Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (3): 389-402   https://doi.org/10.1007/s11684-021-0856-3
  本期目录
Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia
Sisi Du1,2,3, Xiaojing Wu1,2,3, Binbin Li1,2,3, Yimin Wang1,2,3, Lianhan Shang1,2,3,4, Xu Huang1,2,3, Yudi Xia1,2,3, Donghao Yu1,2,3,5, Naicong Lu1,2,3, Zhibo Liu1,2,3, Chunlei Wang1,2,3, Xinmeng Liu1,2,3, Zhujia Xiong1,2,3, Xiaohui Zou1,2,3, Binghuai Lu1,2,3, Yingmei Liu1,2,3, Qingyuan Zhan1,2,3(), Bin Cao1,2,3,6()
1. China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing 100029, China
2. Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100029, China
3. Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
4. Beijing University of Chinese Medicine, Beijing 100029, China
5. Beijing Luhe Hospital, Beijing 101100, China
6. Tsinghua University–Peking University Joint Center for Life Sciences, Beijing 100084, China
 全文: PDF(1504 KB)   HTML
Abstract

Few studies have described the key features and prognostic roles of lung microbiota in patients with severe community-acquired pneumonia (SCAP). We prospectively enrolled consecutive SCAP patients admitted to ICU. Bronchoscopy was performed at bedside within 48 h of ICU admission, and 16S rRNA gene sequencing was applied to the collected bronchoalveolar lavage fluid. The primary outcome was clinical improvements defined as a decrease of 2 categories and above on a 7-category ordinal scale within 14 days following bronchoscopy. Sixty-seven patients were included. Multivariable permutational multivariate analysis of variance found that positive bacteria lab test results had the strongest independent association with lung microbiota (R2=0.033; P=0.018), followed by acute kidney injury (AKI; R2=0.032; P=0.011) and plasma MIP-1β level (R2=0.027; P=0.044). Random forest identified that the families Prevotellaceae, Moraxellaceae, and Staphylococcaceae were the biomarkers related to the positive bacteria lab test results. Multivariable Cox regression showed that the increase in α-diversity and the abundance of the families Prevotellaceae and Actinomycetaceae were associated with clinical improvements. The positive bacteria lab test results, AKI, and plasma MIP-1β level were associated with patients’ lung microbiota composition on ICU admission. The families Prevotellaceae and Actinomycetaceae on admission predicted clinical improvements.

Key wordssevere community-acquired pneumonia    lung microbiota    clinical improvements    7-category ordinal scale    Prevotellaceae
收稿日期: 2020-10-14      出版日期: 2022-07-18
Corresponding Author(s): Qingyuan Zhan,Bin Cao   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(3): 389-402.
Sisi Du, Xiaojing Wu, Binbin Li, Yimin Wang, Lianhan Shang, Xu Huang, Yudi Xia, Donghao Yu, Naicong Lu, Zhibo Liu, Chunlei Wang, Xinmeng Liu, Zhujia Xiong, Xiaohui Zou, Binghuai Lu, Yingmei Liu, Qingyuan Zhan, Bin Cao. Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia. Front. Med., 2022, 16(3): 389-402.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0856-3
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I3/389
Variable All patients
(N = 67)
Improvement
(n = 24)
Unimprovement
(n = 43)
P
Age, year, median (IQR) 64 (22) 56 (16.5) 67 (23) 0.07
Male, n (%) 50 (74.63) 17 (70.83) 33 (76.74) 0.59
Smoking statusa
Current smoker, n (%) 16 (23.88) 8 (33.33) 8 (18.6) 0.34
Former smoker, n (%) 19 (28.36) 5 (20.83) 14 (32.56)
Nonsmoker, n (%) 32 (47.76) 11 (45.83) 21 (48.84)
Drinking history, n (%) 13 (19.4) 7 (29.17) 6 (13.95) 0.24
Immunocompromised status, n (%) 10 (14.93) 5 (20.83) 5 (11.63) 0.51
Chronic respiratory disease, n (%) 11 (16.42) 3 (12.5) 11 (25.58) 0.76
Sampling season, n (%)
Spring 16 (23.88) 9 (37.5) 7 (16.28) 0.18
Summer 12 (17.91) 3 (12.5) 9 (20.93)
Autumn 12 (17.91) 5 (20.83) 7 (16.28)
Winter 27 (40.30) 7 (29.17) 20 (46.51)
Symptoms, n (%)
Fever 53 (79.1) 18 (75) 35 (81.40) 0.54
Cough 50 (74.63) 18 (75) 32 (74.42) 0.96
Sputum 36 (53.73) 14 (58.33) 22 (51.16) 0.76
Dyspnea 54 (80.60) 19 (79.17) 35 (81.40) 1
Confusion/disorientation 15 (22.39) 4 (16.67) 11 (25.58) 0.40
Laboratory findings on ICU admission
pH, median (IQR) 7.443 (0.058) 7.44 (0.051) 7.44 (0.079) 0.78
PaO2/FiO2, mmHg, mean±SD 181.36±78.62 205.06±78.99 168.13±76.14 0.10
Procalcitonin>1 ng/mL, n (%) 36 (53.73) 10 (41.67) 26 (60.47) 0.14
Creatinine>106 μmol/L, n (%) 28 (41.79) 7 (29.17) 21 (48.84) 0.12
Initial radiographic findings, n (%)
Diffuse bilateral pulmonary infiltration 56 (83.58) 19 (58.33) 37 (86.05) 0.70
Pleural effusion 25 (37.31) 4 (16.67) 21 (48.84) 0.009
Pathogen identifiedb, n (%)
Virus 25 (37.31) 9 (37.5) 16 (37.21) 0.96
Bacteria 12 (17.91) 4 (16.67) 8 (18.60)
Viral and bacterial co-infection 7 (10.45) 2 (8.33) 5 (11.63)
Atypical pathogensc 9 (13.43) 4 (16.67) 5 (11.63) 0.84
Probable IFD 8 (11.94) 2 (8.33) 6 (13.95) 0.77
Complications at sampling, n (%)
ARDS 29 (43.28) 7 (29.17) 22 (51.16) 0.08
Sepsis 65 (97.01) 22 (91.67) 43 (100) 0.12
Septic shock 21 (31.34) 3 (12.5) 18 (41.86) 0.01
AKI 23 (34.33) 6 (25) 17 (39.53) 0.23
Acute cardiac insufficiency 15 (22.39) 7 (29.17) 8 (18.60) 0.32
Antibiotic used before samplingd, n (%) 67 (100)
Carbapenems 22 (32.84) 7 (29.17) 15 (34.88) 0.97
β-lactams plus fluoroquinolones only 37 (55.22) 14 (58.33) 23 (53.49)
β-lactams only 5 (7.46) 2 (8.33) 3 (6.98)
Fluoroquinolones only 3 (4.48) 1 (4.17) 2 (4.65)
Vancomycine 11 (16.42) 0 (0) 11 (25.58) 0.02
Oxygen support before sampling, n (%)
High-flow nasal cannula only 26 (38.81) 12 (50) 14 (32.56) 0.16
Mechanical ventilation 41 (61.19) 12 (50) 29 (67.44)
Mechanical ventilation≥2 days, n (%) 23 (34.33) 6 (25) 17 (39.53) 0.23
Severity variables at sampling
APACHE-II, mean±SD 12.78±5.65 10.17±5.76 14.23±5.10 0.01
PSI risk class IV–V, n (%) 41 (61.19) 12 (50) 29 (67.44) 0.16
CURB-65 risk score 3–5, n (%) 26 (38.81) 4 (16.67) 22 (51.16) 0.005
7-category ordinal scale at sampling, n (%)
5: Hospitalization, requiring HFNC and/or non-IMV 42 (62.69) 18 (75) 24 (55.81) 0.12
6: Hospitalization, requiring ECMO and/or IMV 25 (37.31) 6 (25) 19 (44.19)
Days from illness onset to admission, median (IQR) 5 (4) 5.5 (4.25) 5 (4) 0.91
Hours from admission to samplingf, median (IQR) 21 (13) 21 (17) 21 (11.5) 0.79
ICU outcomes
ICU length of stay, day, median (IQR) 9 (9.5) 7.5 (5.5) 12 (10.5) 0.03
Death in ICU, n (%) 11 (16.41) 0 (0) 11 (25.58) 0.23
