Zenker, O Beuing, S Edvardson, O Elpeleg, TM Strom, P Joset, D Niedrist, C Otte, B Oneda, P Boonsawat, S Azzarello-Burri, D Bartholdi, M Papik, M Zweier, C Haas, AB Ekici, A Baumer, E Boltshauser, K Steindl, M Nothnagel, A Schinzel, ET Stoeckli, A Rauch. Clinical and experimental evidence suggest a link between KIF7 and C5orf42-related ciliopathies through Sonic Hedgehog signaling. Eur J Hum Genet 2018; 26(2): 197–209
https://doi.org/10.1038/s41431-017-0019-9 pmid: 29321670
174 JL Tobin, M Di Franco, E Eichers, H May-Simera, M Garcia, J Yan, R Quinlan, MJ Justice, RC Hennekam, J Briscoe, M Tada, R Mayor, AJ Burns, JR Lupski, P Hammond, PL Beales. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet–Biedl syndrome. Proc Natl Acad Sci U S A 2008; 105(18): 6714–6719
https://doi.org/10.1073/pnas.0707057105 pmid: 18443298
175 MK Borgström, R Riise, K Tornqvist, L Granath. Anomalies in the permanent dentition and other oral findings in 29 individuals with Laurence–Moon–Bardet–Biedl syndrome. J Oral Pathol Med 1996; 25(2): 86–89
https://doi.org/10.1111/j.1600-0714.1996.tb00198.x pmid: 8667262
176 PL Beales, N Elcioglu, AS Woolf, D Parker, FA Flinter. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 1999; 36(6): 437–446
pmid: 10874630
177 EM Andersson, S Axelsson, LF Gjølstad, K Storhaug. Taurodontism: a minor diagnostic criterion in Laurence–Moon/Bardet–Biedl syndromes. Acta Odontol Scand 2013; 71(6): 1671–1674
https://doi.org/10.3109/00016357.2013.794389 pmid: 23638763
178 E Heon, G Kim, S Qin, JE Garrison, E Tavares, A Vincent, N Nuangchamnong, CA Scott, DC Slusarski, VC Sheffield. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet 2016; 25(11): 2283–2294
https://doi.org/10.1093/hmg/ddw096 pmid: 27008867
179 WG Ludlam, T Aoba, J Cuéllar, MT Bueno-Carrasco, A Makaju, JD Moody, S Franklin, JM Valpuesta, BM Willardson. Molecular architecture of the Bardet-Biedl syndrome protein 2-7-9 subcomplex. J Biol Chem 2019; 294(44): 16385–16399
https://doi.org/10.1074/jbc.RA119.010150 pmid: 31530639
180 MK Tayeh, HJ Yen, JS Beck, CC Searby, TA Westfall, H Griesbach, VC Sheffield, DC Slusarski. Genetic interaction between Bardet–Biedl syndrome genes and implications for limb patterning. Hum Mol Genet 2008; 17(13): 1956–1967
https://doi.org/10.1093/hmg/ddn093 pmid: 18381349
181 Q Zhang, S Seo, K Bugge, EM Stone, VC Sheffield. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum Mol Genet 2012; 21(9): 1945–1953
https://doi.org/10.1093/hmg/dds004 pmid: 22228099
182 M Valencia, P Lapunzina, D Lim, R Zannolli, D Bartholdi, B Wollnik, O Al-Ajlouni, SS Eid, H Cox, S Buoni, J Hayek, ML Martinez-Frias, PA Antonio, S Temtamy, M Aglan, JA Goodship, VL Ruiz-Perez. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling. Hum Mutat 2009; 30(12): 1667–1675
https://doi.org/10.1002/humu.21117 pmid: 19810119
183 W Shen, D Han, J Zhang, H Zhao, H Feng. Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family. Am J Med Genet Part A 2011; 155 (9): 2131–2136
https://doi.org/10.1002/ajmg.a.34125 pmid: 21815252
184 VL Ruiz-Perez, SE Ide, TM Strom, B Lorenz, D Wilson, K Woods, L King, C Francomano, P Freisinger, S Spranger, B Marino, B Dallapiccola, M Wright, T Meitinger, MH Polymeropoulos, J Goodship. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat Genet 2000; 24(3): 283–286
https://doi.org/10.1038/73508 pmid: 10700184
185 G Baujat, M Le Merrer. Ellis-van Creveld syndrome. Orphanet J Rare Dis 2007; 2(1): 27
https://doi.org/10.1186/1750-1172-2-27 pmid: 17547743
186 M Hampl, P Cela, HL Szabo-Rogers, M Kunova Bosakova, H Dosedelova, P Krejci, M Buchtova. Role of primary cilia in odontogenesis. J Dent Res 2017; 96(9): 965–974
https://doi.org/10.1177/0022034517713688 pmid: 28605602
187 M Nakatomi, M Hovorakova, A Gritli-Linde, HJ Blair, K MacArthur, M Peterka, H Lesot, R Peterkova, VL Ruiz-Perez, JA Goodship, H Peters. Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res 2013; 92(3): 222–228
https://doi.org/10.1177/0022034512471826 pmid: 23315474
188 CJ Curry, BD Hall. Polydactyly, conical teeth, nail dysplasia, and short limbs: a new autosomal dominant malformation syndrome. Birth Defects Orig Artic Ser 1979; 15(5B): 253–263
pmid: 526581
189 M Roubicek, J Spranger. Weyers acrodental dysostosis in a family. Clin Genet 1984; 26(6): 587–590
https://doi.org/10.1111/j.1399-0004.1984.tb01108.x pmid: 6499270
190 X Ye, G Song, M Fan, L Shi, EW Jabs, S Huang, R Guo, Z Bian. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis. Hum Genet 2006; 119(1-2): 199–205
https://doi.org/10.1007/s00439-005-0129-2 pmid: 16404586
191 A Veis. Mineral-matrix interactions in bone and dentin. J Bone Miner Res 1993; 8(Suppl 2): S493–S497
https://doi.org/10.1002/jbmr.5650081312 pmid: 8122518
192 M Hisamoto, M Goto, M Muto, J Nio-Kobayashi, T Iwanaga, A Yokoyama. Developmental changes in primary cilia in the mouse tooth germ and oral cavity. Biomed Res 2016; 37(3): 207–214
https://doi.org/10.2220/biomedres.37.207 pmid: 27356608
193 D Kero, J Novakovic, K Vukojevic, J Petricevic, D Kalibovic Govorko, D Biocina-Lukenda, M Saraga-Babic. Expression of Ki-67, Oct-4, g-tubulin and α-tubulin in human tooth development. Arch Oral Biol 2014; 59(11): 1119–1129
https://doi.org/10.1016/j.archoralbio.2014.05.025 pmid: 25062118
194 SY Jung, DW Green, HS Jung, EJ Kim. Cell cycle of the enamel knot during tooth morphogenesis. Histochem Cell Biol 2018; 149(6): 655–659
https://doi.org/10.1007/s00418-018-1666-9 pmid: 29651535
195 J Jernvall, P Kettunen, I Karavanova, LB Martin, I Thesleff. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 1994; 38(3): 463–469
pmid: 7848830
196 B Thivichon-Prince, ML Couble, A Giamarchi, P Delmas, B Franco, L Romio, T Struys, I Lambrichts, D Ressnikoff, H Magloire, F Bleicher. Primary cilia of odontoblasts: possible role in molar morphogenesis. J Dent Res 2009; 88(10): 910–915
https://doi.org/10.1177/0022034509345822 pmid: 19783798
197 X Yuan, M Liu, X Cao, S Yang. Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int J Biol Sci 2019; 15(10): 2087–2099
https://doi.org/10.7150/ijbs.27231 pmid: 31592124
198 HR Dassule, P Lewis, M Bei, R Maas, AP McMahon. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 2000; 127(22): 4775–4785
pmid: 11044393
199 A Ohazama, CJ Haycraft, M Seppala, J Blackburn, S Ghafoor, M Cobourne, DC Martinelli, CM Fan, R Peterkova, H Lesot, BK Yoder, PT Sharpe. Primary cilia regulate Shh activity in the control of molar tooth number. Development 2009; 136(6): 897–903
https://doi.org/10.1242/dev.027979 pmid: 19211681
200 B Liu, S Chen, D Cheng, W Jing, JA Helms. Primary cilia integrate hedgehog and Wnt signaling during tooth development. J Dent Res 2014; 93(5): 475–482
https://doi.org/10.1177/0022034514528211 pmid: 24659776
201 G Li, M Liu, S Zhang, H Wan, Q Zhang, R Yue, X Yan, X Wang, Z Wang, Y Sun. Essential role of IFT140 in promoting dentinogenesis. J Dent Res 2018; 97(4): 423–431
https://doi.org/10.1177/0022034517741283 pmid: 29195058
202 X Li, S Yang, L Han, K Mao, S Yang. Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB J 2020; 34(5): 6741–6756
https://doi.org/10.1096/fj.201902838R pmid: 32227389
203 A Kitamura, M Kawasaki, K Kawasaki, F Meguro, A Yamada, T Nagai, Y Kodama, S Trakanant, PT Sharpe, T Maeda, R Takagi, A Ohazama. Ift88 is involved in mandibular development. J Anat 2020; 236(2): 317–324
https://doi.org/10.1111/joa.13096 pmid: 31657471
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed