Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease
Hongze Zhang, Xunjia Cheng()
Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
. [J]. Frontiers of Medicine, 2021, 15(6): 842-866.
Hongze Zhang, Xunjia Cheng. Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front. Med., 2021, 15(6): 842-866.
Elevated WBCs, generally low ?glucose level and high protein ?concentration, detected ?trophozoite, no flagellate ?or cyst
Elevated WBCs and protein, ?hydrocephalus, generally low ?glucose level
Elevated WBCs and protein, generally ?low glucose level
Neuroimaging
Cerebral edema, multifocal ?parenchymal and pseudotumor ?lesions, nonspecific and unhelpful
Single and multiple space-?occupying or ring-enhancing ?lesions, not specific
Single and multiple space-occupying or ?ring-enhancing lesions, not specific
Diagnosis
CSF examination for trophozoites ?and polymorphonuclear leukocytes, ?neuroimaging CT and MRI, ?polyclonal and monoclonal ?antibodies, PCR assays
Microscopic staining, ?immunofluorescent microscopy, ?neuroimaging CT and MRI, ?PCR assays, trophozoite and cyst
Microscopic staining, immunofluores-?cent microscopy, neuroimaging, PCR ?assays, metagenomic deep sequen-?cing, unsuitable for isolation and ?culture in vitro, trophozoite and ?cyst
Epidemiology
Worldwide distribution ?especially warm regions, hot ?summer months
Worldwide distribution, any time ?of year
Mainly on American continent
Estimated cases
>300
>200
~200
Case fatality rate
>95%
>90%
>90%
Therapy
Amphotericin B, azithromycin, ?chlorpromazine, miltefosine, ?rifampin, miconazole and ?fluconazole
C Dye. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci 2014; 369(1645): 20130426 https://doi.org/10.1098/rstb.2013.0426
pmid: 24821913
2
GS Visvesvara, H Moura, FL Schuster. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50(1): 1–26 https://doi.org/10.1111/j.1574-695X.2007.00232.x
pmid: 17428307
HL Lau, DF De Lima Corvino, FM Jr Guerra, AM Malik, PN Lichtenberger, SH Gultekin, JM Ritter, S Roy, IKM Ali, JR Cope, MJD Post, JA Gonzales Zamora. Granulomatous amoebic encephalitis caused by Acanthamoeba in a patient with AIDS: a challenging diagnosis. Acta Clin Belg 2021; 76(2): 127–131 https://doi.org/10.1080/17843286.2019.1660023
pmid: 31455179
5
C Balczun, PL Scheid. Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses 2017; 9(4): E65 https://doi.org/10.3390/v9040065
pmid: 28368313
6
R Zaheer. Naegleria fowleri—the brain-eating amoeba. J Pak Med Assoc 2013; 63(11): 1456
pmid: 24392545
7
BB Gelman, V Popov, G Chaljub, R Nader, SJ Rauf, HW Nauta, GS Visvesvara. Neuropathological and ultrastructural features of amebic encephalitis caused by Sappinia diploidea. J Neuropathol Exp Neurol 2003; 62(10): 990–998 https://doi.org/10.1093/jnen/62.10.990
pmid: 14575235
8
Y Qvarnstrom, AJ da Silva, FL Schuster, BB Gelman, GS Visvesvara. Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. J Infect Dis 2009; 199(8): 1139–1142 https://doi.org/10.1086/597473
pmid: 19302010
9
GS Visvesvara, R Sriram, Y Qvarnstrom, K Bandyopadhyay, AJ Da Silva, NJ Pieniazek, GA Cabral. Paravahlkampfia francinae n. sp. masquerading as an agent of primary amoebic meningoencephalitis. J Eukaryot Microbiol 2009; 56(4): 357–366 https://doi.org/10.1111/j.1550-7408.2009.00410.x
pmid: 19602081
EC Bovee, TL Jahn. Mechanisms of movement in taxonomy of Sarcodina. 3. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst Zool 1966; 15(3): 229–240 https://doi.org/10.2307/2411395
pmid: 5924359
12
AA Schaeffer . Taxonomy of the Amebas; with descriptions of thirty-nine new marine and freshwater species. Washington: The Carnegie Institution of Washington, 1926
13
AV Smirnov, E Chao, ES Nassonova, T Cavalier-Smith. A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist 2011; 162(4): 545–570 https://doi.org/10.1016/j.protis.2011.04.004
pmid: 21798804
14
SM Adl, D Bass, CE Lane, J Lukeš, CL Schoch, A Smirnov, S Agatha, C Berney, MW Brown, F Burki, P Cárdenas, I Čepička, L Chistyakova, J Del Campo, M Dunthorn, B Edvardsen, Y Eglit, L Guillou, V Hampl, AA Heiss, M Hoppenrath, TY James, A Karnkowska, S Karpov, E Kim, M Kolisko, A Kudryavtsev, DJG Lahr, E Lara, L Le Gall, DH Lynn, DG Mann, R Massana, EAD Mitchell, C Morrow, JS Park, JW Pawlowski, MJ Powell, DJ Richter, S Rueckert, L Shadwick, S Shimano, FW Spiegel, G Torruella, N Youssef, V Zlatogursky, Q Zhang. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66(1): 4–119 https://doi.org/10.1111/jeu.12691
pmid: 30257078
15
N Bondarenko, A Glotova, E Nassonova, A Masharsky, A Kudryavtsev, A Smirnov. The complete mitochondrial genome of Vannella simplex (Amoebozoa, Discosea, Vannellida). Eur J Protistol 2018; 63: 83–95 https://doi.org/10.1016/j.ejop.2018.01.006
pmid: 29502046
A Samba-Louaka, V Delafont, MH Rodier, E Cateau, Y Héchard. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43(4): 415–434 https://doi.org/10.1093/femsre/fuz011
pmid: 31049565
18
SM Adl, BS Leander, AG Simpson, JM Archibald, OR Anderson, D Bass, SS Bowser, G Brugerolle, MA Farmer, S Karpov, M Kolisko, CE Lane, DJ Lodge, DG Mann, R Meisterfeld, L Mendoza, Ø Moestrup, SE Mozley-Standridge, AV Smirnov, F Spiegel. Diversity, nomenclature, and taxonomy of protists. Syst Biol 2007; 56(4): 684–689 https://doi.org/10.1080/10635150701494127
pmid: 17661235
19
T Cavalier-Smith, AM Fiore-Donno, E Chao, A Kudryavtsev, C Berney, EA Snell, R Lewis. Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 2015; 83: 293–304 https://doi.org/10.1016/j.ympev.2014.08.011
pmid: 25150787
20
S Kang, AK Tice, FW Spiegel, JD Silberman, T Pánek, I Cepicka, M Kostka, A Kosakyan, DMC Alcântara, AJ Roger, LL Shadwick, A Smirnov, A Kudryavtsev, DJG Lahr, MW Brown. Between a pod and a hard test: the deep evolution of Amoebae. Mol Biol Evol 2017; 34(9): 2258–2270 https://doi.org/10.1093/molbev/msx162
pmid: 28505375
21
T Pánek, E Ptáčková, I Čepička. Survey on diversity of marine/saline anaerobic Heterolobosea (Excavata: Discoba) with description of seven new species. Int J Syst Evol Microbiol 2014; 64(Pt 7): 2280–2304 https://doi.org/10.1099/ijs.0.063487-0
pmid: 24729392
D Bass, EE Chao, S Nikolaev, A Yabuki, K Ishida, C Berney, U Pakzad, C Wylezich, T Cavalier-Smith. Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist 2009; 160(1): 75–109 https://doi.org/10.1016/j.protis.2008.07.002
pmid: 18952499
24
C Berney, S Romac, F Mahé, S Santini, R Siano, D Bass. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J 2013; 7(12): 2387–2399 https://doi.org/10.1038/ismej.2013.116
pmid: 23864128
25
MW Brown, FW Spiegel, JD Silberman. Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 2009; 26(12): 2699–2709 https://doi.org/10.1093/molbev/msp185
pmid: 19692665
FC Page. An illustrated key to freshwater and soil amoebae: with notes on cultivation and ecology. Scientific Publication No. 34. Ambleside: Freshwater Biological Association, 1976: 155
28
DM Wilkinson, EAD Mitchell. Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol J 2010; 27(6–7): 520–533 https://doi.org/10.1080/01490451003702925
29
S Geisen, J Rosengarten, R Koller, C Mulder, T Urich, M Bonkowski. Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 2015; 17(11): 4538–4546 https://doi.org/10.1111/1462-2920.12949
pmid: 26079718
30
BP Han, T Wang, QQ Lin, HJ Dumont. Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera. Hydrobiologia 2008; 596(1): 197–201 https://doi.org/10.1007/s10750-007-9096-z
31
B Bowers, ED Korn. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 1969; 41(3): 786–805 https://doi.org/10.1083/jcb.41.3.786
pmid: 5768875
R Hughes, S Kilvington. Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob Agents Chemother 2001; 45(7): 2038–2043 https://doi.org/10.1128/AAC.45.7.2038-2043.2001
pmid: 11408220
34
G Greub, D Raoult. Biocides currently used for bronchoscope decontamination are poorly effective against free-living amoebae. Infect Control Hosp Epidemiol 2003; 24(10): 784–786 https://doi.org/10.1086/502137
pmid: 14587948
U Rohr, S Weber, R Michel, F Selenka, M Wilhelm. Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 1998; 64(5): 1822–1824 https://doi.org/10.1128/AEM.64.5.1822-1824.1998
pmid: 9572957
37
E Fouque, MC Trouilhé, V Thomas, P Hartemann, MH Rodier, Y Héchard. Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot Cell 2012; 11(4): 382–387 https://doi.org/10.1128/EC.05301-11
pmid: 22366126
R Amann, N Springer, W Schönhuber, W Ludwig, EN Schmid, KD Müller, R Michel. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 1997; 63(1): 115–121 https://doi.org/10.1128/aem.63.1.115-121.1997
pmid: 8979345
40
F Pisani, C Costa, G Oteri, A Ioli. Identification of amoebae in the CSF in a patient with meningoencephalitis. J Neurol Neurosurg Psychiatry 2003; 74(10): 1445–1446 https://doi.org/10.1136/jnnp.74.10.1445-a
pmid: 14570847
41
P Bass, PJ Bischoff. Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. J Eukaryot Microbiol 2001; 48(4): 475–479 https://doi.org/10.1111/j.1550-7408.2001.tb00182.x
pmid: 11456325
R Hoffmann, R Michel. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 2001; 203(3): 215–219 https://doi.org/10.1078/S1438-4639(04)70031-0
pmid: 11279817
45
MA Abdul Majid, T Mahboob, BGJ Mong, N Jaturas, RL Richard, T Tian-Chye, A Phimphila, P Mahaphonh, KN Aye, WL Aung, J Chuah, AD Ziegler, A Yasiri, N Sawangjaroen, YAL Lim, V Nissapatorn. Correction: Pathogenic waterborne free-living amoebae: an update from selected Southeast Asian countries. PLoS One 2017; 12(5): e0177564 https://doi.org/10.1371/journal.pone.0177564
pmid: 28481938
46
C Bunsuwansakul, T Mahboob, K Hounkong, S Laohaprapanon, S Chitapornpan, S Jawjit, A Yasiri, S Barusrux, K Bunluepuech, N Sawangjaroen, CC Salibay, C Kaewjai, ML Pereira, V Nissapatorn. Acanthamoeba in Southeast Asia—overview and challenges. Korean J Parasitol 2019; 57(4): 341–357 https://doi.org/10.3347/kjp.2019.57.4.341
pmid: 31533401
A Alexeieff. Sur les charactères cytologiques et la systématique des amibes du groupe limax (Naegleria nov. gen. et Hartmannia nov. gen.) et des amibes parasites des vertebrates (Protamoeba nov. gen.). Bull Soc Zool Fr 1912; 37: 55–74 https://doi.org/10.5962/bhl.part.7429
49
M Fowler, RF Carter. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. Br Med J 1965; 2(5464): 740–742
pmid: 5825411
50
R Gharpure, J Bliton, A Goodman, IKM Ali, J Yoder, JR Cope. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: a global review. Clin Infect Dis 2021; 73(1): e19–e27
pmid: 32369575
DC Zysset-Burri, N Müller, C Beuret, M Heller, N Schürch, B Gottstein, M Wittwer. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 2014; 15(1): 496 https://doi.org/10.1186/1471-2164-15-496
pmid: 24950717
53
N Liechti, N Schürch, R Bruggmann, M Wittwer. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep 2019; 9(1): 16040 https://doi.org/10.1038/s41598-019-52572-0
pmid: 31690847
54
JF De Jonckheere. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol 2011; 11(7): 1520–1528 https://doi.org/10.1016/j.meegid.2011.07.023
pmid: 21843657
55
B Coupat-Goutaland, E Régoudis, M Besseyrias, A Mularoni, M Binet, P Herbelin, M Pélandakis. Population structure in Naegleria fowleri as revealed by microsatellite markers. PLoS One 2016; 11(4): e0152434 https://doi.org/10.1371/journal.pone.0152434
pmid: 27035434
HMS Sazzad, SP Luby, J Sejvar, M Rahman, ES Gurley, V Hill, JL Murphy, S Roy, JR Cope, IKM Ali. A case of primary amebic meningoencephalitis caused by Naegleria fowleri in Bangladesh. Parasitol Res 2020; 119(1): 339–344 https://doi.org/10.1007/s00436-019-06463-y
pmid: 31734864
58
JS Yoder, BA Eddy, GS Visvesvara, L Capewell, MJ Beach. The epidemiology of primary amoebic meningoencephalitis in the USA, 1962–2008. Epidemiol Infect 2010; 138(7): 968–975 https://doi.org/10.1017/S0950268809991014
pmid: 19845995
59
J Martinez, RJ Duma, EC Nelson, FL Moretta. Experimental naegleria meningoencephalitis in mice. Penetration of the olfactory mucosal epithelium by Naegleria and pathologic changes produced: a light and electron microscope study. Lab Invest 1973; 29(2): 121–133
pmid: 4724845
60
KL Jarolim, JK McCosh, MJ Howard, DT John. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol 2000; 86(1): 50–55 https://doi.org/10.1645/0022-3395(2000)086[0050:ALMSOT]2.0.CO;2
pmid: 10701563
61
S Rojas-Hernández, A Jarillo-Luna, M Rodríguez-Monroy, L Moreno-Fierros, R Campos-Rodríguez. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res 2004; 94(1): 31–36 https://doi.org/10.1007/s00436-004-1177-6
pmid: 15338289
RV Lawande, I John, RH Dobbs, LJ Egler. A case of primary amebic meningoencephalitis in Zaria, Nigeria. Am J Clin Pathol 1979; 71(5): 591–594 https://doi.org/10.1093/ajcp/71.5.591
pmid: 453078
FM Marciano-Cabral, M Patterson, DT John, SG Bradley. Cytopathogenicity of Naegleria fowleri and Naegleria gruberi for established mammalian cell cultures. J Parasitol 1982; 68(6): 1110–1116 https://doi.org/10.2307/3281100
pmid: 6816913
67
M Martínez-Castillo, R Cárdenas-Zúñiga, D Coronado-Velázquez, A Debnath, J Serrano-Luna, M Shibayama. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol 2016; 65(9): 885–896 https://doi.org/10.1099/jmm.0.000303
pmid: 27381464
68
M Jamerson, B da Rocha-Azevedo, GA Cabral, F Marciano-Cabral. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology (Reading) 2012; 158(Pt 3): 791–803 https://doi.org/10.1099/mic.0.055020-0
pmid: 22222499
69
KL Han, HJ Lee, MH Shin, HJ Shin, KI Im, SJ Park. The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity. Parasitol Res 2004; 94(1): 53–60 https://doi.org/10.1007/s00436-004-1158-9
pmid: 15338291
70
N Flores-Huerta, V Sánchez-Monroy, MA Rodríguez, J Serrano-Luna, M Shibayama. A comparative study of the membrane proteins from Naegleria species: a 23-kDa protein participates in the virulence of Naegleria fowleri. Eur J Protistol 2020; 72: 125640 https://doi.org/10.1016/j.ejop.2019.125640
pmid: 31794894
71
I Cervantes-Sandoval, J Jesús Serrano-Luna, J Pacheco-Yépez, A Silva-Olivares, V Tsutsumi, M Shibayama. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res 2010; 106(3): 695–701 https://doi.org/10.1007/s00436-010-1727-z
pmid: 20098997
72
M Carrasco-Yepez, R Campos-Rodriguez, M Godinez-Victoria, MA Rodriguez-Monroy, A Jarillo-Luna, P Bonilla-Lemus, AC De Oca, S Rojas-Hernandez. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa. Parasitol Res 2013; 112(10): 3615–3625 https://doi.org/10.1007/s00436-013-3549-2
pmid: 23922203
73
I Cervantes-Sandoval, JJ Serrano-Luna, E García-Latorre, V Tsutsumi, M Shibayama. Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion. Microbiology (Reading) 2008; 154(Pt 12): 3895–3904 https://doi.org/10.1099/mic.0.2008/019380-0
pmid: 19047756
74
I Cervantes-Sandoval, JJ Serrano-Luna, E García-Latorre, V Tsutsumi, M Shibayama. Characterization of brain inflammation during primary amoebic meningoencephalitis. Parasitol Int 2008; 57(3): 307–313 https://doi.org/10.1016/j.parint.2008.01.006
pmid: 18374627
75
R Herbst, C Ott, T Jacobs, T Marti, F Marciano-Cabral, M Leippe. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem 2002; 277(25): 22353–22360 https://doi.org/10.1074/jbc.M201475200
pmid: 11948186
76
R Herbst, F Marciano-Cabral, M Leippe. Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem 2004; 279(25): 25955–25958 https://doi.org/10.1074/jbc.M401965200
pmid: 15075336
RM Hysmith, RC Franson. Elevated levels of cellular and extracellular phospholipases from pathogenic Naegleria fowleri. Biochim Biophys Acta 1982; 711(1): 26–32 https://doi.org/10.1016/0005-2760(82)90005-4
pmid: 6279166
79
D Eisen, RC Franson. Acid-active neuraminidases in the growth media from cultures of pathogenic Naegleria fowleri and in sonicates of rabbit alveolar macrophages. Biochim Biophys Acta 1987; 924(2): 369–372 https://doi.org/10.1016/0304-4165(87)90035-3
pmid: 3567224
80
I Zyserman, D Mondal, F Sarabia, JH McKerrow, WR Roush, A Debnath. Identification of cysteine protease inhibitors as new drug leads against Naegleria fowleri. Exp Parasitol 2018; 188: 36–41 https://doi.org/10.1016/j.exppara.2018.03.010
pmid: 29551628
81
KJ Song, YS Jang, YA Lee, KA Kim, SK Lee, MH Shin. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri. Parasite Immunol 2011; 33(7): 390–400 https://doi.org/10.1111/j.1365-3024.2011.01297.x
pmid: 21535020
82
B Chávez-Munguía, LS Villatoro, M Omaña-Molina, MA Rodríguez-Monroy, N Segovia-Gamboa, A Martínez-Palomo. Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG). Exp Parasitol 2014; 142: 1–6 https://doi.org/10.1016/j.exppara.2014.03.027
pmid: 24721258
83
S Rojas-Hernández, MA Rodríguez-Monroy, L Moreno-Fierros, A Jarillo-Luna, M Carrasco-Yepez, A Miliar-García, R Campos-Rodríguez. Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri. Parasitol Res 2007; 101(2): 269–274 https://doi.org/10.1007/s00436-007-0495-x
pmid: 17340143
84
C Fulton. Intracellular regulation of cell shape and motility in Naegleria. First insights and a working hypothesis. J Supramol Struct 1977; 6(1): 13–43 https://doi.org/10.1002/jss.400060103
pmid: 408560
85
DT John, TB Cole Jr, FM Marciano-Cabral. Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Appl Environ Microbiol 1984; 47(1): 12–14 https://doi.org/10.1128/aem.47.1.12-14.1984
pmid: 6696410
86
S Tiewcharoen, J Rabablert, P Chetanachan, V Junnu, D Worawirounwong, N Malainual. Scanning electron microscopic study of human neuroblastoma cells affected with Naegleria fowleri Thai strains. Parasitol Res 2008; 103(5): 1119–1123 https://doi.org/10.1007/s00436-008-1103-4
pmid: 18685867
87
HJ Shin, MS Cho, SU Jung, HI Kim, S Park, HJ Kim, KI Im. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. J Eukaryot Microbiol 2001; 48(6): 713–717 https://doi.org/10.1111/j.1550-7408.2001.tb00211.x
pmid: 11831780
88
SY Kang, KJ Song, SR Jeong, JH Kim, S Park, K Kim, MH Kwon, HJ Shin. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clin Diagn Lab Immunol 2005; 12(7): 873–876
pmid: 16002638
89
KJ Song, SR Jeong, S Park, K Kim, MH Kwon, KI Im, JH Pak, HJ Shin. Naegleria fowleri: functional expression of the Nfa1 protein in transfected Naegleria gruberi by promoter modification. Exp Parasitol 2006; 112(2): 115–120 https://doi.org/10.1016/j.exppara.2005.10.004
pmid: 16321386
90
YJ Lee, JH Kim, SR Jeong, KJ Song, K Kim, S Park, MS Park, HJ Shin. Production of Nfa1-specific monoclonal antibodies that influences the in vitro cytotoxicity of Naegleria fowleri trophozoites on microglial cells. Parasitol Res 2007; 101(5): 1191–1196 https://doi.org/10.1007/s00436-007-0600-1
pmid: 17610083
91
CJ Walsh. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Eur J Cell Biol 2007; 86(2): 85–98 https://doi.org/10.1016/j.ejcb.2006.10.003
pmid: 17189659
92
HJ Sohn, KJ Song, H Kang, AJ Ham, JH Lee, YJ Chwae, K Kim, S Park, JH Kim, HJ Shin. Cellular characterization of actin gene concerned with contact-dependent mechanisms in Naegleria fowleri. Parasite Immunol 2019; 41(8): e12631 https://doi.org/10.1111/pim.12631
pmid: 31077592
L Cerva. Acanthamoeba culbertsoni and Naegleria fowleri: occurrence of antibodies in man. J Hyg Epidemiol Microbiol Immunol 1989; 33(1): 99–103
pmid: 2723426
95
J Lee, JM Kang, TI Kim, JH Kim, HJ Sohn, BK Na, HJ Shin. Excretory and secretory proteins of Naegleria fowleri induce inflammatory responses in BV-2 microglial cells. J Eukaryot Microbiol 2017; 64(2): 183–192 https://doi.org/10.1111/jeu.12350
pmid: 27480446
96
I Cervantes-Sandoval, JJ Serrano-Luna, P Meza-Cervantez, R Arroyo, V Tsutsumi, M Shibayama. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation. Microbiology (Reading) 2009; 155(11): 3739–3747 https://doi.org/10.1099/mic.0.030635-0
pmid: 19661176
97
M Martínez-Castillo, L Santos-Argumedo, JM Galván-Moroyoqui, J Serrano-Luna, M Shibayama. Toll-like receptors participate in Naegleria fowleri recognition. Parasitol Res 2018; 117(1): 75–87 https://doi.org/10.1007/s00436-017-5666-9
pmid: 29128927
98
A Ferrante, TJ Mocatta. Human neutrophils require activation by mononuclear leucocyte conditioned medium to kill the pathogenic free-living amoeba, Naegleria fowleri. Clin Exp Immunol 1984; 56(3): 559–566
pmid: 6378454
99
A Ferrante, YH Thong. Unique phagocytic process in neutrophil-mediated killing of Naeglaria fowleri. Immunol Lett 1980; 2(1): 37–41 https://doi.org/10.1016/0165-2478(80)90071-1
100
TW Holbrook, RJ Boackle, BW Parker, J Vesely. Activation of the alternative complement pathway by Naegleria fowleri. Infect Immun 1980; 30(1): 58–61 https://doi.org/10.1128/iai.30.1.58-61.1980
pmid: 7439979
101
MK Michelson, WR Henderson Jr, EY Chi, TR Fritsche, SJ Klebanoff. Ultrastructural studies on the effect of tumor necrosis factor on the interaction of neutrophils and Naegleria fowleri. Am J Trop Med Hyg 1990; 42(3): 225–233 https://doi.org/10.4269/ajtmh.1990.42.225
pmid: 2316792
102
V Papayannopoulos, KD Metzler, A Hakkim, A Zychlinsky. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191(3): 677–691 https://doi.org/10.1083/jcb.201006052
pmid: 20974816
103
IK Vyas, M Jamerson, GA Cabral, F Marciano-Cabral. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae. J Eukaryot Microbiol 2015; 62(1): 51–59 https://doi.org/10.1111/jeu.12152
pmid: 25066578
104
JH Kim, AR Song, HJ Sohn, J Lee, JK Yoo, D Kwon, HJ Shin. IL-1β and IL-6 activate inflammatory responses of astrocytes against Naegleria fowleri infection via the modulation of MAPKs and AP-1. Parasite Immunol 2013; 35(3–4): 120–128 https://doi.org/10.1111/pim.12021
pmid: 23198898
105
YH Thong, A Ferrante, C Shepherd, B Rowan-Kelly. Resistance of mice to Naegleria meningoencephalitis transferred by immune serum. Trans R Soc Trop Med Hyg 1978; 72(6): 650–652 https://doi.org/10.1016/0035-9203(78)90025-1
pmid: 734724
MF Reilly, F Marciano-Cabral, DW Bradley, SG Bradley. Agglutination of Naegleria fowleri and Naegleria gruberi by antibodies in human serum. J Clin Microbiol 1983; 17(4): 576–581 https://doi.org/10.1128/jcm.17.4.576-581.1983
pmid: 6853686
108
A Jarillo-Luna, L Moreno-Fierros, R Campos-Rodríguez, MA Rodríguez-Monroy, E Lara-Padilla, S Rojas-Hernández. Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion. Parasite Immunol 2008; 30(1): 31–38 https://doi.org/10.1111/j.1365-3024.2007.00999.x
pmid: 18086014
109
M Carrasco-Yepez, S Rojas-Hernandez, MA Rodriguez-Monroy, LI Terrazas, L Moreno-Fierros. Protection against Naegleria fowleri infection in mice immunized with Cry1Ac plus amoebic lysates is dependent on the STAT6 Th2 response. Parasite Immunol 2010; 32(9–10): 664–670
pmid: 20691018
110
M Carrasco-Yepez, R Campos-Rodriguez, I Lopez-Reyes, P Bonilla-Lemus, AY Rodriguez-Cortes, A Contis-Montes de Oca, A Jarillo-Luna, A Miliar-Garcia, S Rojas-Hernandez. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis. Exp Parasitol 2014; 145(Suppl): S84–S92 https://doi.org/10.1016/j.exppara.2014.04.002
pmid: 24731967
111
JS Ryu, KI Im. The production and characterization of anti-Naegleria fowleri monoclonal antibodies. Korean J Parasitol 1992; 30(1): 33–41 https://doi.org/10.3347/kjp.1992.30.1.33
pmid: 1374265
112
M Shibayama, JJ Serrano-Luna, S Rojas-Hernández, R Campos-Rodríguez, V Tsutsumi. Interaction of secretory immunoglobulin A antibodies with Naegleria fowleri trophozoites and collagen type I. Can J Microbiol 2003; 49(3): 164–170 https://doi.org/10.1139/w03-023
pmid: 12795402
113
A Contis-Montes de Oca, M Carrasco-Yépez, R Campos-Rodríguez, J Pacheco-Yépez, P Bonilla-Lemus, J Pérez-López, S Rojas-Hernández. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG. Parasite Immunol 2016; 38(8): 481–495 https://doi.org/10.1111/pim.12337
pmid: 27189133
114
MM Carrasco-Yepez, R Campos-Rodríguez, AA Reséndiz-Albor, C Peña-Juárez, A Contis-Montes de Oca, IM Arciniega-Martínez, P Bonilla-Lemus, S Rojas-Hernandez. Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa. Parasite Immunol 2018; 40(3): e12508 https://doi.org/10.1111/pim.12508
pmid: 29243267
115
RT Cursons, TJ Brown, EA Keys, KM Moriarty, D Till. Immunity to pathogenic free-living amoebae: role of cell-mediated immunity. Infect Immun 1980; 29(2): 408–410 https://doi.org/10.1128/iai.29.2.408-410.1980
pmid: 7011975
116
DM Toney, F Marciano-Cabral. Alterations in protein expression and complement resistance of pathogenic Naegleria amoebae. Infect Immun 1992; 60(7): 2784–2790 https://doi.org/10.1128/iai.60.7.2784-2790.1992
pmid: 1319405
117
DM Toney, F Marciano-Cabral. Modulation of complement resistance and virulence of Naegleria fowleri amoebae by alterations in growth media. J Eukaryot Microbiol 1994; 41(4): 337–343 https://doi.org/10.1111/j.1550-7408.1994.tb06087.x
pmid: 8087105
V Rivera-Aguilar, D Hernández-Martínez, S Rojas-Hernández, G Oliver-Aguillón, V Tsutsumi, N Herrera-González, R Campos-Rodríguez. Immunoblot analysis of IgA antibodies to Naegleria fowleri in human saliva and serum. Parasitol Res 2000; 86(9): 775–780 https://doi.org/10.1007/s004360000243
pmid: 11002989
TL Thái, JM Kang, HG Lê, J Lee, WG Yoo, HJ Shin, WM Sohn, BK Na. Fowlerstefin, a cysteine protease inhibitor of Naegleria fowleri, induces inflammatory responses in BV-2 microglial cells in vitro. Parasit Vectors 2020; 13(1): 41 https://doi.org/10.1186/s13071-020-3909-6
pmid: 31996242
122
Z Movahedi, MR Shokrollahi, M Aghaali, H Heydari. Primary amoebic meningoencephalitis in an Iranian infant. Case Rep Med 2012; 2012: 782854 https://doi.org/10.1155/2012/782854
pmid: 22899941
123
N Mittal, L Mahajan, Z Hussain, P Gupta, S Khurana. Primary amoebic meningoencephalitis in an infant. Indian J Med Microbiol 2019; 37(1): 120–122 https://doi.org/10.4103/ijmm.IJMM_18_371
pmid: 31424023
124
FL Schuster, GS Visvesvara. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 2004; 34(9): 1001–1027 https://doi.org/10.1016/j.ijpara.2004.06.004
pmid: 15313128
125
LL Zhang, M Wu, BC Hu, HL Chen, JR Pan, W Ruan, LN Yao. Identification and molecular typing of Naegleria fowleri from a patient with primary amebic meningoencephalitis in China. Int J Infect Dis 2018; 72: 28–33 https://doi.org/10.1016/j.ijid.2018.05.001
pmid: 29751112
LG Capewell, AM Harris, JS Yoder, JR Cope, BA Eddy, SL Roy, GS Visvesvara, LM Fox, MJ Beach. Diagnosis, clinical course, and treatment of primary amoebic meningoencephalitis in the United States, 1937–2013. J Pediatric Infect Dis Soc 2015; 4(4): e68–e75 https://doi.org/10.1093/jpids/piu103
pmid: 26582886
129
TYY Ong, NA Khan, R Siddiqui. Brain-eating amoebae: predilection sites in the brain and disease outcome. J Clin Microbiol 2017; 55(7): 1989–1997 https://doi.org/10.1128/JCM.02300-16
pmid: 28404683
130
E Lopez-Corella, B De Leon, JF de Jonckheere. Primary amebic meningoencephalitis caused by Naegleria fowleri in an adolescent from Huetamo, Michoacan, Mexico. Bol Méd Hosp Infant México 1989; 46(9): 619–622
131
ND Barnett, AM Kaplan, RJ Hopkin, MA Saubolle, MF Rudinsky. Primary amoebic meningoencephalitis with Naegleria fowleri: clinical review. Pediatr Neurol 1996; 15(3): 230–234 https://doi.org/10.1016/S0887-8994(96)00173-7
pmid: 8916161
AJ Martinez. Free-living amebas: natural history, prevention, diagnosis, pathology and treatment of disease. CRC Press, 1985
134
Y Sugita, T Fujii, I Hayashi, T Aoki, T Yokoyama, M Morimatsu, T Fukuma, Y Takamiya. Primary amebic meningoencephalitis due to Naegleria fowleri: an autopsy case in Japan. Pathol Int 1999; 49(5): 468–470 https://doi.org/10.1046/j.1440-1827.1999.00893.x
pmid: 10417693
B da Rocha-Azevedo, HB Tanowitz, F Marciano-Cabral. Diagnosis of infections caused by pathogenic free-living amoebae. Interdiscip Perspect Infect Dis 2009; 2009: 251406 https://doi.org/10.1155/2009/251406
pmid: 19657454
140
S Hebbar, I Bairy, N Bhaskaranand, S Upadhyaya, MS Sarma, AK Shetty. Fatal case of Naegleria fowleri meningo-encephalitis in an infant: case report. Ann Trop Paediatr 2005; 25(3): 223–226 https://doi.org/10.1179/146532805X58166
pmid: 16156990
141
Centers for Disease Control and Prevention. Update on emerging infections: news from the Centers for Disease Control and Prevention. Primary amebic meningoencephalitis—Arizona, Florida, and Texas, 2007. Ann Emerg Med 2009; 54(3): 469–471 https://doi.org/10.1016/j.annemergmed.2009.07.007
pmid: 19708086
142
AJ Martinez, GS Visvesvara. Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid. Clin Lab Med 1991; 11(4): 861–872 https://doi.org/10.1016/S0272-2712(18)30524-9
pmid: 1802525
143
JJ Pugh, RA Levy. Naegleria fowleri: diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments. ACS Chem Neurosci 2016; 7(9): 1178–1179 https://doi.org/10.1021/acschemneuro.6b00232
pmid: 27525348
144
Centers for Disease Control and Prevention (CDC). Investigational drug available directly from CDC for the treatment of infections with free-living amebae. MMWR Morb Mortal Wkly Rep 2013; 62(33): 666
pmid: 23965830
145
GS Visvesvara. Free-living amebae as opportunistic agents of human disease. J Neuroparasitology 2010; 1: 41–53
146
GS Visvesvara, MJ Peralta, FH Brandt, M Wilson, C Aloisio, E Franko. Production of monoclonal antibodies to Naegleria fowleri, agent of primary amebic meningoencephalitis. J Clin Microbiol 1987; 25(9): 1629–1634 https://doi.org/10.1128/jcm.25.9.1629-1634.1987
pmid: 3308948
147
J Behets, F Seghi, P Declerck, L Verelst, L Duvivier, A Van Damme, F Ollevier. Detection of Naegleria spp. and Naegleria fowleri: a comparison of flagellation tests, ELISA and PCR. Water Sci Technol 2003; 47(3): 117–122 https://doi.org/10.2166/wst.2003.0177
pmid: 12639015
148
FL Reveiller, MP Varenne, C Pougnard, PA Cabanes, E Pringuez, B Pourima, S Legastelois, P Pernin. An enzyme-linked immunosorbent assay (ELISA) for the identification of Naegleria fowleri in environmental water samples. J Eukaryot Microbiol 2003; 50(2): 109–113 https://doi.org/10.1111/j.1550-7408.2003.tb00244.x
pmid: 12744523
149
LF Lares-Jiménez, MA Borquez-Román, R Alfaro-Sifuentes, MM Meza-Montenegro, R Casillas-Hernández, F Lares-Villa. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp Parasitol 2018; 189: 28–33 https://doi.org/10.1016/j.exppara.2018.04.011
pmid: 29673623
150
FL Réveiller, PA Cabanes, F Marciano-Cabral. Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri. Parasitol Res 2002; 88(5): 443–450 https://doi.org/10.1007/s00436-002-0591-x
pmid: 12049462
151
Y Qvarnstrom, GS Visvesvara, R Sriram, AJ da Silva. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 2006; 44(10): 3589–3595 https://doi.org/10.1128/JCM.00875-06
pmid: 17021087
152
WM Hikal, MA Dkhil. Nested PCR assay for the rapid detection of Naegleria fowleri from swimming pools in Egypt. Acta Ecol Sin 2018; 38(2): 102–107
153
M Schild, C Gianinazzi, B Gottstein, N Müller. PCR-based diagnosis of Naegleria sp. infection in formalin-fixed and paraffin-embedded brain sections. J Clin Microbiol 2007; 45(2): 564–567 https://doi.org/10.1128/JCM.01357-06
pmid: 17121998
154
J Xue, K Caton, SP Sherchan. Comparison of next-generation droplet digital PCR with quantitative PCR for enumeration of Naegleria fowleri in environmental water and clinical samples. Lett Appl Microbiol 2018; 67(4): 322–328 https://doi.org/10.1111/lam.13051
pmid: 30007064
155
A Panda, BR Mirdha, N Rastogi, S Kasuhik. Understanding the true burden of “Naegleria fowleri” (Vahlkampfiidae) in patients from Northern states of India: source tracking and significance. Eur J Protistol 2020; 76: 125726 https://doi.org/10.1016/j.ejop.2020.125726
pmid: 32682925
S Gupta, SR Das. Stock cultures of free-living amebas: effect of temperature on viability and pathogenicity. J Parasitol 1999; 85(1): 137–139 https://doi.org/10.2307/3285719
pmid: 10207381
158
J Diaz. Seasonal primary amebic meningoencephalitis (PAM) in the south: summertime is PAM time. J La State Med Soc 2012; 164(3): 148–150, 152–155
pmid: 22866356
RV Lawande, SN Abraham, I John, LJ Egler. Recovery of soil Amebas from the nasal passages of children during the dusty harmattan period in Zaria. Am J Clin Pathol 1979; 71(2): 201–203 https://doi.org/10.1093/ajcp/71.2.201
pmid: 425935
162
JA Ugonabo, HC Gugnani. Nasal carriage of Naegleria fowleri and its environmental occurrence in Borno State, Nigeria. J Commun Dis 1989; 21(2): 111–113
pmid: 2809145
163
S Shenoy, G Wilson, HV Prashanth, K Vidyalakshmi, B Dhanashree, R Bharath. Primary meningoencephalitis by Naegleria fowleri: first reported case from Mangalore, South India. J Clin Microbiol 2002; 40(1): 309–310 https://doi.org/10.1128/JCM.40.1.309-310.2002
pmid: 11773141
164
E Grace, S Asbill, K Virga. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother 2015; 59(11): 6677–6681 https://doi.org/10.1128/AAC.01293-15
pmid: 26259797
165
SM Goswick, GM Brenner. Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob Agents Chemother 2003; 47(2): 524–528 https://doi.org/10.1128/AAC.47.2.524-528.2003
pmid: 12543653
166
JH Kim, SY Jung, YJ Lee, KJ Song, D Kwon, K Kim, S Park, KI Im, HJ Shin. Effect of therapeutic chemical agentsin vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother 2008; 52(11): 4010–4016 https://doi.org/10.1128/AAC.00197-08
pmid: 18765686
167
CA Rice, BL Colon, M Alp, H Göker, DW Boykin, DE Kyle. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens. Antimicrob Agents Chemother 2015; 59(4): 2037–2044 https://doi.org/10.1128/AAC.05122-14
pmid: 25605363
168
A Debnath, CM Calvet, G Jennings, W Zhou, A Aksenov, MR Luth, R Abagyan, WD Nes, JH McKerrow, LM Podust. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis 2017; 11(12): e0006104 https://doi.org/10.1371/journal.pntd.0006104
pmid: 29284029
169
JI Escrig, HJ Hahn, A Debnath. Activity of auranofin against multiple genotypes of Naegleria fowleri and its synergistic effect with amphotericin B in vitro. ACS Chem Neurosci 2020; 11(16): 2464–2471 https://doi.org/10.1021/acschemneuro.0c00165
pmid: 32392039
170
JF De Jonckheere. Isoenzyme and total protein-analysis by agarose isoelectric-focusing, and taxonomy of the genus Acanthamoeba. J Protozool 1983; 30(4): 701–706 https://doi.org/10.1111/j.1550-7408.1983.tb05346.x
171
H Moura, S Wallace, GS Visvesvara. Acanthamoeba healyi n. sp. and the isoenzyme and immunoblot profiles of Acanthamoeba spp., groups 1 and 3. J Protozool 1992; 39(5): 573–583 https://doi.org/10.1111/j.1550-7408.1992.tb04853.x
pmid: 1522539
172
J Walochnik, K Sommer, A Obwaller, EM Haller-Schober, H Aspöck. Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitol Res 2004; 92(4): 289–298 https://doi.org/10.1007/s00436-003-1041-0
pmid: 14722757
J Walochnik, U Scheikl, EM Haller-Schober. Twenty years of Acanthamoeba diagnostics in Austria. J Eukaryot Microbiol 2015; 62(1): 3–11 https://doi.org/10.1111/jeu.12149
pmid: 25047131
175
HS Behera, G Satpathy, M Tripathi. Isolation and genotyping of Acanthamoeba spp. from Acanthamoeba meningitis/meningoencephalitis (AME) patients in India. Parasit Vectors 2016; 9(1): 442 https://doi.org/10.1186/s13071-016-1729-5
pmid: 27507421
176
M Khorsandi Rafsanjani, E Hajialilo, M Saraei, SA Alizadeh, A Javadi. Isolation and molecular identification of Acanthamoeba and Naegleria from agricultural water canal in Qazvin, Iran. Iran J Parasitol 2020; 15(3): 393–402
pmid: 33082804
HA Gardner, AJ Martinez, GS Visvesvara, A Sotrel. Granulomatous amebic encephalitis in an AIDS patient. Neurology 1991; 41(12): 1993–1995 https://doi.org/10.1212/WNL.41.12.1993
pmid: 1745363
180
C Di Gregorio, F Rivasi, N Mongiardo, B De Rienzo, S Wallace, GS Visvesvara. Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 1992; 116(12): 1363–1365
pmid: 1456885
181
DI Chung, HH Kong, TH Kim, MY Hwang, HS Yu, HC Yun, SY Seol. Bacterial endosymbiosis within the cytoplasm of Acanthamoeba lugdunensis isolated from a contact lens storage case. Korean J Parasitol 1997; 35(2): 127–133 https://doi.org/10.3347/kjp.1997.35.2.127
pmid: 9241987
182
F Faude, S Sünnemann, C Retzlaff, T Meier, P Wiedemann. Therapy refractory keratitis. Contact lens-induced keratitis caused by Acanthamoeba palestinensis. Ophthalmologe 1997; 94(6): 448–449
pmid: 9312323
183
MT García, S Jones, C Pelaz, RD Millar, Y Abu Kwaik. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 2007; 9(5): 1267–1277 https://doi.org/10.1111/j.1462-2920.2007.01245.x
pmid: 17472639
184
Y Qvarnstrom, TA Nerad, GS Visvesvara. Characterization of a new pathogenic Acanthamoeba species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. J Eukaryot Microbiol 2013; 60(6): 626–633 https://doi.org/10.1111/jeu.12069
pmid: 23879685
185
LM van Zyl, N Andrew, M Chehade, TA Sadlon, PR Badenoch. Acanthamoeba lenticulata keratitis in a hard contact lens wearer. Clin Exp Ophthalmol 2013; 41(8): 810–812 https://doi.org/10.1111/ceo.12104
pmid: 23448683
186
A González-Robles, M Omaña-Molina, L Salazar-Villatoro, C Flores-Maldonado, J Lorenzo-Morales, M Reyes-Batlle, F Arnalich-Montiel, A Martínez-Palomo. Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: structure and in vitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers. Exp Parasitol 2017; 183: 245–253 https://doi.org/10.1016/j.exppara.2017.09.018
pmid: 28974450
187
D Wu, K Qiao, M Feng, Y Fu, J Cai, Y Deng, H Tachibana, X Cheng. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J Eukaryot Microbiol 2018; 65(2): 191–199 https://doi.org/10.1111/jeu.12454
pmid: 28787535
A Singh, M Acharya, N Jose, A Gandhi, S Sharma. 18S rDNA sequencing aided diagnosis of Acanthamoeba jacobsi keratitis—a case report. Indian J Ophthalmol 2019; 67(11): 1886–1888 https://doi.org/10.4103/ijo.IJO_2019_18
pmid: 31638063
190
ME Ávila-Blanco, T Martín-Pérez, J Ventura-Juárez, J Pérez-Serrano. Experimental keratitis in rats caused by Acanthamoeba griffini: a kinetic histopathological study. Parasite Immunol 2020; 42(3): e12692 https://doi.org/10.1111/pim.12692
pmid: 31856305
191
I Hasni, J Andréani, P Colson, B La Scola. Description of virulent factors and horizontal gene transfers of keratitis-associated amoeba Acanthamoeba triangularis by genome analysis. Pathogens 2020; 9(3): E217 https://doi.org/10.3390/pathogens9030217
pmid: 32188120
192
S Roshni Prithiviraj, SGK Rajapandian, H Gnanam, R Gunasekaran, P Mariappan, S Sankalp Singh, L Prajna. Clinical presentations, genotypic diversity and phylogenetic analysis of Acanthamoeba species causing keratitis. J Med Microbiol 2020; 69(1): 87–95 https://doi.org/10.1099/jmm.0.001121
pmid: 31846414
193
AP Anzil, C Rao, MA Wrzolek, GS Visvesvara, JH Sher, PB Kozlowski. Amebic meningoencephalitis in a patient with AIDS caused by a newly recognized opportunistic pathogen. Leptomyxid ameba. Arch Pathol Lab Med 1991; 115(1): 21–25
pmid: 1987909
194
SM Gordon, JP Steinberg, MH DuPuis, PE Kozarsky, JF Nickerson, GS Visvesvara. Culture isolation of Acanthamoeba species and leptomyxid amebas from patients with amebic meningoencephalitis, including two patients with AIDS. Clin Infect Dis 1992; 15(6): 1024–1030 https://doi.org/10.1093/clind/15.6.1024
pmid: 1457633
195
DA Griesemer, LL Barton, CM Reese, PC Johnson, JA Gabrielsen, D Talwar, GS Visvesvara. Amebic meningoencephalitis caused by Balamuthia mandrillaris. Pediatr Neurol 1994; 10(3): 249–254 https://doi.org/10.1016/0887-8994(94)90034-5
pmid: 8060431
196
M Niyyati, J Lorenzo-Morales, M Rezaeian, CM Martin-Navarro, AM Haghi, SK Maciver, B Valladares. Isolation of Balamuthia mandrillaris from urban dust, free of known infectious involvement. Parasitol Res 2009; 106(1): 279–281 https://doi.org/10.1007/s00436-009-1592-9
pmid: 19685076
197
AM Cabello-Vílchez, M Reyes-Batlle, E Montalbán-Sandoval, CM Martín-Navarro, A López-Arencibia, R Elias-Letts, H Guerra, E Gotuzzo, E Martínez-Carretero, JE Piñero, SK Maciver, B Valladares, J Lorenzo-Morales. The isolation of Balamuthia mandrillaris from environmental sources from Peru. Parasitol Res 2014; 113(7): 2509–2513 https://doi.org/10.1007/s00436-014-3900-2
pmid: 24781021
198
AR Latifi, M Niyyati, J Lorenzo-Morales, A Haghighi, SJ Seyyed Tabaei, Z Lasjerdi. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran. Epidemiol Infect 2016; 144(11): 2456–2461 https://doi.org/10.1017/S095026881600073X
pmid: 27086943
199
GS Visvesvara, AJ Martinez, FL Schuster, GJ Leitch, SV Wallace, TK Sawyer, M Anderson. Leptomyxid ameba, a new agent of amebic meningoencephalitis in humans and animals. J Clin Microbiol 1990; 28(12): 2750–2756 https://doi.org/10.1128/jcm.28.12.2750-2756.1990
pmid: 2280005
200
H Kinde, GS Visvesvara, BC Barr, RW Nordhausen, PHW Chiu. Amebic meningoencephalitis caused by Balamuthia mandrillaris (leptomyxid ameba) in a horse. J Vet Diagn Invest 1998; 10(4): 378–381 https://doi.org/10.1177/104063879801000416
pmid: 9786532
201
PJ Finnin, GS Visvesvara, BE Campbell, DR Fry, RB Gasser. Multifocal Balamuthia mandrillaris infection in a dog in Australia. Parasitol Res 2007; 100(2): 423–426 https://doi.org/10.1007/s00436-006-0302-0
pmid: 17033842
202
PJ Hodge, K Kelers, RB Gasser, GS Visvesvara, S Martig, SN Long. Another case of canine amoebic meningoencephalitis—the challenges of reaching a rapid diagnosis. Parasitol Res 2011; 108(4): 1069–1073 https://doi.org/10.1007/s00436-010-2197-z
pmid: 21161275
203
GC Booton, JR Carmichael, GS Visvesvara, TJ Byers, PA Fuerst. Genotyping of Balamuthia mandrillaris based on nuclear 18S and mitochondrial 16S rRNA genes. Am J Trop Med Hyg 2003; 68(1): 65–69 https://doi.org/10.4269/ajtmh.2003.68.65
pmid: 12556151
204
LF Lares-Jiménez, GC Booton, F Lares-Villa, CA Velázquez-Contreras, PA Fuerst. Genetic analysis among environmental strains of Balamuthia mandrillaris recovered from an artificial lagoon and from soil in Sonora, Mexico. Exp Parasitol 2014; 145(Suppl): S57–S61 https://doi.org/10.1016/j.exppara.2014.07.007
pmid: 25076486
205
Z Kucerova, R Sriram, PP Wilkins, GS Visvesvara. Identification of antigenic targets for immunodetection of Balamuthia mandrillaris infection. Clin Vaccine Immunol 2011; 18(8): 1297–1301 https://doi.org/10.1128/CVI.05082-11
pmid: 21653740
P Lackner, R Beer, G Broessner, R Helbok, B Pfausler, C Brenneis, H Auer, J Walochnik, E Schmutzhard. Acute granulomatous acanthamoeba encephalitis in an immunocompetent patient. Neurocrit Care 2010; 12(1): 91–94 https://doi.org/10.1007/s12028-009-9291-z
pmid: 19847677
208
JR Cope, J Landa, H Nethercut, SA Collier, C Glaser, M Moser, R Puttagunta, JS Yoder, IK Ali, SL Roy. The epidemiology and clinical features of Balamuthia mandrillaris disease in the United States, 1974–2016. Clin Infect Dis 2019; 68(11): 1815–1822 https://doi.org/10.1093/cid/ciy813
pmid: 30239654
209
X Wu, G Yan, S Han, Y Ye, X Cheng, H Gong, H Yu. Diagnosing Balamuthia mandrillaris encephalitis via next-generation sequencing in a 13-year-old girl. Emerg Microbes Infect 2020; 9(1): 1379–1387 https://doi.org/10.1080/22221751.2020.1775130
pmid: 32552393
210
AF Kiderlen, U Laube, E Radam, PS Tata. Oral infection of immunocompetent and immunodeficient mice with Balamuthia mandrillaris amebae. Parasitol Res 2007; 100(4): 775–782 https://doi.org/10.1007/s00436-006-0334-5
pmid: 17111178
211
H Yera, J Dupouy-Camet, JW Jackson, R Sriram, S Sweat, JM Goldstein, GS Visvesvara. In vitro growth, cytopathic effects and clearance of monolayers by clinical isolates of Balamuthia mandrillaris in human skin cell cultures. Exp Parasitol 2015; 156: 61–67 https://doi.org/10.1016/j.exppara.2015.05.004
pmid: 25980370
212
AA Gupte, SN Hocevar, AS Lea, RD Kulkarni, DC Schain, MJ Casey, IR Zendejas-Ruiz, WK Chung, C Mbaeyi, SL Roy, GS Visvesvara, AJ da Silva, J Tallaj, D Eckhoff, JW Baddley. Transmission of Balamuthia mandrillaris through solid organ transplantation: utility of organ recipient serology to guide clinical management. Am J Transplant 2014; 14(6): 1417–1424 https://doi.org/10.1111/ajt.12726
pmid: 24840013
213
EC Farnon, KE Kokko, PJ Budge, C Mbaeyi, EC Lutterloh, Y Qvarnstrom, AJ da Silva, WJ Shieh, SL Roy, CD Paddock, R Sriram, SR Zaki, GS Visvesvara, MJ Kuehnert, Balamuthia Transplant Investigation Teams; J Weiss, K Komatsu, R Manch, A Ramos, L Echeverria, A Moore, P Zakowski, M Kittleson, J Kobashigawa, J Yoder, M Beach, W Mahle, K Kanter, PJ Geraghty, E Navarro, C Hahn, S Fujita, J Stinson, J Trachtenberg, P Byers, M Cheung, T Jie, B Kaplan, R Gruessner, E Bracamonte, C Viscusi, R Gonzalez-Peralta, R Lawrence, J Fratkin, F Butt. Transmission of Balamuthia mandrillaris by organ transplantation. Clin Infect Dis 2016; 63(7): 878–888 https://doi.org/10.1093/cid/ciw422
pmid: 27358357
214
K Kot, NA Łanocha-Arendarczyk, DI Kosik-Bogacka. Amoebas from the genus Acanthamoeba and their pathogenic properties. Ann Parasitol 2018; 64(4): 299–308
pmid: 30720249
AF Kiderlen, U Laube. Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway. Parasitol Res 2004; 94(1): 49–52 https://doi.org/10.1007/s00436-004-1163-z
pmid: 15338290
217
A Matin, R Siddiqui, S Jayasekera, NA Khan. Increasing importance of Balamuthia mandrillaris. Clin Microbiol Rev 2008; 21(3): 435–448 https://doi.org/10.1128/CMR.00056-07
pmid: 18625680
218
SE Nielsen, A Ivarsen, J Hjortdal. Increasing incidence of Acanthamoeba keratitis in a large tertiary ophthalmology department from year 1994 to 2018. Acta Ophthalmol 2020; 98(5): 445–448; https://doi.org/10.1111/aos.14337
pmid: 31885189
219
M Garajová, M Mrva. Amoebae of the genus Acanthamoeba—causative agents of human infections. Epidemiol Mikrobiol Imunol 2011; 60(3): 121–130
pmid: 22132654
A Betanzos, C Bañuelos, E Orozco. Host invasion by pathogenic amoebae: epithelial disruption by parasite proteins. Genes (Basel) 2019; 10(8): E618 https://doi.org/10.3390/genes10080618
pmid: 31416298
JJ Serrano-Luna, I Cervantes-Sandoval, J Calderón, F Navarro-García, V Tsutsumi, M Shibayama. Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii. Can J Microbiol 2006; 52(1): 16–23 https://doi.org/10.1139/w05-114
pmid: 16541155
224
KJ Soto-Arredondo, LL Flores-Villavicencio, JJ Serrano-Luna, M Shibayama, M Sabanero-López. Biochemical and cellular mechanisms regulating Acanthamoeba castellanii adherence to host cells. Parasitology 2014; 141(4): 531–541 https://doi.org/10.1017/S0031182013001923
pmid: 24476561
225
I Castelan-Ramírez, L Salazar-Villatoro, B Chávez-Munguía, C Salinas-Lara, C Sánchez-Garibay, C Flores-Maldonado, D Hernández-Martínez, V Anaya-Martínez, MR Ávila-Costa, AR Méndez-Cruz, M Omaña-Molina. Schwann cell autophagy and necrosis as mechanisms of cell death by Acanthamoeba. Pathogens 2020; 9(6): E458 https://doi.org/10.3390/pathogens9060458
pmid: 32526974
226
TB Cole, DT John. Effects of cytochalasin B on Naegleria fowleri amoebostomes. Proceedings, Annual Meeting, Electron Microscopy Society of America 1985; 43: 482–483
227
A González-Robles, M González-Lázaro, M Omaña-Molina, A Martínez-Palomo. Acanthamoeba castellanii: endocytic structures involved in the ingestion of diverse target elements. Acta Protozool 2009; 48(4): 329–334
228
C Piña-Vázquez, M Reyes-López, G Ortíz-Estrada, M de la Garza, J Serrano-Luna. Host-parasite interaction: parasite-derived and-induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012: 748206 https://doi.org/10.1155/2012/748206
pmid: 22792442
NA Khan, R Siddiqui. Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int J Parasitol 2009; 39(14): 1611–1616 https://doi.org/10.1016/j.ijpara.2009.06.004
pmid: 19580812
231
D Coronado-Velázquez, A Betanzos, J Serrano-Luna, M Shibayama. An in vitro model of the blood-brain barrier: Naegleria fowleri affects the tight junction proteins and activates the microvascular endothelial cells. J Eukaryot Microbiol 2018; 65(6): 804–819 https://doi.org/10.1111/jeu.12522
pmid: 29655298
232
R Siddiqui, R Emes, H Elsheikha, NA Khan. Area 51: How do Acanthamoeba invade the central nervous system? Trends Parasitol 2011; 27(5): 185–189 https://doi.org/10.1016/j.pt.2011.01.005
pmid: 21507718
233
AD Chusattayanond, S Boonsilp, J Kasisit, A Boonmee, S Warit. Thai Acanthamoeba isolate (T4) induced apoptotic death in neuroblastoma cells via the Bax-mediated pathway. Parasitol Int 2010; 59(4): 512–516 https://doi.org/10.1016/j.parint.2010.06.007
pmid: 20601106
234
JM Huang, YT Chang, WC Lin. The biochemical and functional characterization of M28 aminopeptidase protein secreted by Acanthamoeba spp. on host cell interaction. Molecules 2019; 24(24): E4573 https://doi.org/10.3390/molecules24244573
pmid: 31847255
235
J Sissons, S Alsam, G Goldsworthy, M Lightfoot, EL Jarroll, NA Khan. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol 2006; 6(1): 42 https://doi.org/10.1186/1471-2180-6-42
pmid: 16672059
236
A Matin, R Siddiqui, SY Jung, KS Kim, M Stins, NA Khan. Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. J Med Microbiol 2007; 56(8): 1110–1115 https://doi.org/10.1099/jmm.0.47134-0
pmid: 17644721
A Matin, SR Jeong, M Stins, NA Khan. Effects of human serum on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells. J Med Microbiol 2007; 56(1): 30–35 https://doi.org/10.1099/jmm.0.46847-0
pmid: 17172513
S Jayasekera, A Matin, J Sissons, AH Maghsood, NA Khan. Balamuthia mandrillaris stimulates interleukin-6 release in primary human brain microvascular endothelial cells via a phosphatidylinositol 3-kinase-dependent pathway. Microbes Infect 2005; 7(13): 1345–1351 https://doi.org/10.1016/j.micinf.2005.05.001
pmid: 16027019
241
B Rocha-Azevedo, M Jamerson, GA Cabral, FC Silva-Filho, F Marciano-Cabral. The interaction between the amoeba Balamuthia mandrillaris and extracellular matrix glycoproteins in vitro. Parasitology 2007; 134(1): 51–58 https://doi.org/10.1017/S0031182006001272
pmid: 17032481
A Matin, NA Khan. Demonstration and partial characterization of ecto-ATPase in Balamuthia mandrillaris and its possible role in the host-cell interactions. Lett Appl Microbiol 2008; 47(4): 348–354 https://doi.org/10.1111/j.1472-765X.2008.02414.x
pmid: 18761612
244
J Lorenzo-Morales, NA Khan, J Walochnik. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 2015; 22: 10 https://doi.org/10.1051/parasite/2015010
pmid: 25687209
245
S Değerli, N Değerli, D Çamur, Ö Doğan, H İlter. Genotyping by sequencing of Acanthamoeba and Naegleria isolates from the thermal pool distributed throughout Turkey. Acta Parasitol 2020; 65(1): 174–186 https://doi.org/10.2478/s11686-019-00148-3
pmid: 31797194
246
RT Cursons, TJ Brown, EA Keys, KM Moriarty, D Till. Immunity to pathogenic free-living amoebae: role of humoral antibody. Infect Immun 1980; 29(2): 401–407 https://doi.org/10.1128/iai.29.2.401-407.1980
pmid: 7216418
247
A Wojtkowiak-Giera, M Derda, A Kolasa-Wołosiuk, E Hadaś, D Kosik-Bogacka, P Solarczyk, PP Jagodziński, E Wandurska-Nowak. Toll-like receptors in the brain of mice following infection with Acanthamoeba spp. Parasitol Res 2016; 115(11): 4335–4344 https://doi.org/10.1007/s00436-016-5217-9
pmid: 27511368
248
M Derda, A Wojtkowiak-Giera, A Kolasa-Wołosiuk, D Kosik-Bogacka, E Hadaś, PP Jagodziński, E Wandurska-Nowak. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4). Exp Parasitol 2016; 165: 30–34 https://doi.org/10.1016/j.exppara.2016.02.012
pmid: 26940205
249
W Pumidonming, J Walochnik, E Dauber, F Petry. Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology 2011; 216(1–2): 225–233 https://doi.org/10.1016/j.imbio.2010.05.002
pmid: 20627448
250
A Ferrante, B Rowan-Kelly. Activation of the alternative pathway of complement by Acanthamoeba culbertsoni. Clin Exp Immunol 1983; 54(2): 477–485
pmid: 6418422
251
GL Stewart, K Shupe, I Kim, RE Silvany, H Alizadeh, JP McCulley, JY Niederkorn. Antibody-dependent neutrophil-mediated killing of Acanthamoeba castellanii. Int J Parasitol 1994; 24(5): 739–742 https://doi.org/10.1016/0020-7519(94)90129-5
pmid: 7928077
252
F Marciano-Cabral, DM Toney. The interaction of Acanthamoeba spp. with activated macrophages and with macrophage cell lines. J Eukaryot Microbiol 1998; 45(4): 452–458 https://doi.org/10.1111/j.1550-7408.1998.tb05099.x
pmid: 9703682
253
N Benedetto, F Rossano, F Gorga, A Folgore, M Rao, C Romano Carratelli. Defense mechanisms of IFN-γ and LPS-primed murine microglia against Acanthamoeba castellanii infection. Int Immunopharmacol 2003; 3(6): 825–834 https://doi.org/10.1016/S1567-5769(03)00047-X
pmid: 12781699
254
A Mattana, M Sanna, A Cano, G Delogu, G Erre, CW Roberts, FL Henriquez, PL Fiori, P Cappuccinelli. Acanthamoeba castellanii genotype T4 stimulates the production of interleukin-10 as well as proinflammatory cytokines in THP-1 cells, human peripheral blood mononuclear cells, and human monocyte-derived macrophages. Infect Immun 2016; 84(10): 2953–2962 https://doi.org/10.1128/IAI.00345-16
pmid: 27481240
255
A Cano, A Mattana, S Woods, FL Henriquez, J Alexander, CW Roberts. Acanthamoeba activates macrophages predominantly through Toll-like receptor 4- and MyD88-dependent mechanisms to induce interleukin-12 (IL-12) and IL-6. Infect Immun 2017; 85(6): e01054-16 https://doi.org/10.1128/IAI.01054-16
pmid: 28348053
256
KH Kim, CO Shin, K Im. Natural killer cell activity in mice infected with free-living amoeba with reference to their pathogenicity. Korean J Parasitol 1993; 31(3): 239–248 https://doi.org/10.3347/kjp.1993.31.3.239
pmid: 8241083
257
JY Kim, BK Na, KJ Song, MH Park, YK Park, TS Kim. Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitol Res 2012; 111(4): 1673–1682 https://doi.org/10.1007/s00436-012-3006-7
pmid: 22752747
258
ZH Huang, A Ferrante, RF Carter. Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis. J Infect Dis 1999; 179(5): 1305–1308 https://doi.org/10.1086/314731
pmid: 10191243
259
FL Schuster, S Honarmand, GS Visvesvara, CA Glaser. Detection of antibodies against free-living amoebae Balamuthia mandrillaris and Acanthamoeba species in a population of patients with encephalitis. Clin Infect Dis 2006; 42(9): 1260–1265 https://doi.org/10.1086/503037
pmid: 16586385
260
DM Toney, F Marciano-Cabral. Resistance of Acanthamoeba species to complement lysis. J Parasitol 1998; 84(2): 338–344 https://doi.org/10.2307/3284492
pmid: 9576508
261
S Jayasekera, J Sissons, J Tucker, C Rogers, D Nolder, D Warhurst, S Alsam, JML White, EM Higgins, NA Khan. Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells. J Med Microbiol 2004; 53(10): 1007–1012 https://doi.org/10.1099/jmm.0.45721-0
pmid: 15358823
262
A Matin, S Nawaz, SY Jung. Report: Effect of macrophage alone or primed with cytokines on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. Pak J Pharm Sci 2018; 31(6): 2553–2559
pmid: 30473531
263
P Guzmán-Téllez, M Martínez-Castillo, N Flores-Huerta, G Rosales-Morgan, J Pacheco-Yépez, M la Garza, J Serrano-Luna, M Shibayama. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15(10): 919–936 https://doi.org/10.2217/fmb-2019-0275
pmid: 32716210
264
SL Robbins, V Kumar, RS Cotran. Robbins and Cotran Pathologic Basis of Disease. 8th ed. Philadelphia, PA: Saunders/Elsevier, 2010
265
AM Baig. Granulomatous amoebic encephalitis: ghost response of an immunocompromised host? J Med Microbiol 2014; 63(Pt 12): 1763–1766 https://doi.org/10.1099/jmm.0.081315-0
pmid: 25239626
266
DC Lee, SE Fiester, LA Madeline, JW Fulcher, ME Ward, CM Schammel, RK Hakimi. Acanthamoeba spp. and Balamuthia mandrillaris leading to fatal granulomatous amebic encephalitis. Forensic Sci Med Pathol 2020; 16(1): 171–176 https://doi.org/10.1007/s12024-019-00202-6
pmid: 31773473
267
SE Vernon, BC Acar, SM Pham, D Fertel. Acanthamoeba infection in lung transplantation: report of a case and review of the literature. Transpl Infect Dis 2005; 7(3–4): 154–157 https://doi.org/10.1111/j.1399-3062.2005.00113.x
pmid: 16390406
268
AG Duarte, F Sattar, B Granwehr, JF Aronson, Z Wang, S Lick. Disseminated acanthamoebiasis after lung transplantation. J Heart Lung Transplant 2006; 25(2): 237–240 https://doi.org/10.1016/j.healun.2005.09.006
pmid: 16446227
R Reddy, M Vijayasaradhi, MS Uppin, S Challa, A Jabeen, R Borghain. Acanthamoeba meningoencephalitis in an immunocompetent patient: an autopsy case report. Neuropathology 2011; 31(2): 183–187 https://doi.org/10.1111/j.1440-1789.2010.01151.x
pmid: 20667014
271
M Sütçü, H Aktürk, S Gülümser-Şişko, M Acar, OB Erol, A Somer, B Bilgiç, N Salman. Granulomatous amebic encephalitis caused by Acanthamoeba in an immuncompetent child. Turk J Pediatr 2018; 60(3): 340–343 https://doi.org/10.24953/turkjped.2018.03.019
pmid: 30511552
272
KW Shehab, K Aboul-Nasr, SP Elliott. Balamuthia mandrillaris granulomatous amebic encephalitis with renal dissemination in a previously healthy child: case report and review of the pediatric literature. J Pediatric Infect Dis Soc 2018; 7(3): e163–e168 https://doi.org/10.1093/jpids/pix089
pmid: 29096002
273
L Wang, W Cheng, B Li, Z Jian, X Qi, D Sun, J Gao, X Lu, Y Yang, K Lin, C Lu, J Chen, C Li, G Wang, T Gao. Balamuthia mandrillaris infection in China: a retrospective report of 28 cases. Emerg Microbes Infect 2020; 9(1): 2348–2357 https://doi.org/10.1080/22221751.2020.1835447
pmid: 33048025
274
Y Yang, X Hu, L Min, X Dong, Y Guan. Balamuthia mandrillaris-related primary amoebic encephalitis in China diagnosed by next generation sequencing and a review of the literature. Lab Med 2020; 51(2): e20–e26
pmid: 31711180
275
FG Bravo, PJ Alvarez, E Gotuzzo. Balamuthia mandrillaris infection of the skin and central nervous system: an emerging disease of concern to many specialties in medicine. Curr Opin Infect Dis 2011; 24(2): 112–117 https://doi.org/10.1097/QCO.0b013e3283428d1e
pmid: 21192259
SL Coven, E Song, S Steward, CR Pierson, JR Cope, IK Ali, MI Ardura, MW Hall, MG Chung, RPS Bajwa. Acanthamoeba granulomatous amoebic encephalitis after pediatric hematopoietic stem cell transplant. Pediatr Transplant 2017; 21(8): e13060 https://doi.org/10.1111/petr.13060
pmid: 28921764
279
DP Ghadage, AC Choure, AB Wankhade, AV Bhore. Opportunistic free: living amoeba now becoming a usual pathogen? Indian J Pathol Microbiol 2017; 60(4): 601–603 https://doi.org/10.4103/IJPM.IJPM_815_16
pmid: 29323087
D Pan, LR Bridges, J du Parcq, U Mahadeva, S Roy, IKM Ali, CA Cosgrove, PL Chiodini, L Zhang. A rare cause of left-sided weakness in an elderly woman: amoebic encephalitis. Lancet 2020; 396(10244): e1 https://doi.org/10.1016/S0140-6736(20)31365-9
pmid: 32653069
283
FG Bravo. Cutaneous manifestations of infection by free-living amebas. In: Tyring SK. Tropical Dermatology. Philadelphia: Churchill Livingstone, 2006: 49–55
284
SK Kalra, P Sharma, K Shyam, N Tejan, U Ghoshal. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 2020; 208: 107788 https://doi.org/10.1016/j.exppara.2019.107788
pmid: 31647916
285
A Bakardjiev, PH Azimi, N Ashouri, DP Ascher, D Janner, FL Schuster, GS Visvesvara, C Glaser. Amebic encephalitis caused by Balamuthia mandrillaris: report of four cases. Pediatr Infect Dis J 2003; 22(5): 447–452 https://doi.org/10.1097/01.inf.0000066540.18671.f8
pmid: 12792389
286
M Seijo Martinez, G Gonzalez-Mediero, P Santiago, A Rodriguez De Lope, J Diz, C Conde, GS Visvesvara. Granulomatous amebic encephalitis in a patient with AIDS: isolation of acanthamoeba sp. Group II from brain tissue and successful treatment with sulfadiazine and fluconazole. J Clin Microbiol 2000; 38(10): 3892–3895 https://doi.org/10.1128/JCM.38.10.3892-3895.2000
pmid: 11015431
287
VK Thamtam, MS Uppin, A Pyal, S Kaul, JY Rani, C Sundaram. Fatal granulomatous amoebic encephalitis caused by Acanthamoeba in a newly diagnosed patient with systemic lupus erythematosus. Neurol India 2016; 64(1): 101–104 https://doi.org/10.4103/0028-3886.173662
pmid: 26755000
288
CA Slater, JZ Sickel, GS Visvesvara, RC Pabico, AA Gaspari. Brief report: successful treatment of disseminated Acanthamoeba infection in an immunocompromised patient. N Engl J Med 1994; 331(2): 85–87 https://doi.org/10.1056/NEJM199407143310204
pmid: 8208270
289
R Walia, JG Montoya, GS Visvesvera, GC Booton, RL Doyle. A case of successful treatment of cutaneous Acanthamoeba infection in a lung transplant recipient. Transpl Infect Dis 2007; 9(1): 51–54 https://doi.org/10.1111/j.1399-3062.2006.00159.x
pmid: 17313473
290
J Lorenzo-Morales, AM Cabello-Vílchez, CM Martín-Navarro, E Martínez-Carretero, JE Piñero, B Valladares. Is Balamuthia mandrillaris a public health concern worldwide? Trends Parasitol 2013; 29(10): 483–488 https://doi.org/10.1016/j.pt.2013.07.009
pmid: 23988231
291
JJ Sell, FW Rupp, WW Orrison Jr. Granulomatous amebic encephalitis caused by acanthamoeba. Neuroradiology 1997; 39(6): 434–436 https://doi.org/10.1007/s002340050440
pmid: 9225325
292
CG Shirwadkar, R Samant, M Sankhe, R Deshpande, S Yagi, FL Schuster, R Sriram, GS Visvesvara. Acanthamoeba encephalitis in patient with systemic lupus, India. Emerg Infect Dis 2006; 12(6): 984–986 https://doi.org/10.3201/eid1206.060087
pmid: 16707057
293
S Modica, C Miracco, MG Cusi, G Tordini, VF Muzii, F Iacoangeli, C Nocentini, IKM Ali, S Roy, A Cerase, G Zanelli, A De Luca, F Montagnani. Non-granulomatous cerebellar infection by Acanthamoeba spp. in an immunocompetent host. Infection 2018; 46(6): 885–889 https://doi.org/10.1007/s15010-018-1231-4
pmid: 30288678
294
S Jung, RL Schelper, GS Visvesvara, HT Chang. Balamuthia mandrillaris meningoencephalitis in an immunocompetent patient: an unusual clinical course and a favorable outcome. Arch Pathol Lab Med 2004; 128(4): 466–468 https://doi.org/10.5858/2004-128-466-BMMIAI
pmid: 15043486
295
WT Harrison, B Lecky, CM Hulette. Fatal granulomatous amebic encephalitis in a heart transplant patient: clinical, radiographic, and autopsy findings. J Neuropathol Exp Neurol 2018; 77(11): 1001–1004 https://doi.org/10.1093/jnen/nly089
pmid: 30295806
296
SC Parija, K Dinoop, H Venugopal. Management of granulomatous amebic encephalitis: laboratory diagnosis and treatment. Trop Parasitol 2015; 5(1): 23–28 https://doi.org/10.4103/2229-5070.149889
pmid: 25709949
AY Kang, AY Park, HJ Shin, NA Khan, SK Maciver, SY Jung. Production of a monoclonal antibody against a mannose-binding protein of Acanthamoeba culbertsoni and its localization. Exp Parasitol 2018; 192: 19–24 https://doi.org/10.1016/j.exppara.2018.07.009
pmid: 30031120
299
J Guarner, J Bartlett, WJ Shieh, CD Paddock, GS Visvesvara, SR Zaki. Histopathologic spectrum and immunohistochemical diagnosis of amebic meningoencephalitis. Mod Pathol 2007; 20(12): 1230–1237 https://doi.org/10.1038/modpathol.3800973
pmid: 17932496
300
AF Kiderlen, E Radam, PS Tata. Assessment of Balamuthia mandrillaris-specific serum antibody concentrations by flow cytometry. Parasitol Res 2009; 104(3): 663–670 https://doi.org/10.1007/s00436-008-1243-6
pmid: 19039606
301
AF Kiderlen, E Radam, FL Schuster, EV Adjogoua, C Akoua-Koffi, FH Leendertz. Balamuthia and Acanthamoeba-binding antibodies in West African human sera. Exp Parasitol 2010; 126(1): 28–32 https://doi.org/10.1016/j.exppara.2009.10.015
pmid: 19896940
AF Kiderlen, E Radam, A Lewin. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene. BMC Microbiol 2008; 8(1): 210 https://doi.org/10.1186/1471-2180-8-210
pmid: 19055756
304
S Yagi, GC Booton, GS Visvesvara, FL Schuster. Detection of Balamuthia mitochondrial 16S rRNA gene DNA in clinical specimens by PCR. J Clin Microbiol 2005; 43(7): 3192–3197 https://doi.org/10.1128/JCM.43.7.3192-3197.2005
pmid: 16000434
305
S Gabriel, AK Rasheed, R Siddiqui, JN Appaturi, LB Fen, NA Khan. Development of nanoparticle-assisted PCR assay in the rapid detection of brain-eating amoebae. Parasitol Res 2018; 117(6): 1801–1811 https://doi.org/10.1007/s00436-018-5864-0
pmid: 29675682
306
AP Norgan, LM Sloan, BS Pritt. Detection of Naegleria fowleri, Acanthamoeba spp, and Balamuthia mandrillaris in formalin-fixed, paraffin-embedded tissues by real-time multiplex polymerase chain reaction. Am J Clin Pathol 2019; 152(6): 799–807 https://doi.org/10.1093/ajcp/aqz103
pmid: 31415080
307
MR Wilson, NM Shanbhag, MJ Reid, NS Singhal, JM Gelfand, HA Sample, B Benkli, BD O’Donovan, IK Ali, MK Keating, TH Dunnebacke, MD Wood, A Bollen, JL DeRisi. Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol 2015; 78(5): 722–730 https://doi.org/10.1002/ana.24499
pmid: 26290222
308
ML Silva-Vergara, ER Da Cunha Colombo, E De Figueiredo Vissotto, AC Silva, JE Chica, RM Etchebehere, SJ Adad. Disseminated Balamuthia mandrillaris amoeba infection in an AIDS patient from Brazil. Am J Trop Med Hyg 2007; 77(6): 1096–1098 https://doi.org/10.4269/ajtmh.2007.77.1096
pmid: 18165529
309
RA Silva, SA Araújo, IF Avellar, JE Pittella, JT Oliveira, PP Christo. Granulomatous amoebic meningoencephalitis in an immunocompetent patient. Arch Neurol 2010; 67(12): 1516–1520 https://doi.org/10.1001/archneurol.2010.309
pmid: 21149814
310
JH Diaz. The public health threat from Balamuthia mandrillaris in the southern United States. J La State Med Soc 2011; 163(4): 197–204
pmid: 21954652
311
A Krasaelap, S Prechawit, J Chansaenroj, P Punyahotra, T Puthanakit, K Chomtho, S Shuangshoti, J Amornfa, Y Poovorawan. Fatal Balamuthia amebic encephalitis in a healthy child: a case report with review of survival cases. Korean J Parasitol 2013; 51(3): 335–341 https://doi.org/10.3347/kjp.2013.51.3.335
pmid: 23864745
TN Pindyck, LE Dvorscak, BL Hart, MD Palestine, JE Gallant, SE Allen, KS SantaCruz. Fatal granulomatous amebic encephalitis due to Balamuthia mandrillaris in New Mexico: a case report. Open Forum Infect Dis 2014; 1(2): ofu062 https://doi.org/10.1093/ofid/ofu062
pmid: 25734132
314
L Retana-Moreira, E Abrahams-Sandí, AM Cabello-Vílchez, M Reyes-Batlle, B Valladares, E Martínez-Carretero, JE Piñero, J Lorenzo-Morales. Isolation and molecular characterization of Acanthamoeba and Balamuthia mandrillaris from combination shower units in Costa Rica. Parasitol Res 2014; 113(11): 4117–4122 https://doi.org/10.1007/s00436-014-4083-6
pmid: 25134946
315
S Gabriel, NA Khan, R Siddiqui. Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. J Water Health 2019; 17(1): 160–171 https://doi.org/10.2166/wh.2018.164
pmid: 30758312
316
C Mbaeyi, CG Hlth. Notes From the Field: transplant-transmitted Balamuthia mandrillaris—Arizona, 2010 (Reprinted from MMWR, vol 59, pg 1182, 2010). JAMA 2011; 305(3): 249
FL Schuster, BJ Guglielmo, GS Visvesvara. In-vitro activity of miltefosine and voriconazole on clinical isolates of free-living amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. J Eukaryot Microbiol 2006; 53(2): 121–126 https://doi.org/10.1111/j.1550-7408.2005.00082.x
pmid: 16579814
320
JS Doyle, E Campbell, A Fuller, DW Spelman, R Cameron, G Malham, D Gin, SR Lewin. Balamuthia mandrillaris brain abscess successfully treated with complete surgical excision and prolonged combination antimicrobial therapy. J Neurosurg 2011; 114(2): 458–462 https://doi.org/10.3171/2010.10.JNS10677
pmid: 21073255
321
R Siddiqui, Y Aqeel, NA Khan. Killing the dead: chemotherapeutic strategies against free-living cyst-forming protists (Acanthamoeba sp. and Balamuthia mandrillaris). J Eukaryot Microbiol 2013; 60(3): 291–297 https://doi.org/10.1111/jeu.12026
pmid: 23346945
AR Tunkel, CA Glaser, KC Bloch, JJ Sejvar, CM Marra, KL Roos, BJ Hartman, SL Kaplan, WM Scheld, RJ; Infectious Diseases Society of America Whitley. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2008; 47(3): 303–327 https://doi.org/10.1086/589747
pmid: 18582201
324
LC Cary, E Maul, C Potter, P Wong, PT Nelson, C Given 2nd, W Robertson Jr. Balamuthia mandrillaris meningoencephalitis: survival of a pediatric patient. Pediatrics 2010; 125(3): e699–e703 https://doi.org/10.1542/peds.2009-1797
pmid: 20123772
325
L Orozco, W Hanigan, M Khan, J Fratkin, M Lee. Neurosurgical intervention in the diagnosis and treatment of Balamuthia mandrillaris encephalitis. J Neurosurg 2011; 115(3): 636–640 https://doi.org/10.3171/2011.4.JNS102057
pmid: 21619411
326
MT Laurie, CV White, H Retallack, W Wu, MS Moser, JA Sakanari, K Ang, C Wilson, MR Arkin, JL DeRisi. Functional assessment of 2,177 U.S. and international drugs identifies the quinoline nitroxoline as a potent amoebicidal agent against the pathogen Balamuthia mandrillaris. MBio 2018; 9(5): e02051-18 https://doi.org/10.1128/mBio.02051-18
pmid: 30377287
327
TR Deetz, MH Sawyer, G Billman, FL Schuster, GS Visvesvara. Successful treatment of Balamuthia amoebic encephalitis: presentation of 2 cases. Clin Infect Dis 2003; 37(10): 1304–1312 https://doi.org/10.1086/379020
pmid: 14583863
328
BLC Gondim, J da Silva Catarino, MAD de Sousa, M de Oliveira Silva, MR Lemes, TM de Carvalho-Costa, TR de Lima Nascimento, JR Machado, V Rodrigues, CJF Oliveira, LR Cançado Castellano, MV da Silva. Nanoparticle-mediated drug delivery: blood–brain barrier as the main obstacle to treating infectious diseases in CNS. Curr Pharm Des 2019; 25(37): 3983–3996 https://doi.org/10.2174/1381612825666191014171354
pmid: 31612822