Day 14 mortality, n (%) 8 (11.94) 0 (0) 8 (18.60) 0.06
Plasma biomarker on admission, pg/mL, mean±SD
IL-4 5.64±12.6 4.89±6.19 6.06±15.1 0.34
IL-6 336.30±725.60 95.99±133.02 470.42±875.35 0.00
IL-8 61.50±144.24 19.63±23.81 84.87±175.56 0.56×10−6
MIP-1β 169.01±498.12 117.53±194.91 197.75±605.59 0.30
VEGF-A 1343.97±761.88 1269.44±752.93 1385.56±772.50 0.44
MMP-9 142.34±156.14 118.01±83.77 155.92±184.23 0.89
Tab.1  
Fig.1  
Fig.2  
Fig.3  
MV≥2 daysa Bacteria The most abundant ZOTU in sequencing
Yes Acinetobacter baumannii ZOTU4_f_ Streptococcaceae (38.43%)c
Yes Acinetobacter baumannii ZOTU5_f_ Moraxellaceae (87.82%)
Yes Acinetobacter baumannii, Klebsiella pneumoniae ZOTU5_f_ Moraxellaceae (37.71%)
Yes Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (98.5%)
Yes Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (83.84%)
Yes Staphylococcus aureus ZOTU18_f_ Streptococcaceae (54.3%)
Yes Staphylococcus aureus ZOTU10_f_ Staphylococcaceae (29.84%)
No Pseudomonas aeruginosa ZOTU18_f_ Streptococcaceae (13.98%)
No Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (69.33%)
No Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (83.92%)
No Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (36.14%)
No Staphylococcus aureus ZOTU13_f_ Corynebacteriaceae (15.91%)
No Staphylococcus aureus ZOTU10_f_ Staphylococcaceae (59.17%)
No Streptococcus pneumoniaeb ZOTU4_f_ Streptococcaceae (98.02%)
No Streptococcus pneumoniaeb ZOTU1_f_ Pseudomonadaceae (27.86%)
No Acinetobacter baumannii ZOTU5_f_ Moraxellaceae (50.41%)
No Klebsiella pneumoniae ZOTU59_f_ Bacteroidaceae (12.28%)
No Escherichia coli ZOTU44_f_ Corynebacteriaceae (13.28%)
Tab.2  
Fig.4  
Variable Adjusted HRa 95% CI P value
Pathogen identifiedb
Bacteria only Reference
Viral–bacterial co-infection 0.37 0.04–3.20 0.37
Virus 0.90 0.18–4.60 0.90
Others 0.79 0.21–3.02 0.73
Richness (continuous) 1.01 1.00–1.02 0.17
Richness (categorical)c
<150 Reference
199–150 0.65 0.15–2.87 0.57
≥200 3.51 0.84–14.64 0.08
Shannon (continuous) 1.43 1.04–1.98 0.03
Shannon (categorical)c
<2 Reference
4.5–2 2.65 0.73–9.67 0.14
>4.5 5.73 1.41–23.26 0.01
Prevotellaceae, 1%d (continuous) 1.14 1.04–1.25 0.006
Prevotellaceae, % (categorical)c
<0.3 Reference
2.4–0.3 3.54 1.06–11.84 0.04
>2.4 8.58 2.15–34.26 0.002
Actinomycetaceae, 1% (continuous) 1.10 1.02–1.18 0.01
Actinomycetaceae, % (categorical)c
<0.005 Reference
0.5–0.005 2.40 0.74–7.77 0.15
>0.5 10.25 2.77–37.87 0.0005
Moraxellaceae, 1% (continuous) 1.00 0.96–1.04 0.89
Staphylococcaceae, 1% (continuous) 0.98 0.94–1.03 0.40
Streptococcaceae, 1% (continuous) 1.01 0.99–1.04 0.35
Pseudomonadaceae, 1% (continuous) 0.99 0.98–1.01 0.23
Enterobacteriaceae, 1% (continuous) 0.95 0.78–1.15 0.58
Tab.3  
1 A Liapikou, E Rosales-Mayor, A Torres. The management of severe community acquired pneumonia in the intensive care unit. Expert Rev Respir Med 2014; 8(3): 293–303
https://doi.org/10.1586/17476348.2014.896202 pmid: 24838089
2 R Espinoza, JRLE Silva, A Bergmann, U de Oliveira Melo, FE Calil, RC Santos, JIF Salluh. Factors associated with mortality in severe community-acquired pneumonia: a multicenter cohort study. J Crit Care 2019; 50: 82–86
https://doi.org/10.1016/j.jcrc.2018.11.024 pmid: 30502687
3 J Phua, NC Dean, Q Guo, WS Kuan, HF Lim, TK Lim. Severe community-acquired pneumonia: timely management measures in the first 24 hours. Crit Care 2016; 20(1): 237
https://doi.org/10.1186/s13054-016-1414-2 pmid: 27567896
4 HY Li, Q Guo, WD Song, YP Zhou, M Li, XK Chen, H Liu, HL Peng, HQ Yu, X Chen, N Liu, ZD Lü, LH Liang, QZ Zhao, M Jiang. Mortality among severe community-acquired pneumonia patients depends on combinations of 2007 IDSA/ATS minor criteria. Int J Infect Dis 2015; 38: 141–145
https://doi.org/10.1016/j.ijid.2015.07.026 pmid: 26255891
5 A Torres, JD Chalmers, CS Dela Cruz, C Dominedò, M Kollef, I Martin-Loeches, M Niederman, RG Wunderink. Challenges in severe community-acquired pneumonia: a point-of-view review. Intensive Care Med 2019; 45(2): 159–171
https://doi.org/10.1007/s00134-019-05519-y pmid: 30706119
6 ES Charlson, K Bittinger, AR Haas, AS Fitzgerald, I Frank, A Yadav, FD Bushman, RG Collman. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184(8): 957–963
https://doi.org/10.1164/rccm.201104-0655OC pmid: 21680950
7 T Zakharkina, I Martin-Loeches, S Matamoros, P Povoa, A Torres, JB Kastelijn, JJ Hofstra, B de Wever, M de Jong, MJ Schultz, PJ Sterk, A Artigas, LDJ Bos. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax 2017; 72(9): 803–810
https://doi.org/10.1136/thoraxjnl-2016-209158 pmid: 28100714
8 RP Dickson, JR Erb-Downward, GB Huffnagle. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir Med 2014; 2(3): 238–246
https://doi.org/10.1016/S2213-2600(14)70028-1 pmid: 24621685
9 RP Dickson, JR Erb-Downward, FJ Martinez, GB Huffnagle. The microbiome and the respiratory tract. Annu Rev Physiol 2016; 78(1): 481–504
https://doi.org/10.1146/annurev-physiol-021115-105238 pmid: 26527186
10 RP Dickson. The microbiome and critical illness. Lancet Respir Med 2016; 4(1): 59–72
https://doi.org/10.1016/S2213-2600(15)00427-0 pmid: 26700442
11 RL Brown, RP Sequeira, TB Clarke. The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun 2017; 8(1): 1512
https://doi.org/10.1038/s41467-017-01803-x pmid: 29142211
12 MM Pettigrew, JF Gent, Y Kong, M Wade, S Gansebom, AM Bramley, S Jain, SLR Arnold, JA McCullers. Association of sputum microbiota profiles with severity of community-acquired pneumonia in children. BMC Infect Dis 2016; 16(1): 317
https://doi.org/10.1186/s12879-016-1670-4 pmid: 27391033
13 AR Panzer, SV Lynch, C Langelier, JD Christie, K McCauley, M Nelson, CK Cheung, NL Benowitz, MJ Cohen, CS Calfee. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit Care Med 2018; 197(5): 621–631
https://doi.org/10.1164/rccm.201702-0441OC pmid: 29035085
14 RP Dickson, MJ Schultz, T van der Poll, LR Schouten, NR Falkowski, JE Luth, MW Sjoding, CA Brown, R Chanderraj, GB Huffnagle, LDJ Bos; Biomarker Analysis in Septic ICU Patients (BASIC) Consortium. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med 2020; 201(5): 555–563
https://doi.org/10.1164/rccm.201907-1487OC pmid: 31973575
15 GB Nair, MS Niederman. Updates on community acquired pneumonia management in the ICU. Pharmacol Ther 2021; 217: 107663
https://doi.org/10.1016/j.pharmthera.2020.107663 pmid: 32805298
16 LA Mandell, RG Wunderink, A Anzueto, JG Bartlett, GD Campbell, NC Dean, SF Dowell, TM File Jr, DM Musher, MS Niederman, A Torres, CG Whitney; Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44(Suppl 2): S27–S72
https://doi.org/10.1086/511159 pmid: 17278083
17 Interventional Pulmonology Group of the Chinese Thoracic Society, Chinese Medical Association. Guideline for diagnostic flexible bronchoscopy in adults (2019). Chin J Tuberc Respir Dis (Zhonghua Jie He He Hu Xi Za Zhi) 2019; 42(8): 573–590 (in Chinese)
pmid: 31378019
18 B Cao, Y Wang, D Wen, W Liu, J Wang, G Fan, L Ruan, B Song, Y Cai, M Wei, X Li, J Xia, N Chen, J Xiang, T Yu, T Bai, X Xie, L Zhang, C Li, Y Yuan, H Chen, H Li, H Huang, S Tu, F Gong, Y Liu, Y Wei, C Dong, F Zhou, X Gu, J Xu, Z Liu, Y Zhang, H Li, L Shang, K Wang, K Li, X Zhou, X Dong, Z Qu, S Lu, X Hu, S Ruan, S Luo, J Wu, L Peng, F Cheng, L Pan, J Zou, C Jia, J Wang, X Liu, S Wang, X Wu, Q Ge, J He, H Zhan, F Qiu, L Guo, C Huang, T Jaki, FG Hayden, PW Horby, D Zhang, C Wang. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787–1799
https://doi.org/10.1056/NEJMoa2001282 pmid: 32187464
19 Y Wang, G Fan, P Horby, F Hayden, Q Li, Q Wu, X Zou, H Li, Q Zhan, C Wang, B Cao; CAP-China Network. Comparative outcomes of adults hospitalized with seasonal influenza A or B virus infection: application of the 7-category ordinal scale. Open Forum Infect Dis 2019; 6(3): ofz053
https://doi.org/10.1093/ofid/ofz053 pmid: 30895200
20 Y Wang, D Zhang, G Du, R Du, J Zhao, Y Jin, S Fu, L Gao, Z Cheng, Q Lu, Y Hu, G Luo, K Wang, Y Lu, H Li, S Wang, S Ruan, C Yang, C Mei, Y Wang, D Ding, F Wu, X Tang, X Ye, Y Ye, B Liu, J Yang, W Yin, A Wang, G Fan, F Zhou, Z Liu, X Gu, J Xu, L Shang, Y Zhang, L Cao, T Guo, Y Wan, H Qin, Y Jiang, T Jaki, FG Hayden, PW Horby, B Cao, C Wang. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569–1578
https://doi.org/10.1016/S0140-6736(20)31022-9 pmid: 32423584
21 F Zhou, Y Wang, Y Liu, X Liu, L Gu, X Zhang, Z Pu, G Yang, B Liu, Q Nie, B Xue, J Feng, Q Guo, J Liu, H Fan, J Chen, Y Zhang, Z Xu, M Pang, Y Chen, X Nie, Z Cai, J Xu, K Peng, X Li, P Xiang, Z Zhang, S Jiang, X Su, J Zhang, Y Li, X Jin, R Jiang, J Dong, Y Song, H Zhou, C Wang, B Cao; CAP-China Network. Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicentre prospective registry study from the CAP-China Network. Eur Respir J 2019; 54(2): 1802406
https://doi.org/10.1183/13993003.02406-2018 pmid: 31164430
22 ND Ferguson, E Fan, L Camporota, M Antonelli, A Anzueto, R Beale, L Brochard, R Brower, A Esteban, L Gattinoni, A Rhodes, AS Slutsky, JL Vincent, GD Rubenfeld, BT Thompson, VM Ranieri. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 2012; 38(10): 1573–1582
https://doi.org/10.1007/s00134-012-2682-1 pmid: 22926653
23 M Singer, CS Deutschman, CW Seymour, M Shankar-Hari, D Annane, M Bauer, R Bellomo, GR Bernard, JD Chiche, CM Coopersmith, RS Hotchkiss, MM Levy, JC Marshall, GS Martin, SM Opal, GD Rubenfeld, T van der Poll, JL Vincent, DC Angus. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): 801–810
https://doi.org/10.1001/jama.2016.0287 pmid: 26903338
24 A Khwaja. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012; 120(4): c179–c184
pmid: 22890468
25 JP Donnelly, SC Chen, CA Kauffman, WJ Steinbach, JW Baddley, PE Verweij, CJ Clancy, JR Wingard, SR Lockhart, AH Groll, TC Sorrell, M Bassetti, H Akan, BD Alexander, D Andes, E Azoulay, R Bialek, RW Bradsher Jr, S Bretagne, T Calandra, AM Caliendo, E Castagnola, M Cruciani, M Cuenca-Estrella, CF Decker, SR Desai, B Fisher, T Harrison, CP Heussel, HE Jensen, CC Kibbler, DP Kontoyiannis, BJ Kullberg, K Lagrou, F Lamoth, T Lehrnbecher, J Loeffler, O Lortholary, J Maertens, O Marchetti, KA Marr, H Masur, JF Meis, CO Morrisey, M Nucci, L Ostrosky-Zeichner, L Pagano, TF Patterson, JR Perfect, Z Racil, E Roilides, M Ruhnke, CS Prokop, S Shoham, MA Slavin, DA Stevens, GR Thompson III, JA Vazquez, C Viscoli, TJ Walsh, A Warris, LJ Wheat, PL White, TE Zaoutis, PG Pappas. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 2020; 71(6): 1367–1376
https://doi.org/10.1093/cid/ciz1008 pmid: 31802125
26 BJ Kelly, I Imai, K Bittinger, A Laughlin, BD Fuchs, FD Bushman, RG Collman. Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome 2016; 4(1): 7
https://doi.org/10.1186/s40168-016-0151-8 pmid: 26865050
27 AG Venier, C Leroyer, C Slekovec, D Talon, X Bertrand, S Parer, S Alfandari, JM Guerin, B Megarbane, C Lawrence, B Clair, A Lepape, M Perraud, P Cassier, D Trivier, A Boyer, V Dubois, J Asselineau, AM Rogues, R Thiébaut; DYNAPYO study group. Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect 2014; 88(2): 103–108
https://doi.org/10.1016/j.jhin.2014.06.018 pmid: 25155240
28 S Hoang, A Georget, J Asselineau, AG Venier, C Leroyer, AM Rogues, R Thiébaut. Risk factors for colonization and infection by Pseudomonas aeruginosa in patients hospitalized in intensive care units in France. PLoS One 2018; 13(3): e0193300
https://doi.org/10.1371/journal.pone.0193300 pmid: 29522559
29 KER Bachta, JP Allen, BH Cheung, CH Chiu, AR Hauser. Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat Commun 2020; 11(1): 543
https://doi.org/10.1038/s41467-020-14363-4 pmid: 31992714
30 SK Hilton, E Castro-Nallar, M Pérez-Losada, I Toma, TA McCaffrey, EP Hoffman, MO Siegel, GL Simon, WE Johnson, KA Crandall. Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front Microbiol 2016; 7: 484
https://doi.org/10.3389/fmicb.2016.00484 pmid: 27092134
31 S Emonet, V Lazarevic, C Leemann Refondini, N Gaïa, S Leo, M Girard, V Nocquet Boyer, H Wozniak, L Després, G Renzi, K Mostaguir, E Dupuis Lozeron, J Schrenzel, J Pugin. Identification of respiratory microbiota markers in ventilator-associated pneumonia. Intensive Care Med 2019; 45(8): 1082–1092
https://doi.org/10.1007/s00134-019-05660-8 pmid: 31209523
32 LS Chawla, RL Amdur, C Faselis, P Li, PL Kimmel, CE Palant. Impact of acute kidney injury in patients hospitalized with pneumonia. Crit Care Med 2017; 45(4): 600–606
https://doi.org/10.1097/CCM.0000000000002245 pmid: 28291091
33 F Husain-Syed, AS Slutsky, C Ronco. Lung-kidney cross-talk in the critically ill patient. Am J Respir Crit Care Med 2016; 194(4): 402–414
https://doi.org/10.1164/rccm.201602-0420CP pmid: 27337068
34 F Polverino, ME Laucho-Contreras, H Petersen, V Bijol, LM Sholl, ME Choi, M Divo, V Pinto-Plata, A Chetta, Y Tesfaigzi, BR Celli, CA Owen. A pilot study linking endothelial injury in lungs and kidneys in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2017; 195(11): 1464–1476
https://doi.org/10.1164/rccm.201609-1765OC pmid: 28085500
35 M Hepokoski, JA Englert, RM Baron, LE Crotty-Alexander, MM Fuster, JR Beitler, A Malhotra, P Singh. Ventilator-induced lung injury increases expression of endothelial inflammatory mediators in the kidney. Am J Physiol Renal Physiol 2017; 312(4): F654–F660
https://doi.org/10.1152/ajprenal.00523.2016 pmid: 28365585
36 PD Rogers, J Thornton, KS Barker, DO McDaniel, GS Sacks, E Swiatlo, LS McDaniel. Pneumolysin-dependent and-independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect Immun 2003; 71(4): 2087–2094
https://doi.org/10.1128/IAI.71.4.2087-2094.2003 pmid: 12654830
37 BA Turturice, HS McGee, B Oliver, M Baraket, BT Nguyen, C Ascoli, R Ranjan, A Rani, DL Perkins, PW Finn. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction. PLoS One 2017; 12(10): e0184566
https://doi.org/10.1371/journal.pone.0184566 pmid: 29053714
38 ET Zemanick, BD Wagner, CE Robertson, RC Ahrens, JF Chmiel, JP Clancy, RL Gibson, WT Harris, G Kurland, TA Laguna, SA McColley, K McCoy, G Retsch-Bogart, KT Sobush, PL Zeitlin, MJ Stevens, FJ Accurso, SD Sagel, JK Harris. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017; 50(5): 1700832
https://doi.org/10.1183/13993003.00832-2017 pmid: 29146601
39 TK Tsang, KH Lee, B Foxman, A Balmaseda, L Gresh, N Sanchez, S Ojeda, R Lopez, Y Yang, G Kuan, A Gordon. Association between the respiratory microbiome and susceptibility to influenza virus infection. Clin Infect Dis 2020; 71(5): 1195–1203
https://doi.org/10.1093/cid/ciz968 pmid: 31562814
40 LN Segal, JC Clemente, JC Tsay, SB Koralov, BC Keller, BG Wu, Y Li, N Shen, E Ghedin, A Morris, P Diaz, L Huang, WR Wikoff, C Ubeda, A Artacho, WN Rom, DH Sterman, RG Collman, MJ Blaser, MD Weiden. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 2016; 1(5): 16031
https://doi.org/10.1038/nmicrobiol.2016.31 pmid: 27572644
41 A Morris, JM Beck, PD Schloss, TB Campbell, K Crothers, JL Curtis, SC Flores, AP Fontenot, E Ghedin, L Huang, K Jablonski, E Kleerup, SV Lynch, E Sodergren, H Twigg, VB Young, CM Bassis, A Venkataraman, TM Schmidt, GM Weinstock; Lung HIV Microbiome Project. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 2013; 187(10): 1067–1075
https://doi.org/10.1164/rccm.201210-1913OC pmid: 23491408
42 X Li, Y Sun, Y An, R Wang, H Lin, M Liu, S Li, M Ma, C Xiao. Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China. Environ Pollut 2019; 246: 972–979
https://doi.org/10.1016/j.envpol.2018.12.083 pmid: 31126003
43 JM Larsen, DB Steen-Jensen, JM Laursen, JN Søndergaard, HS Musavian, TM Butt, S Brix. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota. PLoS One 2012; 7(2): e31976
https://doi.org/10.1371/journal.pone.0031976 pmid: 22363778
44 J Thorsen, MA Rasmussen, J Waage, M Mortensen, A Brejnrod, K Bønnelykke, BL Chawes, S Brix, SJ Sørensen, J Stokholm, H Bisgaard. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat Commun 2019; 10(1): 5001
https://doi.org/10.1038/s41467-019-12989-7 pmid: 31676759
[1] FMD-21010-OF-CB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed