Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain
Jianhua Mao1(), Yun Wang1,2, Wei Zhang1, Yan Shen3, Guowei Zhang4, Wenda Xi5, Qiang Wang1, Zheng Ruan1, Jin Wang2, Xiaodong Xi1()
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 3. Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 4. The School of Medicine, Hangzhou Normal University, Hangzhou 310036, China 5. Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Conventional therapies for hemophilia A (HA) are prophylactic or on-demand intravenous FVIII infusions. However, they are expensive and inconvenient to perform. Thus, better strategies for HA treatment must be developed. In this study, a recombinant FVIII cDNA encoding a human/rat hybrid FVIII with an enhanced procoagulant potential for adeno-associated virus (AAV)-delivered gene therapy was developed. Plasmids containing human FVIII heavy chain (hHC), human light chain (hLC), and rat light chain (rLC) were transfected into cells and hydrodynamically injected into HA mice. Purified AAV viruses were intravenously injected into HA mice at two doses. Results showed that the hHC+ rLC protein had a higher activity than the hHC+ hLC protein at comparable expression levels. The specific activity of hHC+ rLC was about 4- to 8-fold higher than that of their counterparts. Hydrodynamic injection experiments obtained consistent results. Notably, the HA mice undergoing the AAV-delivered hHC+ rLC treatment exhibited a visibly higher activity than those treated with hHC+ hLC, and the therapeutic effects lasted for up to 40 weeks. In conclusion, the application of the hybrid FVIII (hHC+ rLC) via an AAV-delivered gene therapy substantially improved the hemorrhagic diathesis of the HA mice. These data might be of help to the development of optimized FVIII expression cassette for HA gene therapy.
. [J]. Frontiers of Medicine, 2022, 16(4): 584-595.
Jianhua Mao, Yun Wang, Wei Zhang, Yan Shen, Guowei Zhang, Wenda Xi, Qiang Wang, Zheng Ruan, Jin Wang, Xiaodong Xi. Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain. Front. Med., 2022, 16(4): 584-595.
M Makris, J Oldenburg, EP Mauser-Bunschoten, K Peerlinck, G Castaman, K; subcommittee on Factor VIII, Factor IX and Rare Bleeding Disorders. FijnvandraatThe definition, diagnosis and management of mild hemophilia A: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16(12): 2530–2533 https://doi.org/10.1111/jth.14315
pmid: 30430726
J Lai, C Hough, J Tarrant, D Lillicrap. Biological considerations of plasma-derived and recombinant factor VIII immunogenicity. Blood 2017; 129(24): 3147–3154 https://doi.org/10.1182/blood-2016-11-750885
pmid: 28432221
C Borsotti, A Follenzi. New technologies in gene therapy for inducing immune tolerance in hemophilia A. Expert Rev Clin Immunol 2018; 14(12): 1013–1019 https://doi.org/10.1080/1744666X.2018.1539667
pmid: 30345839
7
A Asokan, DV Schaffer, RJ Samulski. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 2012; 20(4): 699–708 https://doi.org/10.1038/mt.2011.287
pmid: 22273577
8
AK Zaiss, Q Liu, GP Bowen, NC Wong, JS Bartlett, DA Muruve. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76(9): 4580–4590 https://doi.org/10.1128/JVI.76.9.4580-4590.2002
pmid: 11932423
9
AC Nathwani, EGD Tuddenham, S Rangarajan, C Rosales, J McIntosh, DC Linch, P Chowdary, A Riddell, AJ Pie, C Harrington, J O’Beirne, K Smith, J Pasi, B Glader, P Rustagi, CYC Ng, MA Kay, J Zhou, Y Spence, CL Morton, J Allay, J Coleman, S Sleep, JM Cunningham, D Srivastava, E Basner-Tschakarjan, F Mingozzi, KA High, JT Gray, UM Reiss, AW Nienhuis, AM Davidoff. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365(25): 2357–2365 https://doi.org/10.1056/NEJMoa1108046
pmid: 22149959
10
S Rangarajan, L Walsh, W Lester, D Perry, B Madan, M Laffan, H Yu, C Vettermann, GF Pierce, WY Wong, KJ Pasi. AAV5-Factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377(26): 2519–2530 https://doi.org/10.1056/NEJMoa1708483
pmid: 29224506
AC Nathwani, AW Nienhuis, AM Davidoff. Current status of gene therapy for hemophilia. Curr Hematol Rep 2003; 2(4): 319–327
pmid: 12901329
13
B Nambiar, C C Sookdeo, P Berthelette, R Jackson, S Piraino, B Burnham, S Nass, D Souza, CR O’Riordan, KA Vincent, SH Cheng, D Armentano, S Kyostio-Moore. Characteristics of minimally oversized adeno-associated virus vectors encoding human factor VIII generated using producer cell lines and triple transfection. Hum Gene Ther Methods 2017; 28(1): 23–38 https://doi.org/10.1089/hgtb.2016.124
pmid: 28166648
14
C Mah, R Sarkar, I Zolotukhin, M Schleissing, X Xiao, HH Kazazian, BJ Byrne. Dual vectors expressing murine factor VIII result in sustained correction of hemophilia A mice. Hum Gene Ther 2003; 14(2): 143–152 https://doi.org/10.1089/104303403321070838
pmid: 12614565
15
Q Wang, B Dong, J Firrman, S Roberts, AR Moore, W Cao, Y Diao, P Kapranov, R Xu, W Xiao. Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery. Hum Gene Ther Methods 2014; 25(4): 261–268 https://doi.org/10.1089/hgtb.2014.093
pmid: 25093498
SA Shestopal, JJ Hao, E Karnaukhova, Y Liang, MV Ovanesov, M Lin, JH Kurasawa, TK Lee, JH Mcvey, AG Sarafanov. Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 2017; 15(4): 709–720 https://doi.org/10.1111/jth.13632
pmid: 28109042
18
J McIntosh, PJ Lenting, C Rosales, D Lee, S Rabbanian, D Raj, N Patel, EGD Tuddenham, OD Christophe, JH McVey, S Waddington, AW Nienhuis, JT Gray, P Fagone, F Mingozzi, SZ Zhou, KA High, M Cancio, CYC Ng, J Zhou, CL Morton, AM Davidoff, AC Nathwani. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood 2013; 121(17): 3335–3344 https://doi.org/10.1182/blood-2012-10-462200
pmid: 23426947
19
GN Nguyen, LA George, JI Siner, RJ Davidson, CB Zander, XL Zheng, VR Arruda, RM Camire, DE Sabatino. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A. J Thromb Haemost 2017; 15(1): 110–121 https://doi.org/10.1111/jth.13543
pmid: 27749002
20
MP Kosloski, KA Shetty, H Wakabayashi, PJ Fay, SV Balu-Iyer. Effects of replacement of factor VIII amino acids Asp519 and Glu665 with Val on plasma survival and efficacy in vivo. AAPS J 2014; 16(5): 1038–1045 https://doi.org/10.1208/s12248-014-9627-2
pmid: 24934295
21
CB Doering, JF Healey, ET Parker, RT Barrow, P Lollar. High level expression of recombinant porcine coagulation factor VIII. J Biol Chem 2002; 277(41): 38345–38349 https://doi.org/10.1074/jbc.M206959200
pmid: 12138172
22
CB Doering, JF Healey, ET Parker, RT Barrow, P Lollar. Identification of porcine coagulation factor VIII domains responsible for high level expression via enhanced secretion. J Biol Chem 2004; 279(8): 6546–6552 https://doi.org/10.1074/jbc.M312451200
pmid: 14660593
23
Q Wang, B Dong, J Firrman, W Wu, S Roberts, AR Moore, LS Liu, MPS Chin, Y Diao, J Kost, W Xiao. Evaluation of the biological differences of canine and human factor VIII in gene delivery: implications in human hemophilia treatment. Gene Ther 2016; 23(7): 597–605 https://doi.org/10.1038/gt.2016.34
pmid: 27064790
24
DE Sabatino, CF Freguia, R Toso, A Santos, EP Merricks, HH Kazazian, TC Nichols, RM Camire, VR Arruda. Recombinant canine B-domain-deleted FVIII exhibits high specific activity and is safe in the canine hemophilia A model. Blood 2009; 114(20): 4562–4565 https://doi.org/10.1182/blood-2009-05-220327
pmid: 19770361
W Zhang, J Mao, Y Shen, G Zhang, Y Shao, Z Ruan, Y Wang, W Wu, X Wang, J Zhu, S Chen, W Xiao, X Xi. Evaluation of the activity levels of rat FVIII and human FVIII delivered by adeno-associated viral vectors both in vitro and in vivo. Blood Cells Mol Dis 2018; 73: 47–54 https://doi.org/10.1016/j.bcmd.2018.09.004
pmid: 30249384
27
CD Scallan, T Liu, AE Parker, SL Patarroyo-White, H Chen, H Jiang, J Vargas, D Nagy, SK Powell, JF Wright, R Sarkar, HH Kazazian, A McClelland, LB Couto. Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII. Blood 2003; 102(12): 3919–3926 https://doi.org/10.1182/blood-2003-01-0222
pmid: 12893764
28
C Mueller, D Ratner, L Zhong, M Esteves-Sena, G Gao. Production and discovery of novel recombinant adeno-associated viral vectors. Curr Protoc Microbiol 2012; Chapter 14: s26
29
J Wang, J Xie, H Lu, L Chen, B Hauck, RJ Samulski, W Xiao. Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci USA 2007; 104(32): 13104–13109 https://doi.org/10.1073/pnas.0702778104
pmid: 17664425
30
Y Kuang, J Wang, X Lu, S Lu, L Zhang, C Shen, J Fei, Z Wang. Generation of factor VIII gene knockout mouse by tetraploid embryo complementation technology. Chin J Med Genet (Zhonghua Yi Xue Yi Chuan Xue Za Zhi) 2010; 27(1): 1–6 (in Chinese)
pmid: 20140858
31
D Wang, G Zhang, J Gu, X Shao, Y Dai, J Li, X Pan, S Yao, A Xu, Y Jin, J Huang, Q Shi, J Zhu, X Xi, Z Chen, S Chen. In vivo generated hematopoietic stem cells from genome edited induced pluripotent stem cells are functional in platelet-targeted gene therapy of murine hemophilia A. Haematologica 2020; 105(4): e175–e179 https://doi.org/10.3324/haematol.2019.219089
pmid: 31296582
32
A Tiede. Half-life extended factor VIII for the treatment of hemophilia A. J Thromb Haemost 2015; 13(Suppl 1): S176–S179 https://doi.org/10.1111/jth.12929
pmid: 26149020
33
E Persson, T Foscolo, M Hansen. Reagent-specific underestimation of turoctocog alfa pegol (N8-GP) clotting activity owing to decelerated activation by thrombin. Res Pract Thromb Haemost 2019; 3(1): 114–120 https://doi.org/10.1002/rth2.12167
pmid: 30656284
34
AD Shapiro, MV Ragni, R Kulkarni, J Oldenberg, A Srivastava, DV Quon, KJ Pasi, H Hanabusa, I Pabinger, J Mahlangu, P Fogarty, D Lillicrap, S Kulke, J Potts, S Neelakantan, I Nestorov, S Li, JA Dumont, H Jiang, A Brennan, GF Pierce. Recombinant factor VIII Fc fusion protein: extended-interval dosing maintains low bleeding rates and correlates with von Willebrand factor levels. J Thromb Haemost 2014; 12(11): 1788–1800 https://doi.org/10.1111/jth.12723
pmid: 25196897
KA High, XM Anguela. Adeno-associated viral vectors for the treatment of hemophilia. Hum Mol Genet 2016; 25(R1): R36–R41 https://doi.org/10.1093/hmg/ddv475
pmid: 26614390
37
L Lisowski, AP Dane, K Chu, Y Zhang, SC Cunningham, EM Wilson, S Nygaard, M Grompe, IE Alexander, MA Kay. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 2014; 506(7488): 382–386 https://doi.org/10.1038/nature12875
pmid: 24390344
38
LA George, SK Sullivan, A Giermasz, JEJ Rasko, BJ Samelson-Jones, J Ducore, A Cuker, LM Sullivan, S Majumdar, J Teitel, CE McGuinn, MV Ragni, AY Luk, D Hui, JF Wright, Y Chen, Y Liu, K Wachtel, A Winters, S Tiefenbacher, VR Arruda, JCM van der Loo, O Zelenaia, D Takefman, ME Carr, LB Couto, XM Anguela, KA High. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377(23): 2215–2227 https://doi.org/10.1056/NEJMoa1708538
pmid: 29211678
39
T Okuyama, RM Huber, W Bowling, R Pearline, SC Kennedy, MW Flye, KP Ponder. Liver-directed gene therapy: a retroviral vector with a complete LTR and the ApoE enhancer-α1-antitrypsin promoter dramatically increases expression of human α1-antitrypsin in vivo. Hum Gene Ther 1996; 7(5): 637–645 https://doi.org/10.1089/hum.1996.7.5-637
pmid: 8845389
40
P Simioni, D Tormene, G Tognin, S Gavasso, C Bulato, NP Iacobelli, JD Finn, L Spiezia, C Radu, VR Arruda. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361(17): 1671–1675 https://doi.org/10.1056/NEJMoa0904377
pmid: 19846852
41
M Takeyama, H Wakabayashi, PJ Fay. Contribution of factor VIII light-chain residues 2007–2016 to an activated protein C-interactive site. Thromb Haemost 2013; 109(2): 187–198 https://doi.org/10.1160/TH12-08-0561
pmid: 23224054
KP Pratt, BW Shen, K Takeshima, EW Davie, K Fujikawa, BL Stoddard. Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature 1999; 402(6760): 439–442 https://doi.org/10.1038/46601
pmid: 10586887
44
VA Novakovic, DB Cullinan, H Wakabayashi, PJ Fay, JD Baleja, GE Gilbert. Membrane-binding properties of the Factor VIII C2 domain. Biochem J 2011; 435(1): 187–196 https://doi.org/10.1042/BJ20101797
pmid: 21210768