Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (6): 842-866   https://doi.org/10.1007/s11684-021-0865-2
  本期目录
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease
Hongze Zhang, Xunjia Cheng()
Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
 全文: PDF(840 KB)   HTML
Abstract

Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.

Key wordsfree-living amoebae    central nervous system infection    primary amoebic meningoencephalitis    granulomatous amoebic encephalitis
收稿日期: 2020-12-21      出版日期: 2021-12-27
Corresponding Author(s): Xunjia Cheng   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(6): 842-866.
Hongze Zhang, Xunjia Cheng. Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front. Med., 2021, 15(6): 842-866.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0865-2
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I6/842
Naegleria fowleri Acanthamoeba spp. Balamuthia mandrillaris
Trophozoite stage Diameter 10–30 μm, speed ?about 1.0 μm/s Diameter 15–35 μm, speed ?0.3–0.4 μm/s Diameter 10–60 μm, speed about ?0.25 μm/s
Cyst stage Diameter 7–15 μm, cysts not ?formed in brain tissue Diameter 10–15 μm, cysts ?formed in brain tissue Diameter 10–30 μm, cysts formed ?in brain tissue
Flagellate stage Transformed from trophozoites Not found Not found
Environmental habitat Warm fresh waters, soil, dust Freshwater, soil, dusty air, ?hospital and household ?environments Soil, freshwater
CNS infection Primary amoebic ?meningoencephalitis (PAM) Granulomatous amoebic ?encephalitis (GAE) GAE
Susceptible host Immunocompetent children ?and young adults Mainly immunocompromised ?individuals Immunocompetent and ?immunocompromised individuals
Portal of entry Olfactory neuroepithelium Nasopharyngeal or cutaneous ?epithelium Mainly in cutaneous epithelium
Incubation period Days Weeks to months Weeks to months, even years
Clinical manifestations Headache, fever, nausea, nuchal ?rigidity, personality changes, ?seizures, coma, behavioral ?abnormality Headache, irritability, fever, ?nausea, seizures, confusion, ?ataxia, hemiparesis, abnormal ?behavior Headache, irritability, fever, nausea, ?stiff neck, sinus infection, behavioral ?abnormality
CSF Elevated WBCs, generally low ?glucose level and high protein ?concentration, detected ?trophozoite, no flagellate ?or cyst Elevated WBCs and protein, ?hydrocephalus, generally low ?glucose level Elevated WBCs and protein, generally ?low glucose level
Neuroimaging Cerebral edema, multifocal ?parenchymal and pseudotumor ?lesions, nonspecific and unhelpful Single and multiple space-?occupying or ring-enhancing ?lesions, not specific Single and multiple space-occupying or ?ring-enhancing lesions, not specific
Diagnosis CSF examination for trophozoites ?and polymorphonuclear leukocytes, ?neuroimaging CT and MRI, ?polyclonal and monoclonal ?antibodies, PCR assays Microscopic staining, ?immunofluorescent microscopy, ?neuroimaging CT and MRI, ?PCR assays, trophozoite and cyst Microscopic staining, immunofluores-?cent microscopy, neuroimaging, PCR ?assays, metagenomic deep sequen-?cing, unsuitable for isolation and ?culture in vitro, trophozoite and ?cyst
Epidemiology Worldwide distribution ?especially warm regions, hot ?summer months Worldwide distribution, any time ?of year Mainly on American continent
Estimated cases >300 >200 ~200
Case fatality rate >95% >90% >90%
Therapy Amphotericin B, azithromycin, ?chlorpromazine, miltefosine, ?rifampin, miconazole and ?fluconazole Voriconazole, sulfadiazine, ?fluconazole, pentamidine, ?itraconazole, rifampin, ?meropenem, flucytosine, ?liposomal amphotericin B, ?and miltefosine Fluconazole, pentamidine, sulfadiazine, ?itraconazole, rifampin, azithromycin, ?flucytosine, linezolid, liposomal ?amphotericin B, and miltefosine
Prognosis Poor Poor Poor
Tab.1  
Fig.1  
Fig.2  
1 C Dye. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci 2014; 369(1645): 20130426
https://doi.org/10.1098/rstb.2013.0426 pmid: 24821913
2 GS Visvesvara, H Moura, FL Schuster. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50(1): 1–26
https://doi.org/10.1111/j.1574-695X.2007.00232.x pmid: 17428307
3 K Król-Turmińska, A Olender. Human infections caused by free-living amoebae. Ann Agric Environ Med 2017; 24(2): 254–260
https://doi.org/10.5604/12321966.1233568 pmid: 28664704
4 HL Lau, DF De Lima Corvino, FM Jr Guerra, AM Malik, PN Lichtenberger, SH Gultekin, JM Ritter, S Roy, IKM Ali, JR Cope, MJD Post, JA Gonzales Zamora. Granulomatous amoebic encephalitis caused by Acanthamoeba in a patient with AIDS: a challenging diagnosis. Acta Clin Belg 2021; 76(2): 127–131
https://doi.org/10.1080/17843286.2019.1660023 pmid: 31455179
5 C Balczun, PL Scheid. Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses 2017; 9(4): E65
https://doi.org/10.3390/v9040065 pmid: 28368313
6 R Zaheer. Naegleria fowleri—the brain-eating amoeba. J Pak Med Assoc 2013; 63(11): 1456
pmid: 24392545
7 BB Gelman, V Popov, G Chaljub, R Nader, SJ Rauf, HW Nauta, GS Visvesvara. Neuropathological and ultrastructural features of amebic encephalitis caused by Sappinia diploidea. J Neuropathol Exp Neurol 2003; 62(10): 990–998
https://doi.org/10.1093/jnen/62.10.990 pmid: 14575235
8 Y Qvarnstrom, AJ da Silva, FL Schuster, BB Gelman, GS Visvesvara. Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. J Infect Dis 2009; 199(8): 1139–1142
https://doi.org/10.1086/597473 pmid: 19302010
9 GS Visvesvara, R Sriram, Y Qvarnstrom, K Bandyopadhyay, AJ Da Silva, NJ Pieniazek, GA Cabral. Paravahlkampfia francinae n. sp. masquerading as an agent of primary amoebic meningoencephalitis. J Eukaryot Microbiol 2009; 56(4): 357–366
https://doi.org/10.1111/j.1550-7408.2009.00410.x pmid: 19602081
10 G Glöckner, AA Noegel. Comparative genomics in the Amoebozoa clade. Biol Rev Camb Philos Soc 2013; 88(1): 215–225
https://doi.org/10.1111/j.1469-185X.2012.00248.x pmid: 23134060
11 EC Bovee, TL Jahn. Mechanisms of movement in taxonomy of Sarcodina. 3. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst Zool 1966; 15(3): 229–240
https://doi.org/10.2307/2411395 pmid: 5924359
12 AA Schaeffer . Taxonomy of the Amebas; with descriptions of thirty-nine new marine and freshwater species. Washington: The Carnegie Institution of Washington, 1926
13 AV Smirnov, E Chao, ES Nassonova, T Cavalier-Smith. A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist 2011; 162(4): 545–570
https://doi.org/10.1016/j.protis.2011.04.004 pmid: 21798804
14 SM Adl, D Bass, CE Lane, J Lukeš, CL Schoch, A Smirnov, S Agatha, C Berney, MW Brown, F Burki, P Cárdenas, I Čepička, L Chistyakova, J Del Campo, M Dunthorn, B Edvardsen, Y Eglit, L Guillou, V Hampl, AA Heiss, M Hoppenrath, TY James, A Karnkowska, S Karpov, E Kim, M Kolisko, A Kudryavtsev, DJG Lahr, E Lara, L Le Gall, DH Lynn, DG Mann, R Massana, EAD Mitchell, C Morrow, JS Park, JW Pawlowski, MJ Powell, DJ Richter, S Rueckert, L Shadwick, S Shimano, FW Spiegel, G Torruella, N Youssef, V Zlatogursky, Q Zhang. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66(1): 4–119
https://doi.org/10.1111/jeu.12691 pmid: 30257078
15 N Bondarenko, A Glotova, E Nassonova, A Masharsky, A Kudryavtsev, A Smirnov. The complete mitochondrial genome of Vannella simplex (Amoebozoa, Discosea, Vannellida). Eur J Protistol 2018; 63: 83–95
https://doi.org/10.1016/j.ejop.2018.01.006 pmid: 29502046
16 D Corsaro. Update on Acanthamoeba phylogeny. Parasitol Res 2020; 119(10): 3327–3338
https://doi.org/10.1007/s00436-020-06843-9 pmid: 32789533
17 A Samba-Louaka, V Delafont, MH Rodier, E Cateau, Y Héchard. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43(4): 415–434
https://doi.org/10.1093/femsre/fuz011 pmid: 31049565
18 SM Adl, BS Leander, AG Simpson, JM Archibald, OR Anderson, D Bass, SS Bowser, G Brugerolle, MA Farmer, S Karpov, M Kolisko, CE Lane, DJ Lodge, DG Mann, R Meisterfeld, L Mendoza, Ø Moestrup, SE Mozley-Standridge, AV Smirnov, F Spiegel. Diversity, nomenclature, and taxonomy of protists. Syst Biol 2007; 56(4): 684–689
https://doi.org/10.1080/10635150701494127 pmid: 17661235
19 T Cavalier-Smith, AM Fiore-Donno, E Chao, A Kudryavtsev, C Berney, EA Snell, R Lewis. Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 2015; 83: 293–304
https://doi.org/10.1016/j.ympev.2014.08.011 pmid: 25150787
20 S Kang, AK Tice, FW Spiegel, JD Silberman, T Pánek, I Cepicka, M Kostka, A Kosakyan, DMC Alcântara, AJ Roger, LL Shadwick, A Smirnov, A Kudryavtsev, DJG Lahr, MW Brown. Between a pod and a hard test: the deep evolution of Amoebae. Mol Biol Evol 2017; 34(9): 2258–2270
https://doi.org/10.1093/molbev/msx162 pmid: 28505375
21 T Pánek, E Ptáčková, I Čepička. Survey on diversity of marine/saline anaerobic Heterolobosea (Excavata: Discoba) with description of seven new species. Int J Syst Evol Microbiol 2014; 64(Pt 7): 2280–2304
https://doi.org/10.1099/ijs.0.063487-0 pmid: 24729392
22 JE Piñero, B Chávez-Munguía, M Omaña-Molina, J Lorenzo-Morales. Naegleria fowleri. Trends Parasitol 2019; 35(10): 848–849
https://doi.org/10.1016/j.pt.2019.06.011 pmid: 31300281
23 D Bass, EE Chao, S Nikolaev, A Yabuki, K Ishida, C Berney, U Pakzad, C Wylezich, T Cavalier-Smith. Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist 2009; 160(1): 75–109
https://doi.org/10.1016/j.protis.2008.07.002 pmid: 18952499
24 C Berney, S Romac, F Mahé, S Santini, R Siano, D Bass. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J 2013; 7(12): 2387–2399
https://doi.org/10.1038/ismej.2013.116 pmid: 23864128
25 MW Brown, FW Spiegel, JD Silberman. Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 2009; 26(12): 2699–2709
https://doi.org/10.1093/molbev/msp185 pmid: 19692665
26 AJ Martinez, GS Visvesvara. Free-living, amphizoic and opportunistic amebas. Brain Pathol 1997; 7(1): 583–598
https://doi.org/10.1111/j.1750-3639.1997.tb01076.x pmid: 9034567
27 FC Page. An illustrated key to freshwater and soil amoebae: with notes on cultivation and ecology. Scientific Publication No. 34. Ambleside: Freshwater Biological Association, 1976: 155
28 DM Wilkinson, EAD Mitchell. Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol J 2010; 27(6–7): 520–533
https://doi.org/10.1080/01490451003702925
29 S Geisen, J Rosengarten, R Koller, C Mulder, T Urich, M Bonkowski. Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 2015; 17(11): 4538–4546
https://doi.org/10.1111/1462-2920.12949 pmid: 26079718
30 BP Han, T Wang, QQ Lin, HJ Dumont. Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera. Hydrobiologia 2008; 596(1): 197–201
https://doi.org/10.1007/s10750-007-9096-z
31 B Bowers, ED Korn. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 1969; 41(3): 786–805
https://doi.org/10.1083/jcb.41.3.786 pmid: 5768875
32 A Anwar, NA Khan, R Siddiqui. Combating Acanthamoeba spp. cysts: what are the options? Parasit Vectors 2018; 11(1): 26
https://doi.org/10.1186/s13071-017-2572-z pmid: 29316961
33 R Hughes, S Kilvington. Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob Agents Chemother 2001; 45(7): 2038–2043
https://doi.org/10.1128/AAC.45.7.2038-2043.2001 pmid: 11408220
34 G Greub, D Raoult. Biocides currently used for bronchoscope decontamination are poorly effective against free-living amoebae. Infect Control Hosp Epidemiol 2003; 24(10): 784–786
https://doi.org/10.1086/502137 pmid: 14587948
35 M Ali, SB Jamal, SM Farhat. Naegleria fowleri in Pakistan. Lancet Infect Dis 2020; 20(1): 27–28
https://doi.org/10.1016/S1473-3099(19)30675-9 pmid: 31876498
36 U Rohr, S Weber, R Michel, F Selenka, M Wilhelm. Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 1998; 64(5): 1822–1824
https://doi.org/10.1128/AEM.64.5.1822-1824.1998 pmid: 9572957
37 E Fouque, MC Trouilhé, V Thomas, P Hartemann, MH Rodier, Y Héchard. Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot Cell 2012; 11(4): 382–387
https://doi.org/10.1128/EC.05301-11 pmid: 22366126
38 S Rodríguez-Zaragoza. Ecology of free-living amoebae. Crit Rev Microbiol 1994; 20(3): 225–241
https://doi.org/10.3109/10408419409114556 pmid: 7802958
39 R Amann, N Springer, W Schönhuber, W Ludwig, EN Schmid, KD Müller, R Michel. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 1997; 63(1): 115–121
https://doi.org/10.1128/aem.63.1.115-121.1997 pmid: 8979345
40 F Pisani, C Costa, G Oteri, A Ioli. Identification of amoebae in the CSF in a patient with meningoencephalitis. J Neurol Neurosurg Psychiatry 2003; 74(10): 1445–1446
https://doi.org/10.1136/jnnp.74.10.1445-a pmid: 14570847
41 P Bass, PJ Bischoff. Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. J Eukaryot Microbiol 2001; 48(4): 475–479
https://doi.org/10.1111/j.1550-7408.2001.tb00182.x pmid: 11456325
42 RM Donlan, JW Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15(2): 167–193
https://doi.org/10.1128/CMR.15.2.167-193.2002 pmid: 11932229
43 J Barbeau, T Buhler. Biofilms augment the number of free-living amoebae in dental unit waterlines. Res Microbiol 2001; 152(8): 753–760
https://doi.org/10.1016/S0923-2508(01)01256-6 pmid: 11686389
44 R Hoffmann, R Michel. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 2001; 203(3): 215–219
https://doi.org/10.1078/S1438-4639(04)70031-0 pmid: 11279817
45 MA Abdul Majid, T Mahboob, BGJ Mong, N Jaturas, RL Richard, T Tian-Chye, A Phimphila, P Mahaphonh, KN Aye, WL Aung, J Chuah, AD Ziegler, A Yasiri, N Sawangjaroen, YAL Lim, V Nissapatorn. Correction: Pathogenic waterborne free-living amoebae: an update from selected Southeast Asian countries. PLoS One 2017; 12(5): e0177564
https://doi.org/10.1371/journal.pone.0177564 pmid: 28481938
46 C Bunsuwansakul, T Mahboob, K Hounkong, S Laohaprapanon, S Chitapornpan, S Jawjit, A Yasiri, S Barusrux, K Bunluepuech, N Sawangjaroen, CC Salibay, C Kaewjai, ML Pereira, V Nissapatorn. Acanthamoeba in Southeast Asia—overview and challenges. Korean J Parasitol 2019; 57(4): 341–357
https://doi.org/10.3347/kjp.2019.57.4.341 pmid: 31533401
47 GS Visvesvara, JK Stehr-Green. Epidemiology of free-living ameba infections. J Protozool 1990; 37(4): 25S–33S
https://doi.org/10.1111/j.1550-7408.1990.tb01142.x pmid: 2258827
48 A Alexeieff. Sur les charactères cytologiques et la systématique des amibes du groupe limax (Naegleria nov. gen. et Hartmannia nov. gen.) et des amibes parasites des vertebrates (Protamoeba nov. gen.). Bull Soc Zool Fr 1912; 37: 55–74
https://doi.org/10.5962/bhl.part.7429
49 M Fowler, RF Carter. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. Br Med J 1965; 2(5464): 740–742
pmid: 5825411
50 R Gharpure, J Bliton, A Goodman, IKM Ali, J Yoder, JR Cope. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: a global review. Clin Infect Dis 2021; 73(1): e19–e27
pmid: 32369575
51 SK Maciver, JE Piñero, J Lorenzo-Morales. Is Naegleria fowleri an emerging parasite? Trends Parasitol 2020; 36(1): 19–28
https://doi.org/10.1016/j.pt.2019.10.008 pmid: 31744676
52 DC Zysset-Burri, N Müller, C Beuret, M Heller, N Schürch, B Gottstein, M Wittwer. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 2014; 15(1): 496
https://doi.org/10.1186/1471-2164-15-496 pmid: 24950717
53 N Liechti, N Schürch, R Bruggmann, M Wittwer. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep 2019; 9(1): 16040
https://doi.org/10.1038/s41598-019-52572-0 pmid: 31690847
54 JF De Jonckheere. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol 2011; 11(7): 1520–1528
https://doi.org/10.1016/j.meegid.2011.07.023 pmid: 21843657
55 B Coupat-Goutaland, E Régoudis, M Besseyrias, A Mularoni, M Binet, P Herbelin, M Pélandakis. Population structure in Naegleria fowleri as revealed by microsatellite markers. PLoS One 2016; 11(4): e0152434
https://doi.org/10.1371/journal.pone.0152434 pmid: 27035434
56 JF De Jonckheere. What do we know by now about the genus Naegleria? Exp Parasitol 2014; 145(Suppl): S2–S9
https://doi.org/10.1016/j.exppara.2014.07.011 pmid: 25108159
57 HMS Sazzad, SP Luby, J Sejvar, M Rahman, ES Gurley, V Hill, JL Murphy, S Roy, JR Cope, IKM Ali. A case of primary amebic meningoencephalitis caused by Naegleria fowleri in Bangladesh. Parasitol Res 2020; 119(1): 339–344
https://doi.org/10.1007/s00436-019-06463-y pmid: 31734864
58 JS Yoder, BA Eddy, GS Visvesvara, L Capewell, MJ Beach. The epidemiology of primary amoebic meningoencephalitis in the USA, 1962–2008. Epidemiol Infect 2010; 138(7): 968–975
https://doi.org/10.1017/S0950268809991014 pmid: 19845995
59 J Martinez, RJ Duma, EC Nelson, FL Moretta. Experimental naegleria meningoencephalitis in mice. Penetration of the olfactory mucosal epithelium by Naegleria and pathologic changes produced: a light and electron microscope study. Lab Invest 1973; 29(2): 121–133
pmid: 4724845
60 KL Jarolim, JK McCosh, MJ Howard, DT John. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol 2000; 86(1): 50–55
https://doi.org/10.1645/0022-3395(2000)086[0050:ALMSOT]2.0.CO;2 pmid: 10701563
61 S Rojas-Hernández, A Jarillo-Luna, M Rodríguez-Monroy, L Moreno-Fierros, R Campos-Rodríguez. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res 2004; 94(1): 31–36
https://doi.org/10.1007/s00436-004-1177-6 pmid: 15338289
62 F Marciano-Cabral, GA Cabral. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunol Med Microbiol 2007; 51(2): 243–259
https://doi.org/10.1111/j.1574-695X.2007.00332.x pmid: 17894804
63 EA Moseman. Battling brain-eating amoeba: enigmas surrounding immunity to Naegleria fowleri. PLoS Pathog 2020; 16(4): e1008406
https://doi.org/10.1371/journal.ppat.1008406 pmid: 32324819
64 RV Lawande, I John, RH Dobbs, LJ Egler. A case of primary amebic meningoencephalitis in Zaria, Nigeria. Am J Clin Pathol 1979; 71(5): 591–594
https://doi.org/10.1093/ajcp/71.5.591 pmid: 453078
65 R Siddiqui, IKM Ali, JR Cope, NA Khan. Biology and pathogenesis of Naegleria fowleri. Acta Trop 2016; 164: 375–394
https://doi.org/10.1016/j.actatropica.2016.09.009 pmid: 27616699
66 FM Marciano-Cabral, M Patterson, DT John, SG Bradley. Cytopathogenicity of Naegleria fowleri and Naegleria gruberi for established mammalian cell cultures. J Parasitol 1982; 68(6): 1110–1116
https://doi.org/10.2307/3281100 pmid: 6816913
67 M Martínez-Castillo, R Cárdenas-Zúñiga, D Coronado-Velázquez, A Debnath, J Serrano-Luna, M Shibayama. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol 2016; 65(9): 885–896
https://doi.org/10.1099/jmm.0.000303 pmid: 27381464
68 M Jamerson, B da Rocha-Azevedo, GA Cabral, F Marciano-Cabral. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology (Reading) 2012; 158(Pt 3): 791–803
https://doi.org/10.1099/mic.0.055020-0 pmid: 22222499
69 KL Han, HJ Lee, MH Shin, HJ Shin, KI Im, SJ Park. The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity. Parasitol Res 2004; 94(1): 53–60
https://doi.org/10.1007/s00436-004-1158-9 pmid: 15338291
70 N Flores-Huerta, V Sánchez-Monroy, MA Rodríguez, J Serrano-Luna, M Shibayama. A comparative study of the membrane proteins from Naegleria species: a 23-kDa protein participates in the virulence of Naegleria fowleri. Eur J Protistol 2020; 72: 125640
https://doi.org/10.1016/j.ejop.2019.125640 pmid: 31794894
71 I Cervantes-Sandoval, J Jesús Serrano-Luna, J Pacheco-Yépez, A Silva-Olivares, V Tsutsumi, M Shibayama. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res 2010; 106(3): 695–701
https://doi.org/10.1007/s00436-010-1727-z pmid: 20098997
72 M Carrasco-Yepez, R Campos-Rodriguez, M Godinez-Victoria, MA Rodriguez-Monroy, A Jarillo-Luna, P Bonilla-Lemus, AC De Oca, S Rojas-Hernandez. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa. Parasitol Res 2013; 112(10): 3615–3625
https://doi.org/10.1007/s00436-013-3549-2 pmid: 23922203
73 I Cervantes-Sandoval, JJ Serrano-Luna, E García-Latorre, V Tsutsumi, M Shibayama. Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion. Microbiology (Reading) 2008; 154(Pt 12): 3895–3904
https://doi.org/10.1099/mic.0.2008/019380-0 pmid: 19047756
74 I Cervantes-Sandoval, JJ Serrano-Luna, E García-Latorre, V Tsutsumi, M Shibayama. Characterization of brain inflammation during primary amoebic meningoencephalitis. Parasitol Int 2008; 57(3): 307–313
https://doi.org/10.1016/j.parint.2008.01.006 pmid: 18374627
75 R Herbst, C Ott, T Jacobs, T Marti, F Marciano-Cabral, M Leippe. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem 2002; 277(25): 22353–22360
https://doi.org/10.1074/jbc.M201475200 pmid: 11948186
76 R Herbst, F Marciano-Cabral, M Leippe. Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem 2004; 279(25): 25955–25958
https://doi.org/10.1074/jbc.M401965200 pmid: 15075336
77 SL Chang. Pathogenesis of pathogenic Naegleria amoeba. Folia Parasitol (Praha) 1979; 26(3): 195–200
pmid: 120297
78 RM Hysmith, RC Franson. Elevated levels of cellular and extracellular phospholipases from pathogenic Naegleria fowleri. Biochim Biophys Acta 1982; 711(1): 26–32
https://doi.org/10.1016/0005-2760(82)90005-4 pmid: 6279166
79 D Eisen, RC Franson. Acid-active neuraminidases in the growth media from cultures of pathogenic Naegleria fowleri and in sonicates of rabbit alveolar macrophages. Biochim Biophys Acta 1987; 924(2): 369–372
https://doi.org/10.1016/0304-4165(87)90035-3 pmid: 3567224
80 I Zyserman, D Mondal, F Sarabia, JH McKerrow, WR Roush, A Debnath. Identification of cysteine protease inhibitors as new drug leads against Naegleria fowleri. Exp Parasitol 2018; 188: 36–41
https://doi.org/10.1016/j.exppara.2018.03.010 pmid: 29551628
81 KJ Song, YS Jang, YA Lee, KA Kim, SK Lee, MH Shin. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri. Parasite Immunol 2011; 33(7): 390–400
https://doi.org/10.1111/j.1365-3024.2011.01297.x pmid: 21535020
82 B Chávez-Munguía, LS Villatoro, M Omaña-Molina, MA Rodríguez-Monroy, N Segovia-Gamboa, A Martínez-Palomo. Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG). Exp Parasitol 2014; 142: 1–6
https://doi.org/10.1016/j.exppara.2014.03.027 pmid: 24721258
83 S Rojas-Hernández, MA Rodríguez-Monroy, L Moreno-Fierros, A Jarillo-Luna, M Carrasco-Yepez, A Miliar-García, R Campos-Rodríguez. Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri. Parasitol Res 2007; 101(2): 269–274
https://doi.org/10.1007/s00436-007-0495-x pmid: 17340143
84 C Fulton. Intracellular regulation of cell shape and motility in Naegleria. First insights and a working hypothesis. J Supramol Struct 1977; 6(1): 13–43
https://doi.org/10.1002/jss.400060103 pmid: 408560
85 DT John, TB Cole Jr, FM Marciano-Cabral. Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Appl Environ Microbiol 1984; 47(1): 12–14
https://doi.org/10.1128/aem.47.1.12-14.1984 pmid: 6696410
86 S Tiewcharoen, J Rabablert, P Chetanachan, V Junnu, D Worawirounwong, N Malainual. Scanning electron microscopic study of human neuroblastoma cells affected with Naegleria fowleri Thai strains. Parasitol Res 2008; 103(5): 1119–1123
https://doi.org/10.1007/s00436-008-1103-4 pmid: 18685867
87 HJ Shin, MS Cho, SU Jung, HI Kim, S Park, HJ Kim, KI Im. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. J Eukaryot Microbiol 2001; 48(6): 713–717
https://doi.org/10.1111/j.1550-7408.2001.tb00211.x pmid: 11831780
88 SY Kang, KJ Song, SR Jeong, JH Kim, S Park, K Kim, MH Kwon, HJ Shin. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clin Diagn Lab Immunol 2005; 12(7): 873–876
pmid: 16002638
89 KJ Song, SR Jeong, S Park, K Kim, MH Kwon, KI Im, JH Pak, HJ Shin. Naegleria fowleri: functional expression of the Nfa1 protein in transfected Naegleria gruberi by promoter modification. Exp Parasitol 2006; 112(2): 115–120
https://doi.org/10.1016/j.exppara.2005.10.004 pmid: 16321386
90 YJ Lee, JH Kim, SR Jeong, KJ Song, K Kim, S Park, MS Park, HJ Shin. Production of Nfa1-specific monoclonal antibodies that influences the in vitro cytotoxicity of Naegleria fowleri trophozoites on microglial cells. Parasitol Res 2007; 101(5): 1191–1196
https://doi.org/10.1007/s00436-007-0600-1 pmid: 17610083
91 CJ Walsh. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Eur J Cell Biol 2007; 86(2): 85–98
https://doi.org/10.1016/j.ejcb.2006.10.003 pmid: 17189659
92 HJ Sohn, KJ Song, H Kang, AJ Ham, JH Lee, YJ Chwae, K Kim, S Park, JH Kim, HJ Shin. Cellular characterization of actin gene concerned with contact-dependent mechanisms in Naegleria fowleri. Parasite Immunol 2019; 41(8): e12631
https://doi.org/10.1111/pim.12631 pmid: 31077592
93 BL Dubray, WE Wilhelm, BR Jennings. Serology of Naegleria fowleri and Naegleria lovaniensis in a hospital survey. J Protozool 1987; 34(3): 322–327
https://doi.org/10.1111/j.1550-7408.1987.tb03183.x pmid: 3309270
94 L Cerva. Acanthamoeba culbertsoni and Naegleria fowleri: occurrence of antibodies in man. J Hyg Epidemiol Microbiol Immunol 1989; 33(1): 99–103
pmid: 2723426
95 J Lee, JM Kang, TI Kim, JH Kim, HJ Sohn, BK Na, HJ Shin. Excretory and secretory proteins of Naegleria fowleri induce inflammatory responses in BV-2 microglial cells. J Eukaryot Microbiol 2017; 64(2): 183–192
https://doi.org/10.1111/jeu.12350 pmid: 27480446
96 I Cervantes-Sandoval, JJ Serrano-Luna, P Meza-Cervantez, R Arroyo, V Tsutsumi, M Shibayama. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation. Microbiology (Reading) 2009; 155(11): 3739–3747
https://doi.org/10.1099/mic.0.030635-0 pmid: 19661176
97 M Martínez-Castillo, L Santos-Argumedo, JM Galván-Moroyoqui, J Serrano-Luna, M Shibayama. Toll-like receptors participate in Naegleria fowleri recognition. Parasitol Res 2018; 117(1): 75–87
https://doi.org/10.1007/s00436-017-5666-9 pmid: 29128927
98 A Ferrante, TJ Mocatta. Human neutrophils require activation by mononuclear leucocyte conditioned medium to kill the pathogenic free-living amoeba, Naegleria fowleri. Clin Exp Immunol 1984; 56(3): 559–566
pmid: 6378454
99 A Ferrante, YH Thong. Unique phagocytic process in neutrophil-mediated killing of Naeglaria fowleri. Immunol Lett 1980; 2(1): 37–41
https://doi.org/10.1016/0165-2478(80)90071-1
100 TW Holbrook, RJ Boackle, BW Parker, J Vesely. Activation of the alternative complement pathway by Naegleria fowleri. Infect Immun 1980; 30(1): 58–61
https://doi.org/10.1128/iai.30.1.58-61.1980 pmid: 7439979
101 MK Michelson, WR Henderson Jr, EY Chi, TR Fritsche, SJ Klebanoff. Ultrastructural studies on the effect of tumor necrosis factor on the interaction of neutrophils and Naegleria fowleri. Am J Trop Med Hyg 1990; 42(3): 225–233
https://doi.org/10.4269/ajtmh.1990.42.225 pmid: 2316792
102 V Papayannopoulos, KD Metzler, A Hakkim, A Zychlinsky. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191(3): 677–691
https://doi.org/10.1083/jcb.201006052 pmid: 20974816
103 IK Vyas, M Jamerson, GA Cabral, F Marciano-Cabral. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae. J Eukaryot Microbiol 2015; 62(1): 51–59
https://doi.org/10.1111/jeu.12152 pmid: 25066578
104 JH Kim, AR Song, HJ Sohn, J Lee, JK Yoo, D Kwon, HJ Shin. IL-1β and IL-6 activate inflammatory responses of astrocytes against Naegleria fowleri infection via the modulation of MAPKs and AP-1. Parasite Immunol 2013; 35(3–4): 120–128
https://doi.org/10.1111/pim.12021 pmid: 23198898
105 YH Thong, A Ferrante, C Shepherd, B Rowan-Kelly. Resistance of mice to Naegleria meningoencephalitis transferred by immune serum. Trans R Soc Trop Med Hyg 1978; 72(6): 650–652
https://doi.org/10.1016/0035-9203(78)90025-1 pmid: 734724
106 MF Reilly, KL White Jr, SG Bradley. Host resistance of mice to Naegleria fowleri infections. Infect Immun 1983; 42(2): 645–652
https://doi.org/10.1128/iai.42.2.645-652.1983 pmid: 6642646
107 MF Reilly, F Marciano-Cabral, DW Bradley, SG Bradley. Agglutination of Naegleria fowleri and Naegleria gruberi by antibodies in human serum. J Clin Microbiol 1983; 17(4): 576–581
https://doi.org/10.1128/jcm.17.4.576-581.1983 pmid: 6853686
108 A Jarillo-Luna, L Moreno-Fierros, R Campos-Rodríguez, MA Rodríguez-Monroy, E Lara-Padilla, S Rojas-Hernández. Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion. Parasite Immunol 2008; 30(1): 31–38
https://doi.org/10.1111/j.1365-3024.2007.00999.x pmid: 18086014
109 M Carrasco-Yepez, S Rojas-Hernandez, MA Rodriguez-Monroy, LI Terrazas, L Moreno-Fierros. Protection against Naegleria fowleri infection in mice immunized with Cry1Ac plus amoebic lysates is dependent on the STAT6 Th2 response. Parasite Immunol 2010; 32(9–10): 664–670
pmid: 20691018
110 M Carrasco-Yepez, R Campos-Rodriguez, I Lopez-Reyes, P Bonilla-Lemus, AY Rodriguez-Cortes, A Contis-Montes de Oca, A Jarillo-Luna, A Miliar-Garcia, S Rojas-Hernandez. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis. Exp Parasitol 2014; 145(Suppl): S84–S92
https://doi.org/10.1016/j.exppara.2014.04.002 pmid: 24731967
111 JS Ryu, KI Im. The production and characterization of anti-Naegleria fowleri monoclonal antibodies. Korean J Parasitol 1992; 30(1): 33–41
https://doi.org/10.3347/kjp.1992.30.1.33 pmid: 1374265
112 M Shibayama, JJ Serrano-Luna, S Rojas-Hernández, R Campos-Rodríguez, V Tsutsumi. Interaction of secretory immunoglobulin A antibodies with Naegleria fowleri trophozoites and collagen type I. Can J Microbiol 2003; 49(3): 164–170
https://doi.org/10.1139/w03-023 pmid: 12795402
113 A Contis-Montes de Oca, M Carrasco-Yépez, R Campos-Rodríguez, J Pacheco-Yépez, P Bonilla-Lemus, J Pérez-López, S Rojas-Hernández. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG. Parasite Immunol 2016; 38(8): 481–495
https://doi.org/10.1111/pim.12337 pmid: 27189133
114 MM Carrasco-Yepez, R Campos-Rodríguez, AA Reséndiz-Albor, C Peña-Juárez, A Contis-Montes de Oca, IM Arciniega-Martínez, P Bonilla-Lemus, S Rojas-Hernandez. Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa. Parasite Immunol 2018; 40(3): e12508
https://doi.org/10.1111/pim.12508 pmid: 29243267
115 RT Cursons, TJ Brown, EA Keys, KM Moriarty, D Till. Immunity to pathogenic free-living amoebae: role of cell-mediated immunity. Infect Immun 1980; 29(2): 408–410
https://doi.org/10.1128/iai.29.2.408-410.1980 pmid: 7011975
116 DM Toney, F Marciano-Cabral. Alterations in protein expression and complement resistance of pathogenic Naegleria amoebae. Infect Immun 1992; 60(7): 2784–2790
https://doi.org/10.1128/iai.60.7.2784-2790.1992 pmid: 1319405
117 DM Toney, F Marciano-Cabral. Modulation of complement resistance and virulence of Naegleria fowleri amoebae by alterations in growth media. J Eukaryot Microbiol 1994; 41(4): 337–343
https://doi.org/10.1111/j.1550-7408.1994.tb06087.x pmid: 8087105
118 DT John. Primary amebic meningoencephalitis and the biology of Naegleria fowleri. Annu Rev Microbiol 1982; 36(1): 101–123
https://doi.org/10.1146/annurev.mi.36.100182.000533 pmid: 6756287
119 V Rivera-Aguilar, D Hernández-Martínez, S Rojas-Hernández, G Oliver-Aguillón, V Tsutsumi, N Herrera-González, R Campos-Rodríguez. Immunoblot analysis of IgA antibodies to Naegleria fowleri in human saliva and serum. Parasitol Res 2000; 86(9): 775–780
https://doi.org/10.1007/s004360000243 pmid: 11002989
120 AM Baig. Pathogenesis of amoebic encephalitis: are the amoebae being credited to an ‘inside job’ done by the host immune response? Acta Trop 2015; 148: 72–76
https://doi.org/10.1016/j.actatropica.2015.04.022 pmid: 25930186
121 TL Thái, JM Kang, HG Lê, J Lee, WG Yoo, HJ Shin, WM Sohn, BK Na. Fowlerstefin, a cysteine protease inhibitor of Naegleria fowleri, induces inflammatory responses in BV-2 microglial cells in vitro. Parasit Vectors 2020; 13(1): 41
https://doi.org/10.1186/s13071-020-3909-6 pmid: 31996242
122 Z Movahedi, MR Shokrollahi, M Aghaali, H Heydari. Primary amoebic meningoencephalitis in an Iranian infant. Case Rep Med 2012; 2012: 782854
https://doi.org/10.1155/2012/782854 pmid: 22899941
123 N Mittal, L Mahajan, Z Hussain, P Gupta, S Khurana. Primary amoebic meningoencephalitis in an infant. Indian J Med Microbiol 2019; 37(1): 120–122
https://doi.org/10.4103/ijmm.IJMM_18_371 pmid: 31424023
124 FL Schuster, GS Visvesvara. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 2004; 34(9): 1001–1027
https://doi.org/10.1016/j.ijpara.2004.06.004 pmid: 15313128
125 LL Zhang, M Wu, BC Hu, HL Chen, JR Pan, W Ruan, LN Yao. Identification and molecular typing of Naegleria fowleri from a patient with primary amebic meningoencephalitis in China. Int J Infect Dis 2018; 72: 28–33
https://doi.org/10.1016/j.ijid.2018.05.001 pmid: 29751112
126 GR Harris, R Batra. Naegleria fowleri. N Engl J Med 2020; 383(11): 1057
https://doi.org/10.1056/NEJMicm2002528 pmid: 32905679
127 M Chen, W Ruan, L Zhang, B Hu, X Yang. Primary amebic meningoencephalitis: a case report. Korean J Parasitol 2019; 57(3): 291–294
https://doi.org/10.3347/kjp.2019.57.3.291 pmid: 31284352
128 LG Capewell, AM Harris, JS Yoder, JR Cope, BA Eddy, SL Roy, GS Visvesvara, LM Fox, MJ Beach. Diagnosis, clinical course, and treatment of primary amoebic meningoencephalitis in the United States, 1937–2013. J Pediatric Infect Dis Soc 2015; 4(4): e68–e75
https://doi.org/10.1093/jpids/piu103 pmid: 26582886
129 TYY Ong, NA Khan, R Siddiqui. Brain-eating amoebae: predilection sites in the brain and disease outcome. J Clin Microbiol 2017; 55(7): 1989–1997
https://doi.org/10.1128/JCM.02300-16 pmid: 28404683
130 E Lopez-Corella, B De Leon, JF de Jonckheere. Primary amebic meningoencephalitis caused by Naegleria fowleri in an adolescent from Huetamo, Michoacan, Mexico. Bol Méd Hosp Infant México 1989; 46(9): 619–622
131 ND Barnett, AM Kaplan, RJ Hopkin, MA Saubolle, MF Rudinsky. Primary amoebic meningoencephalitis with Naegleria fowleri: clinical review. Pediatr Neurol 1996; 15(3): 230–234
https://doi.org/10.1016/S0887-8994(96)00173-7 pmid: 8916161
132 RF Carter. Primary amoebic meningo-encephalitis. An appraisal of present knowledge. Trans R Soc Trop Med Hyg 1972; 66(2): 193–208
https://doi.org/10.1016/0035-9203(72)90147-2 pmid: 4558822
133 AJ Martinez. Free-living amebas: natural history, prevention, diagnosis, pathology and treatment of disease. CRC Press, 1985
134 Y Sugita, T Fujii, I Hayashi, T Aoki, T Yokoyama, M Morimatsu, T Fukuma, Y Takamiya. Primary amebic meningoencephalitis due to Naegleria fowleri: an autopsy case in Japan. Pathol Int 1999; 49(5): 468–470
https://doi.org/10.1046/j.1440-1827.1999.00893.x pmid: 10417693
135 GS Visvesvara. Infections with free-living amebae. Handb Clin Neurol 2013; 114: 153–168
https://doi.org/10.1016/B978-0-444-53490-3.00010-8 pmid: 23829906
136 T Hara, K Yagita, Y Sugita. Pathogenic free-living amoebic encephalitis in Japan. Neuropathology 2019; 39(4): 251–258
https://doi.org/10.1111/neup.12582 pmid: 31243796
137 AH Lam, M de Silva, P Procopis, A Kan. Primary amoebic (Naegleria) meningoencephalitis. J Comput Assist Tomogr 1982; 6(3): 620–623
https://doi.org/10.1097/00004728-198206000-00032 pmid: 7096709
138 DD Kidney, SH Kim. CNS infections with free-living amebas: neuroimaging findings. AJR Am J Roentgenol 1998; 171(3): 809–812
https://doi.org/10.2214/ajr.171.3.9725321 pmid: 9725321
139 B da Rocha-Azevedo, HB Tanowitz, F Marciano-Cabral. Diagnosis of infections caused by pathogenic free-living amoebae. Interdiscip Perspect Infect Dis 2009; 2009: 251406
https://doi.org/10.1155/2009/251406 pmid: 19657454
140 S Hebbar, I Bairy, N Bhaskaranand, S Upadhyaya, MS Sarma, AK Shetty. Fatal case of Naegleria fowleri meningo-encephalitis in an infant: case report. Ann Trop Paediatr 2005; 25(3): 223–226
https://doi.org/10.1179/146532805X58166 pmid: 16156990
141 Centers for Disease Control and Prevention. Update on emerging infections: news from the Centers for Disease Control and Prevention. Primary amebic meningoencephalitis—Arizona, Florida, and Texas, 2007. Ann Emerg Med 2009; 54(3): 469–471
https://doi.org/10.1016/j.annemergmed.2009.07.007 pmid: 19708086
142 AJ Martinez, GS Visvesvara. Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid. Clin Lab Med 1991; 11(4): 861–872
https://doi.org/10.1016/S0272-2712(18)30524-9 pmid: 1802525
143 JJ Pugh, RA Levy. Naegleria fowleri: diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments. ACS Chem Neurosci 2016; 7(9): 1178–1179
https://doi.org/10.1021/acschemneuro.6b00232 pmid: 27525348
144 Centers for Disease Control and Prevention (CDC). Investigational drug available directly from CDC for the treatment of infections with free-living amebae. MMWR Morb Mortal Wkly Rep 2013; 62(33): 666
pmid: 23965830
145 GS Visvesvara. Free-living amebae as opportunistic agents of human disease. J Neuroparasitology 2010; 1: 41–53
146 GS Visvesvara, MJ Peralta, FH Brandt, M Wilson, C Aloisio, E Franko. Production of monoclonal antibodies to Naegleria fowleri, agent of primary amebic meningoencephalitis. J Clin Microbiol 1987; 25(9): 1629–1634
https://doi.org/10.1128/jcm.25.9.1629-1634.1987 pmid: 3308948
147 J Behets, F Seghi, P Declerck, L Verelst, L Duvivier, A Van Damme, F Ollevier. Detection of Naegleria spp. and Naegleria fowleri: a comparison of flagellation tests, ELISA and PCR. Water Sci Technol 2003; 47(3): 117–122
https://doi.org/10.2166/wst.2003.0177 pmid: 12639015
148 FL Reveiller, MP Varenne, C Pougnard, PA Cabanes, E Pringuez, B Pourima, S Legastelois, P Pernin. An enzyme-linked immunosorbent assay (ELISA) for the identification of Naegleria fowleri in environmental water samples. J Eukaryot Microbiol 2003; 50(2): 109–113
https://doi.org/10.1111/j.1550-7408.2003.tb00244.x pmid: 12744523
149 LF Lares-Jiménez, MA Borquez-Román, R Alfaro-Sifuentes, MM Meza-Montenegro, R Casillas-Hernández, F Lares-Villa. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp Parasitol 2018; 189: 28–33
https://doi.org/10.1016/j.exppara.2018.04.011 pmid: 29673623
150 FL Réveiller, PA Cabanes, F Marciano-Cabral. Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri. Parasitol Res 2002; 88(5): 443–450
https://doi.org/10.1007/s00436-002-0591-x pmid: 12049462
151 Y Qvarnstrom, GS Visvesvara, R Sriram, AJ da Silva. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 2006; 44(10): 3589–3595
https://doi.org/10.1128/JCM.00875-06 pmid: 17021087
152 WM Hikal, MA Dkhil. Nested PCR assay for the rapid detection of Naegleria fowleri from swimming pools in Egypt. Acta Ecol Sin 2018; 38(2): 102–107
153 M Schild, C Gianinazzi, B Gottstein, N Müller. PCR-based diagnosis of Naegleria sp. infection in formalin-fixed and paraffin-embedded brain sections. J Clin Microbiol 2007; 45(2): 564–567
https://doi.org/10.1128/JCM.01357-06 pmid: 17121998
154 J Xue, K Caton, SP Sherchan. Comparison of next-generation droplet digital PCR with quantitative PCR for enumeration of Naegleria fowleri in environmental water and clinical samples. Lett Appl Microbiol 2018; 67(4): 322–328
https://doi.org/10.1111/lam.13051 pmid: 30007064
155 A Panda, BR Mirdha, N Rastogi, S Kasuhik. Understanding the true burden of “Naegleria fowleri€” (Vahlkampfiidae) in patients from Northern states of India: source tracking and significance. Eur J Protistol 2020; 76: 125726
https://doi.org/10.1016/j.ejop.2020.125726 pmid: 32682925
156 JL Griffin. Temperature tolerance of pathogenic and nonpathogenic free-living amoebas. Science 1972; 178(4063): 869–870
https://doi.org/10.1126/science.178.4063.869 pmid: 5085984
157 S Gupta, SR Das. Stock cultures of free-living amebas: effect of temperature on viability and pathogenicity. J Parasitol 1999; 85(1): 137–139
https://doi.org/10.2307/3285719 pmid: 10207381
158 J Diaz. Seasonal primary amebic meningoencephalitis (PAM) in the south: summertime is PAM time. J La State Med Soc 2012; 164(3): 148–150, 152–155
pmid: 22866356
159 AM Cooper, S Aouthmany, K Shah, PP Rega. Killer amoebas: primary amoebic meningoencephalitis in a changing climate. JAAPA 2019; 32(6): 30–35
https://doi.org/10.1097/01.JAA.0000558238.99250.4a pmid: 31136398
160 G Caruzo, J Cardozo. Primary amoebic meningoencephalitis: a new case from Venezuela. Trop Doct 2008; 38(4): 256–257
https://doi.org/10.1258/td.2008.070426 pmid: 18820207
161 RV Lawande, SN Abraham, I John, LJ Egler. Recovery of soil Amebas from the nasal passages of children during the dusty harmattan period in Zaria. Am J Clin Pathol 1979; 71(2): 201–203
https://doi.org/10.1093/ajcp/71.2.201 pmid: 425935
162 JA Ugonabo, HC Gugnani. Nasal carriage of Naegleria fowleri and its environmental occurrence in Borno State, Nigeria. J Commun Dis 1989; 21(2): 111–113
pmid: 2809145
163 S Shenoy, G Wilson, HV Prashanth, K Vidyalakshmi, B Dhanashree, R Bharath. Primary meningoencephalitis by Naegleria fowleri: first reported case from Mangalore, South India. J Clin Microbiol 2002; 40(1): 309–310
https://doi.org/10.1128/JCM.40.1.309-310.2002 pmid: 11773141
164 E Grace, S Asbill, K Virga. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother 2015; 59(11): 6677–6681
https://doi.org/10.1128/AAC.01293-15 pmid: 26259797
165 SM Goswick, GM Brenner. Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob Agents Chemother 2003; 47(2): 524–528
https://doi.org/10.1128/AAC.47.2.524-528.2003 pmid: 12543653
166 JH Kim, SY Jung, YJ Lee, KJ Song, D Kwon, K Kim, S Park, KI Im, HJ Shin. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother 2008; 52(11): 4010–4016
https://doi.org/10.1128/AAC.00197-08 pmid: 18765686
167 CA Rice, BL Colon, M Alp, H Göker, DW Boykin, DE Kyle. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens. Antimicrob Agents Chemother 2015; 59(4): 2037–2044
https://doi.org/10.1128/AAC.05122-14 pmid: 25605363
168 A Debnath, CM Calvet, G Jennings, W Zhou, A Aksenov, MR Luth, R Abagyan, WD Nes, JH McKerrow, LM Podust. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis 2017; 11(12): e0006104
https://doi.org/10.1371/journal.pntd.0006104 pmid: 29284029
169 JI Escrig, HJ Hahn, A Debnath. Activity of auranofin against multiple genotypes of Naegleria fowleri and its synergistic effect with amphotericin B in vitro. ACS Chem Neurosci 2020; 11(16): 2464–2471
https://doi.org/10.1021/acschemneuro.0c00165 pmid: 32392039
170 JF De Jonckheere. Isoenzyme and total protein-analysis by agarose isoelectric-focusing, and taxonomy of the genus Acanthamoeba. J Protozool 1983; 30(4): 701–706
https://doi.org/10.1111/j.1550-7408.1983.tb05346.x
171 H Moura, S Wallace, GS Visvesvara. Acanthamoeba healyi n. sp. and the isoenzyme and immunoblot profiles of Acanthamoeba spp., groups 1 and 3. J Protozool 1992; 39(5): 573–583
https://doi.org/10.1111/j.1550-7408.1992.tb04853.x pmid: 1522539
172 J Walochnik, K Sommer, A Obwaller, EM Haller-Schober, H Aspöck. Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitol Res 2004; 92(4): 289–298
https://doi.org/10.1007/s00436-003-1041-0 pmid: 14722757
173 PA Fuerst, GC Booton. Species, sequence types and alleles: dissecting genetic variation in Acanthamoeba. Pathogens 2020; 9(7): E534
https://doi.org/10.3390/pathogens9070534 pmid: 32630775
174 J Walochnik, U Scheikl, EM Haller-Schober. Twenty years of Acanthamoeba diagnostics in Austria. J Eukaryot Microbiol 2015; 62(1): 3–11
https://doi.org/10.1111/jeu.12149 pmid: 25047131
175 HS Behera, G Satpathy, M Tripathi. Isolation and genotyping of Acanthamoeba spp. from Acanthamoeba meningitis/meningoencephalitis (AME) patients in India. Parasit Vectors 2016; 9(1): 442
https://doi.org/10.1186/s13071-016-1729-5 pmid: 27507421
176 M Khorsandi Rafsanjani, E Hajialilo, M Saraei, SA Alizadeh, A Javadi. Isolation and molecular identification of Acanthamoeba and Naegleria from agricultural water canal in Qazvin, Iran. Iran J Parasitol 2020; 15(3): 393–402
pmid: 33082804
177 E Willaert, AR Stevens, RL Tyndall. Acanthamoeba royreba sp. n. from a human tumor cell culture. J Protozool 1978; 25(1): 1–14
https://doi.org/10.1111/j.1550-7408.1978.tb03854.x pmid: 566323
178 PM Daggett, D Lipscomb, TK Sawyer, TA Nerad. A molecular approach to the phylogeny of Acanthamoeba. Biosystems 1985; 18(3–4): 399–405
https://doi.org/10.1016/0303-2647(85)90039-5 pmid: 4084681
179 HA Gardner, AJ Martinez, GS Visvesvara, A Sotrel. Granulomatous amebic encephalitis in an AIDS patient. Neurology 1991; 41(12): 1993–1995
https://doi.org/10.1212/WNL.41.12.1993 pmid: 1745363
180 C Di Gregorio, F Rivasi, N Mongiardo, B De Rienzo, S Wallace, GS Visvesvara. Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 1992; 116(12): 1363–1365
pmid: 1456885
181 DI Chung, HH Kong, TH Kim, MY Hwang, HS Yu, HC Yun, SY Seol. Bacterial endosymbiosis within the cytoplasm of Acanthamoeba lugdunensis isolated from a contact lens storage case. Korean J Parasitol 1997; 35(2): 127–133
https://doi.org/10.3347/kjp.1997.35.2.127 pmid: 9241987
182 F Faude, S Sünnemann, C Retzlaff, T Meier, P Wiedemann. Therapy refractory keratitis. Contact lens-induced keratitis caused by Acanthamoeba palestinensis. Ophthalmologe 1997; 94(6): 448–449
pmid: 9312323
183 MT García, S Jones, C Pelaz, RD Millar, Y Abu Kwaik. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 2007; 9(5): 1267–1277
https://doi.org/10.1111/j.1462-2920.2007.01245.x pmid: 17472639
184 Y Qvarnstrom, TA Nerad, GS Visvesvara. Characterization of a new pathogenic Acanthamoeba species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. J Eukaryot Microbiol 2013; 60(6): 626–633
https://doi.org/10.1111/jeu.12069 pmid: 23879685
185 LM van Zyl, N Andrew, M Chehade, TA Sadlon, PR Badenoch. Acanthamoeba lenticulata keratitis in a hard contact lens wearer. Clin Exp Ophthalmol 2013; 41(8): 810–812
https://doi.org/10.1111/ceo.12104 pmid: 23448683
186 A González-Robles, M Omaña-Molina, L Salazar-Villatoro, C Flores-Maldonado, J Lorenzo-Morales, M Reyes-Batlle, F Arnalich-Montiel, A Martínez-Palomo. Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: structure and in vitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers. Exp Parasitol 2017; 183: 245–253
https://doi.org/10.1016/j.exppara.2017.09.018 pmid: 28974450
187 D Wu, K Qiao, M Feng, Y Fu, J Cai, Y Deng, H Tachibana, X Cheng. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J Eukaryot Microbiol 2018; 65(2): 191–199
https://doi.org/10.1111/jeu.12454 pmid: 28787535
188 HM Ezz Eldin, RM Sarhan, AE Khayyal. The impact of vinegar on pathogenic Acanthamoeba astronyxis isolate. J Parasit Dis 2019; 43(3): 351–359
https://doi.org/10.1007/s12639-019-01098-3 pmid: 31406399
189 A Singh, M Acharya, N Jose, A Gandhi, S Sharma. 18S rDNA sequencing aided diagnosis of Acanthamoeba jacobsi keratitis—a case report. Indian J Ophthalmol 2019; 67(11): 1886–1888
https://doi.org/10.4103/ijo.IJO_2019_18 pmid: 31638063
190 ME Ávila-Blanco, T Martín-Pérez, J Ventura-Juárez, J Pérez-Serrano. Experimental keratitis in rats caused by Acanthamoeba griffini: a kinetic histopathological study. Parasite Immunol 2020; 42(3): e12692
https://doi.org/10.1111/pim.12692 pmid: 31856305
191 I Hasni, J Andréani, P Colson, B La Scola. Description of virulent factors and horizontal gene transfers of keratitis-associated amoeba Acanthamoeba triangularis by genome analysis. Pathogens 2020; 9(3): E217
https://doi.org/10.3390/pathogens9030217 pmid: 32188120
192 S Roshni Prithiviraj, SGK Rajapandian, H Gnanam, R Gunasekaran, P Mariappan, S Sankalp Singh, L Prajna. Clinical presentations, genotypic diversity and phylogenetic analysis of Acanthamoeba species causing keratitis. J Med Microbiol 2020; 69(1): 87–95
https://doi.org/10.1099/jmm.0.001121 pmid: 31846414
193 AP Anzil, C Rao, MA Wrzolek, GS Visvesvara, JH Sher, PB Kozlowski. Amebic meningoencephalitis in a patient with AIDS caused by a newly recognized opportunistic pathogen. Leptomyxid ameba. Arch Pathol Lab Med 1991; 115(1): 21–25
pmid: 1987909
194 SM Gordon, JP Steinberg, MH DuPuis, PE Kozarsky, JF Nickerson, GS Visvesvara. Culture isolation of Acanthamoeba species and leptomyxid amebas from patients with amebic meningoencephalitis, including two patients with AIDS. Clin Infect Dis 1992; 15(6): 1024–1030
https://doi.org/10.1093/clind/15.6.1024 pmid: 1457633
195 DA Griesemer, LL Barton, CM Reese, PC Johnson, JA Gabrielsen, D Talwar, GS Visvesvara. Amebic meningoencephalitis caused by Balamuthia mandrillaris. Pediatr Neurol 1994; 10(3): 249–254
https://doi.org/10.1016/0887-8994(94)90034-5 pmid: 8060431
196 M Niyyati, J Lorenzo-Morales, M Rezaeian, CM Martin-Navarro, AM Haghi, SK Maciver, B Valladares. Isolation of Balamuthia mandrillaris from urban dust, free of known infectious involvement. Parasitol Res 2009; 106(1): 279–281
https://doi.org/10.1007/s00436-009-1592-9 pmid: 19685076
197 AM Cabello-Vílchez, M Reyes-Batlle, E Montalbán-Sandoval, CM Martín-Navarro, A López-Arencibia, R Elias-Letts, H Guerra, E Gotuzzo, E Martínez-Carretero, JE Piñero, SK Maciver, B Valladares, J Lorenzo-Morales. The isolation of Balamuthia mandrillaris from environmental sources from Peru. Parasitol Res 2014; 113(7): 2509–2513
https://doi.org/10.1007/s00436-014-3900-2 pmid: 24781021
198 AR Latifi, M Niyyati, J Lorenzo-Morales, A Haghighi, SJ Seyyed Tabaei, Z Lasjerdi. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran. Epidemiol Infect 2016; 144(11): 2456–2461
https://doi.org/10.1017/S095026881600073X pmid: 27086943
199 GS Visvesvara, AJ Martinez, FL Schuster, GJ Leitch, SV Wallace, TK Sawyer, M Anderson. Leptomyxid ameba, a new agent of amebic meningoencephalitis in humans and animals. J Clin Microbiol 1990; 28(12): 2750–2756
https://doi.org/10.1128/jcm.28.12.2750-2756.1990 pmid: 2280005
200 H Kinde, GS Visvesvara, BC Barr, RW Nordhausen, PHW Chiu. Amebic meningoencephalitis caused by Balamuthia mandrillaris (leptomyxid ameba) in a horse. J Vet Diagn Invest 1998; 10(4): 378–381
https://doi.org/10.1177/104063879801000416 pmid: 9786532
201 PJ Finnin, GS Visvesvara, BE Campbell, DR Fry, RB Gasser. Multifocal Balamuthia mandrillaris infection in a dog in Australia. Parasitol Res 2007; 100(2): 423–426
https://doi.org/10.1007/s00436-006-0302-0 pmid: 17033842
202 PJ Hodge, K Kelers, RB Gasser, GS Visvesvara, S Martig, SN Long. Another case of canine amoebic meningoencephalitis—the challenges of reaching a rapid diagnosis. Parasitol Res 2011; 108(4): 1069–1073
https://doi.org/10.1007/s00436-010-2197-z pmid: 21161275
203 GC Booton, JR Carmichael, GS Visvesvara, TJ Byers, PA Fuerst. Genotyping of Balamuthia mandrillaris based on nuclear 18S and mitochondrial 16S rRNA genes. Am J Trop Med Hyg 2003; 68(1): 65–69
https://doi.org/10.4269/ajtmh.2003.68.65 pmid: 12556151
204 LF Lares-Jiménez, GC Booton, F Lares-Villa, CA Velázquez-Contreras, PA Fuerst. Genetic analysis among environmental strains of Balamuthia mandrillaris recovered from an artificial lagoon and from soil in Sonora, Mexico. Exp Parasitol 2014; 145(Suppl): S57–S61
https://doi.org/10.1016/j.exppara.2014.07.007 pmid: 25076486
205 Z Kucerova, R Sriram, PP Wilkins, GS Visvesvara. Identification of antigenic targets for immunodetection of Balamuthia mandrillaris infection. Clin Vaccine Immunol 2011; 18(8): 1297–1301
https://doi.org/10.1128/CVI.05082-11 pmid: 21653740
206 AJ Martínez. Is Acanthamoeba encephalitis an opportunistic infection? Neurology 1980; 30(6): 567–574
https://doi.org/10.1212/WNL.30.6.567 pmid: 6991973
207 P Lackner, R Beer, G Broessner, R Helbok, B Pfausler, C Brenneis, H Auer, J Walochnik, E Schmutzhard. Acute granulomatous acanthamoeba encephalitis in an immunocompetent patient. Neurocrit Care 2010; 12(1): 91–94
https://doi.org/10.1007/s12028-009-9291-z pmid: 19847677
208 JR Cope, J Landa, H Nethercut, SA Collier, C Glaser, M Moser, R Puttagunta, JS Yoder, IK Ali, SL Roy. The epidemiology and clinical features of Balamuthia mandrillaris disease in the United States, 1974–2016. Clin Infect Dis 2019; 68(11): 1815–1822
https://doi.org/10.1093/cid/ciy813 pmid: 30239654
209 X Wu, G Yan, S Han, Y Ye, X Cheng, H Gong, H Yu. Diagnosing Balamuthia mandrillaris encephalitis via next-generation sequencing in a 13-year-old girl. Emerg Microbes Infect 2020; 9(1): 1379–1387
https://doi.org/10.1080/22221751.2020.1775130 pmid: 32552393
210 AF Kiderlen, U Laube, E Radam, PS Tata. Oral infection of immunocompetent and immunodeficient mice with Balamuthia mandrillaris amebae. Parasitol Res 2007; 100(4): 775–782
https://doi.org/10.1007/s00436-006-0334-5 pmid: 17111178
211 H Yera, J Dupouy-Camet, JW Jackson, R Sriram, S Sweat, JM Goldstein, GS Visvesvara. In vitro growth, cytopathic effects and clearance of monolayers by clinical isolates of Balamuthia mandrillaris in human skin cell cultures. Exp Parasitol 2015; 156: 61–67
https://doi.org/10.1016/j.exppara.2015.05.004 pmid: 25980370
212 AA Gupte, SN Hocevar, AS Lea, RD Kulkarni, DC Schain, MJ Casey, IR Zendejas-Ruiz, WK Chung, C Mbaeyi, SL Roy, GS Visvesvara, AJ da Silva, J Tallaj, D Eckhoff, JW Baddley. Transmission of Balamuthia mandrillaris through solid organ transplantation: utility of organ recipient serology to guide clinical management. Am J Transplant 2014; 14(6): 1417–1424
https://doi.org/10.1111/ajt.12726 pmid: 24840013
213 EC Farnon, KE Kokko, PJ Budge, C Mbaeyi, EC Lutterloh, Y Qvarnstrom, AJ da Silva, WJ Shieh, SL Roy, CD Paddock, R Sriram, SR Zaki, GS Visvesvara, MJ Kuehnert, Balamuthia Transplant Investigation Teams; J Weiss, K Komatsu, R Manch, A Ramos, L Echeverria, A Moore, P Zakowski, M Kittleson, J Kobashigawa, J Yoder, M Beach, W Mahle, K Kanter, PJ Geraghty, E Navarro, C Hahn, S Fujita, J Stinson, J Trachtenberg, P Byers, M Cheung, T Jie, B Kaplan, R Gruessner, E Bracamonte, C Viscusi, R Gonzalez-Peralta, R Lawrence, J Fratkin, F Butt. Transmission of Balamuthia mandrillaris by organ transplantation. Clin Infect Dis 2016; 63(7): 878–888
https://doi.org/10.1093/cid/ciw422 pmid: 27358357
214 K Kot, NA Łanocha-Arendarczyk, DI Kosik-Bogacka. Amoebas from the genus Acanthamoeba and their pathogenic properties. Ann Parasitol 2018; 64(4): 299–308
pmid: 30720249
215 AJ Martínez, FL Schuster, GS Visvesvara. Balamuthia mandrillaris: its pathogenic potential. J Eukaryot Microbiol 2001; 48(Suppl): 6S–9S
https://doi.org/10.1111/j.1550-7408.2001.tb00434.x pmid: 11906084
216 AF Kiderlen, U Laube. Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway. Parasitol Res 2004; 94(1): 49–52
https://doi.org/10.1007/s00436-004-1163-z pmid: 15338290
217 A Matin, R Siddiqui, S Jayasekera, NA Khan. Increasing importance of Balamuthia mandrillaris. Clin Microbiol Rev 2008; 21(3): 435–448
https://doi.org/10.1128/CMR.00056-07 pmid: 18625680
218 SE Nielsen, A Ivarsen, J Hjortdal. Increasing incidence of Acanthamoeba keratitis in a large tertiary ophthalmology department from year 1994 to 2018. Acta Ophthalmol 2020; 98(5): 445–448;
https://doi.org/10.1111/aos.14337 pmid: 31885189
219 M Garajová, M Mrva. Amoebae of the genus Acanthamoeba—causative agents of human infections. Epidemiol Mikrobiol Imunol 2011; 60(3): 121–130
pmid: 22132654
220 GS Visvesvara. Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr Opin Infect Dis 2010; 23(6): 590–594
https://doi.org/10.1097/QCO.0b013e32833ed78b pmid: 20802332
221 A Betanzos, C Bañuelos, E Orozco. Host invasion by pathogenic amoebae: epithelial disruption by parasite proteins. Genes (Basel) 2019; 10(8): E618
https://doi.org/10.3390/genes10080618 pmid: 31416298
222 NA Khan. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 2006; 30(4): 564–595
https://doi.org/10.1111/j.1574-6976.2006.00023.x pmid: 16774587
223 JJ Serrano-Luna, I Cervantes-Sandoval, J Calderón, F Navarro-García, V Tsutsumi, M Shibayama. Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii. Can J Microbiol 2006; 52(1): 16–23
https://doi.org/10.1139/w05-114 pmid: 16541155
224 KJ Soto-Arredondo, LL Flores-Villavicencio, JJ Serrano-Luna, M Shibayama, M Sabanero-López. Biochemical and cellular mechanisms regulating Acanthamoeba castellanii adherence to host cells. Parasitology 2014; 141(4): 531–541
https://doi.org/10.1017/S0031182013001923 pmid: 24476561
225 I Castelan-Ramírez, L Salazar-Villatoro, B Chávez-Munguía, C Salinas-Lara, C Sánchez-Garibay, C Flores-Maldonado, D Hernández-Martínez, V Anaya-Martínez, MR Ávila-Costa, AR Méndez-Cruz, M Omaña-Molina. Schwann cell autophagy and necrosis as mechanisms of cell death by Acanthamoeba. Pathogens 2020; 9(6): E458
https://doi.org/10.3390/pathogens9060458 pmid: 32526974
226 TB Cole, DT John. Effects of cytochalasin B on Naegleria fowleri amoebostomes. Proceedings, Annual Meeting, Electron Microscopy Society of America 1985; 43: 482–483
227 A González-Robles, M González-Lázaro, M Omaña-Molina, A Martínez-Palomo. Acanthamoeba castellanii: endocytic structures involved in the ingestion of diverse target elements. Acta Protozool 2009; 48(4): 329–334
228 C Piña-Vázquez, M Reyes-López, G Ortíz-Estrada, M de la Garza, J Serrano-Luna. Host-parasite interaction: parasite-derived and-induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012: 748206
https://doi.org/10.1155/2012/748206 pmid: 22792442
229 NA Khan. Acanthamoeba and the blood-brain barrier: the breakthrough. J Med Microbiol 2008; 57(9): 1051–1057
https://doi.org/10.1099/jmm.0.2008/000976-0 pmid: 18719172
230 NA Khan, R Siddiqui. Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int J Parasitol 2009; 39(14): 1611–1616
https://doi.org/10.1016/j.ijpara.2009.06.004 pmid: 19580812
231 D Coronado-Velázquez, A Betanzos, J Serrano-Luna, M Shibayama. An in vitro model of the blood-brain barrier: Naegleria fowleri affects the tight junction proteins and activates the microvascular endothelial cells. J Eukaryot Microbiol 2018; 65(6): 804–819
https://doi.org/10.1111/jeu.12522 pmid: 29655298
232 R Siddiqui, R Emes, H Elsheikha, NA Khan. Area 51: How do Acanthamoeba invade the central nervous system? Trends Parasitol 2011; 27(5): 185–189
https://doi.org/10.1016/j.pt.2011.01.005 pmid: 21507718
233 AD Chusattayanond, S Boonsilp, J Kasisit, A Boonmee, S Warit. Thai Acanthamoeba isolate (T4) induced apoptotic death in neuroblastoma cells via the Bax-mediated pathway. Parasitol Int 2010; 59(4): 512–516
https://doi.org/10.1016/j.parint.2010.06.007 pmid: 20601106
234 JM Huang, YT Chang, WC Lin. The biochemical and functional characterization of M28 aminopeptidase protein secreted by Acanthamoeba spp. on host cell interaction. Molecules 2019; 24(24): E4573
https://doi.org/10.3390/molecules24244573 pmid: 31847255
235 J Sissons, S Alsam, G Goldsworthy, M Lightfoot, EL Jarroll, NA Khan. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol 2006; 6(1): 42
https://doi.org/10.1186/1471-2180-6-42 pmid: 16672059
236 A Matin, R Siddiqui, SY Jung, KS Kim, M Stins, NA Khan. Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. J Med Microbiol 2007; 56(8): 1110–1115
https://doi.org/10.1099/jmm.0.47134-0 pmid: 17644721
237 R Siddiqui, NA Khan. Balamuthia amoebic encephalitis: an emerging disease with fatal consequences. Microb Pathog 2008; 44(2): 89–97
https://doi.org/10.1016/j.micpath.2007.06.008 pmid: 17913450
238 A Matin, SR Jeong, M Stins, NA Khan. Effects of human serum on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells. J Med Microbiol 2007; 56(1): 30–35
https://doi.org/10.1099/jmm.0.46847-0 pmid: 17172513
239 R Siddiqui, NA Khan. Balamuthia mandrillaris: morphology, biology, and virulence. Trop Parasitol 2015; 5(1): 15–22
https://doi.org/10.4103/2229-5070.149888 pmid: 25709948
240 S Jayasekera, A Matin, J Sissons, AH Maghsood, NA Khan. Balamuthia mandrillaris stimulates interleukin-6 release in primary human brain microvascular endothelial cells via a phosphatidylinositol 3-kinase-dependent pathway. Microbes Infect 2005; 7(13): 1345–1351
https://doi.org/10.1016/j.micinf.2005.05.001 pmid: 16027019
241 B Rocha-Azevedo, M Jamerson, GA Cabral, FC Silva-Filho, F Marciano-Cabral. The interaction between the amoeba Balamuthia mandrillaris and extracellular matrix glycoproteins in vitro. Parasitology 2007; 134(1): 51–58
https://doi.org/10.1017/S0031182006001272 pmid: 17032481
242 A Matin, M Stins, KS Kim, NA Khan. Balamuthia mandrillaris exhibits metalloprotease activities. FEMS Immunol Med Microbiol 2006; 47(1): 83–91
https://doi.org/10.1111/j.1574-695X.2006.00065.x pmid: 16706791
243 A Matin, NA Khan. Demonstration and partial characterization of ecto-ATPase in Balamuthia mandrillaris and its possible role in the host-cell interactions. Lett Appl Microbiol 2008; 47(4): 348–354
https://doi.org/10.1111/j.1472-765X.2008.02414.x pmid: 18761612
244 J Lorenzo-Morales, NA Khan, J Walochnik. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 2015; 22: 10
https://doi.org/10.1051/parasite/2015010 pmid: 25687209
245 S Değerli, N Değerli, D Çamur, Ö Doğan, H İlter. Genotyping by sequencing of Acanthamoeba and Naegleria isolates from the thermal pool distributed throughout Turkey. Acta Parasitol 2020; 65(1): 174–186
https://doi.org/10.2478/s11686-019-00148-3 pmid: 31797194
246 RT Cursons, TJ Brown, EA Keys, KM Moriarty, D Till. Immunity to pathogenic free-living amoebae: role of humoral antibody. Infect Immun 1980; 29(2): 401–407
https://doi.org/10.1128/iai.29.2.401-407.1980 pmid: 7216418
247 A Wojtkowiak-Giera, M Derda, A Kolasa-Wołosiuk, E Hadaś, D Kosik-Bogacka, P Solarczyk, PP Jagodziński, E Wandurska-Nowak. Toll-like receptors in the brain of mice following infection with Acanthamoeba spp. Parasitol Res 2016; 115(11): 4335–4344
https://doi.org/10.1007/s00436-016-5217-9 pmid: 27511368
248 M Derda, A Wojtkowiak-Giera, A Kolasa-Wołosiuk, D Kosik-Bogacka, E Hadaś, PP Jagodziński, E Wandurska-Nowak. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4). Exp Parasitol 2016; 165: 30–34
https://doi.org/10.1016/j.exppara.2016.02.012 pmid: 26940205
249 W Pumidonming, J Walochnik, E Dauber, F Petry. Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology 2011; 216(1–2): 225–233
https://doi.org/10.1016/j.imbio.2010.05.002 pmid: 20627448
250 A Ferrante, B Rowan-Kelly. Activation of the alternative pathway of complement by Acanthamoeba culbertsoni. Clin Exp Immunol 1983; 54(2): 477–485
pmid: 6418422
251 GL Stewart, K Shupe, I Kim, RE Silvany, H Alizadeh, JP McCulley, JY Niederkorn. Antibody-dependent neutrophil-mediated killing of Acanthamoeba castellanii. Int J Parasitol 1994; 24(5): 739–742
https://doi.org/10.1016/0020-7519(94)90129-5 pmid: 7928077
252 F Marciano-Cabral, DM Toney. The interaction of Acanthamoeba spp. with activated macrophages and with macrophage cell lines. J Eukaryot Microbiol 1998; 45(4): 452–458
https://doi.org/10.1111/j.1550-7408.1998.tb05099.x pmid: 9703682
253 N Benedetto, F Rossano, F Gorga, A Folgore, M Rao, C Romano Carratelli. Defense mechanisms of IFN-γ and LPS-primed murine microglia against Acanthamoeba castellanii infection. Int Immunopharmacol 2003; 3(6): 825–834
https://doi.org/10.1016/S1567-5769(03)00047-X pmid: 12781699
254 A Mattana, M Sanna, A Cano, G Delogu, G Erre, CW Roberts, FL Henriquez, PL Fiori, P Cappuccinelli. Acanthamoeba castellanii genotype T4 stimulates the production of interleukin-10 as well as proinflammatory cytokines in THP-1 cells, human peripheral blood mononuclear cells, and human monocyte-derived macrophages. Infect Immun 2016; 84(10): 2953–2962
https://doi.org/10.1128/IAI.00345-16 pmid: 27481240
255 A Cano, A Mattana, S Woods, FL Henriquez, J Alexander, CW Roberts. Acanthamoeba activates macrophages predominantly through Toll-like receptor 4- and MyD88-dependent mechanisms to induce interleukin-12 (IL-12) and IL-6. Infect Immun 2017; 85(6): e01054-16
https://doi.org/10.1128/IAI.01054-16 pmid: 28348053
256 KH Kim, CO Shin, K Im. Natural killer cell activity in mice infected with free-living amoeba with reference to their pathogenicity. Korean J Parasitol 1993; 31(3): 239–248
https://doi.org/10.3347/kjp.1993.31.3.239 pmid: 8241083
257 JY Kim, BK Na, KJ Song, MH Park, YK Park, TS Kim. Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitol Res 2012; 111(4): 1673–1682
https://doi.org/10.1007/s00436-012-3006-7 pmid: 22752747
258 ZH Huang, A Ferrante, RF Carter. Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis. J Infect Dis 1999; 179(5): 1305–1308
https://doi.org/10.1086/314731 pmid: 10191243
259 FL Schuster, S Honarmand, GS Visvesvara, CA Glaser. Detection of antibodies against free-living amoebae Balamuthia mandrillaris and Acanthamoeba species in a population of patients with encephalitis. Clin Infect Dis 2006; 42(9): 1260–1265
https://doi.org/10.1086/503037 pmid: 16586385
260 DM Toney, F Marciano-Cabral. Resistance of Acanthamoeba species to complement lysis. J Parasitol 1998; 84(2): 338–344
https://doi.org/10.2307/3284492 pmid: 9576508
261 S Jayasekera, J Sissons, J Tucker, C Rogers, D Nolder, D Warhurst, S Alsam, JML White, EM Higgins, NA Khan. Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells. J Med Microbiol 2004; 53(10): 1007–1012
https://doi.org/10.1099/jmm.0.45721-0 pmid: 15358823
262 A Matin, S Nawaz, SY Jung. Report: Effect of macrophage alone or primed with cytokines on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. Pak J Pharm Sci 2018; 31(6): 2553–2559
pmid: 30473531
263 P Guzmán-Téllez, M Martínez-Castillo, N Flores-Huerta, G Rosales-Morgan, J Pacheco-Yépez, M la Garza, J Serrano-Luna, M Shibayama. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15(10): 919–936
https://doi.org/10.2217/fmb-2019-0275 pmid: 32716210
264 SL Robbins, V Kumar, RS Cotran. Robbins and Cotran Pathologic Basis of Disease. 8th ed. Philadelphia, PA: Saunders/Elsevier, 2010
265 AM Baig. Granulomatous amoebic encephalitis: ghost response of an immunocompromised host? J Med Microbiol 2014; 63(Pt 12): 1763–1766
https://doi.org/10.1099/jmm.0.081315-0 pmid: 25239626
266 DC Lee, SE Fiester, LA Madeline, JW Fulcher, ME Ward, CM Schammel, RK Hakimi. Acanthamoeba spp. and Balamuthia mandrillaris leading to fatal granulomatous amebic encephalitis. Forensic Sci Med Pathol 2020; 16(1): 171–176
https://doi.org/10.1007/s12024-019-00202-6 pmid: 31773473
267 SE Vernon, BC Acar, SM Pham, D Fertel. Acanthamoeba infection in lung transplantation: report of a case and review of the literature. Transpl Infect Dis 2005; 7(3–4): 154–157
https://doi.org/10.1111/j.1399-3062.2005.00113.x pmid: 16390406
268 AG Duarte, F Sattar, B Granwehr, JF Aronson, Z Wang, S Lick. Disseminated acanthamoebiasis after lung transplantation. J Heart Lung Transplant 2006; 25(2): 237–240
https://doi.org/10.1016/j.healun.2005.09.006 pmid: 16446227
269 M Schimmel, I Mehta. Granulomatous amebic encephalitis. N Engl J Med 2020; 383(13): 1262
https://doi.org/10.1056/NEJMicm2002401 pmid: 32966724
270 R Reddy, M Vijayasaradhi, MS Uppin, S Challa, A Jabeen, R Borghain. Acanthamoeba meningoencephalitis in an immunocompetent patient: an autopsy case report. Neuropathology 2011; 31(2): 183–187
https://doi.org/10.1111/j.1440-1789.2010.01151.x pmid: 20667014
271 M Sütçü, H Aktürk, S Gülümser-Şişko, M Acar, OB Erol, A Somer, B Bilgiç, N Salman. Granulomatous amebic encephalitis caused by Acanthamoeba in an immuncompetent child. Turk J Pediatr 2018; 60(3): 340–343
https://doi.org/10.24953/turkjped.2018.03.019 pmid: 30511552
272 KW Shehab, K Aboul-Nasr, SP Elliott. Balamuthia mandrillaris granulomatous amebic encephalitis with renal dissemination in a previously healthy child: case report and review of the pediatric literature. J Pediatric Infect Dis Soc 2018; 7(3): e163–e168
https://doi.org/10.1093/jpids/pix089 pmid: 29096002
273 L Wang, W Cheng, B Li, Z Jian, X Qi, D Sun, J Gao, X Lu, Y Yang, K Lin, C Lu, J Chen, C Li, G Wang, T Gao. Balamuthia mandrillaris infection in China: a retrospective report of 28 cases. Emerg Microbes Infect 2020; 9(1): 2348–2357
https://doi.org/10.1080/22221751.2020.1835447 pmid: 33048025
274 Y Yang, X Hu, L Min, X Dong, Y Guan. Balamuthia mandrillaris-related primary amoebic encephalitis in China diagnosed by next generation sequencing and a review of the literature. Lab Med 2020; 51(2): e20–e26
pmid: 31711180
275 FG Bravo, PJ Alvarez, E Gotuzzo. Balamuthia mandrillaris infection of the skin and central nervous system: an emerging disease of concern to many specialties in medicine. Curr Opin Infect Dis 2011; 24(2): 112–117
https://doi.org/10.1097/QCO.0b013e3283428d1e pmid: 21192259
276 FG Bravo, C Seas. Balamuthia mandrillaris amoebic encephalitis: an emerging parasitic infection. Curr Infect Dis Rep 2012; 14(4): 391–396
https://doi.org/10.1007/s11908-012-0266-4 pmid: 22729402
277 AJ Martinez, K Janitschke. Acanthamoeba, an opportunistic microorganism: a review. Infection 1985; 13(6): 251–256
https://doi.org/10.1007/BF01645432 pmid: 2867047
278 SL Coven, E Song, S Steward, CR Pierson, JR Cope, IK Ali, MI Ardura, MW Hall, MG Chung, RPS Bajwa. Acanthamoeba granulomatous amoebic encephalitis after pediatric hematopoietic stem cell transplant. Pediatr Transplant 2017; 21(8): e13060
https://doi.org/10.1111/petr.13060 pmid: 28921764
279 DP Ghadage, AC Choure, AB Wankhade, AV Bhore. Opportunistic free: living amoeba now becoming a usual pathogen? Indian J Pathol Microbiol 2017; 60(4): 601–603
https://doi.org/10.4103/IJPM.IJPM_815_16 pmid: 29323087
280 The Editors. Balamuthia mandrillaris infection. J Med Microbiol 2001; 50(3): 205–207
https://doi.org/10.1099/0022-1317-50-3-205 pmid: 11232763
281 FL Schuster, GS Visvesvara. Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist Updat 2004; 7(1): 41–51
https://doi.org/10.1016/j.drup.2004.01.002 pmid: 15072770
282 D Pan, LR Bridges, J du Parcq, U Mahadeva, S Roy, IKM Ali, CA Cosgrove, PL Chiodini, L Zhang. A rare cause of left-sided weakness in an elderly woman: amoebic encephalitis. Lancet 2020; 396(10244): e1
https://doi.org/10.1016/S0140-6736(20)31365-9 pmid: 32653069
283 FG Bravo. Cutaneous manifestations of infection by free-living amebas. In: Tyring SK. Tropical Dermatology. Philadelphia: Churchill Livingstone, 2006: 49–55
284 SK Kalra, P Sharma, K Shyam, N Tejan, U Ghoshal. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 2020; 208: 107788
https://doi.org/10.1016/j.exppara.2019.107788 pmid: 31647916
285 A Bakardjiev, PH Azimi, N Ashouri, DP Ascher, D Janner, FL Schuster, GS Visvesvara, C Glaser. Amebic encephalitis caused by Balamuthia mandrillaris: report of four cases. Pediatr Infect Dis J 2003; 22(5): 447–452
https://doi.org/10.1097/01.inf.0000066540.18671.f8 pmid: 12792389
286 M Seijo Martinez, G Gonzalez-Mediero, P Santiago, A Rodriguez De Lope, J Diz, C Conde, GS Visvesvara. Granulomatous amebic encephalitis in a patient with AIDS: isolation of acanthamoeba sp. Group II from brain tissue and successful treatment with sulfadiazine and fluconazole. J Clin Microbiol 2000; 38(10): 3892–3895
https://doi.org/10.1128/JCM.38.10.3892-3895.2000 pmid: 11015431
287 VK Thamtam, MS Uppin, A Pyal, S Kaul, JY Rani, C Sundaram. Fatal granulomatous amoebic encephalitis caused by Acanthamoeba in a newly diagnosed patient with systemic lupus erythematosus. Neurol India 2016; 64(1): 101–104
https://doi.org/10.4103/0028-3886.173662 pmid: 26755000
288 CA Slater, JZ Sickel, GS Visvesvara, RC Pabico, AA Gaspari. Brief report: successful treatment of disseminated Acanthamoeba infection in an immunocompromised patient. N Engl J Med 1994; 331(2): 85–87
https://doi.org/10.1056/NEJM199407143310204 pmid: 8208270
289 R Walia, JG Montoya, GS Visvesvera, GC Booton, RL Doyle. A case of successful treatment of cutaneous Acanthamoeba infection in a lung transplant recipient. Transpl Infect Dis 2007; 9(1): 51–54
https://doi.org/10.1111/j.1399-3062.2006.00159.x pmid: 17313473
290 J Lorenzo-Morales, AM Cabello-Vílchez, CM Martín-Navarro, E Martínez-Carretero, JE Piñero, B Valladares. Is Balamuthia mandrillaris a public health concern worldwide? Trends Parasitol 2013; 29(10): 483–488
https://doi.org/10.1016/j.pt.2013.07.009 pmid: 23988231
291 JJ Sell, FW Rupp, WW Orrison Jr. Granulomatous amebic encephalitis caused by acanthamoeba. Neuroradiology 1997; 39(6): 434–436
https://doi.org/10.1007/s002340050440 pmid: 9225325
292 CG Shirwadkar, R Samant, M Sankhe, R Deshpande, S Yagi, FL Schuster, R Sriram, GS Visvesvara. Acanthamoeba encephalitis in patient with systemic lupus, India. Emerg Infect Dis 2006; 12(6): 984–986
https://doi.org/10.3201/eid1206.060087 pmid: 16707057
293 S Modica, C Miracco, MG Cusi, G Tordini, VF Muzii, F Iacoangeli, C Nocentini, IKM Ali, S Roy, A Cerase, G Zanelli, A De Luca, F Montagnani. Non-granulomatous cerebellar infection by Acanthamoeba spp. in an immunocompetent host. Infection 2018; 46(6): 885–889
https://doi.org/10.1007/s15010-018-1231-4 pmid: 30288678
294 S Jung, RL Schelper, GS Visvesvara, HT Chang. Balamuthia mandrillaris meningoencephalitis in an immunocompetent patient: an unusual clinical course and a favorable outcome. Arch Pathol Lab Med 2004; 128(4): 466–468
https://doi.org/10.5858/2004-128-466-BMMIAI pmid: 15043486
295 WT Harrison, B Lecky, CM Hulette. Fatal granulomatous amebic encephalitis in a heart transplant patient: clinical, radiographic, and autopsy findings. J Neuropathol Exp Neurol 2018; 77(11): 1001–1004
https://doi.org/10.1093/jnen/nly089 pmid: 30295806
296 SC Parija, K Dinoop, H Venugopal. Management of granulomatous amebic encephalitis: laboratory diagnosis and treatment. Trop Parasitol 2015; 5(1): 23–28
https://doi.org/10.4103/2229-5070.149889 pmid: 25709949
297 JE Williams. Diagnostic medical parasitology. Parasitol Today 1998; 14(3): 125–126
https://doi.org/10.1016/S0169-4758(97)01175-7 pmid: 17040721
298 AY Kang, AY Park, HJ Shin, NA Khan, SK Maciver, SY Jung. Production of a monoclonal antibody against a mannose-binding protein of Acanthamoeba culbertsoni and its localization. Exp Parasitol 2018; 192: 19–24
https://doi.org/10.1016/j.exppara.2018.07.009 pmid: 30031120
299 J Guarner, J Bartlett, WJ Shieh, CD Paddock, GS Visvesvara, SR Zaki. Histopathologic spectrum and immunohistochemical diagnosis of amebic meningoencephalitis. Mod Pathol 2007; 20(12): 1230–1237
https://doi.org/10.1038/modpathol.3800973 pmid: 17932496
300 AF Kiderlen, E Radam, PS Tata. Assessment of Balamuthia mandrillaris-specific serum antibody concentrations by flow cytometry. Parasitol Res 2009; 104(3): 663–670
https://doi.org/10.1007/s00436-008-1243-6 pmid: 19039606
301 AF Kiderlen, E Radam, FL Schuster, EV Adjogoua, C Akoua-Koffi, FH Leendertz. Balamuthia and Acanthamoeba-binding antibodies in West African human sera. Exp Parasitol 2010; 126(1): 28–32
https://doi.org/10.1016/j.exppara.2009.10.015 pmid: 19896940
302 FL Schuster. Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol Rev 2002; 15(3): 342–354
https://doi.org/10.1128/CMR.15.3.342-354.2002 pmid: 12097243
303 AF Kiderlen, E Radam, A Lewin. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene. BMC Microbiol 2008; 8(1): 210
https://doi.org/10.1186/1471-2180-8-210 pmid: 19055756
304 S Yagi, GC Booton, GS Visvesvara, FL Schuster. Detection of Balamuthia mitochondrial 16S rRNA gene DNA in clinical specimens by PCR. J Clin Microbiol 2005; 43(7): 3192–3197
https://doi.org/10.1128/JCM.43.7.3192-3197.2005 pmid: 16000434
305 S Gabriel, AK Rasheed, R Siddiqui, JN Appaturi, LB Fen, NA Khan. Development of nanoparticle-assisted PCR assay in the rapid detection of brain-eating amoebae. Parasitol Res 2018; 117(6): 1801–1811
https://doi.org/10.1007/s00436-018-5864-0 pmid: 29675682
306 AP Norgan, LM Sloan, BS Pritt. Detection of Naegleria fowleri, Acanthamoeba spp, and Balamuthia mandrillaris in formalin-fixed, paraffin-embedded tissues by real-time multiplex polymerase chain reaction. Am J Clin Pathol 2019; 152(6): 799–807
https://doi.org/10.1093/ajcp/aqz103 pmid: 31415080
307 MR Wilson, NM Shanbhag, MJ Reid, NS Singhal, JM Gelfand, HA Sample, B Benkli, BD O’Donovan, IK Ali, MK Keating, TH Dunnebacke, MD Wood, A Bollen, JL DeRisi. Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol 2015; 78(5): 722–730
https://doi.org/10.1002/ana.24499 pmid: 26290222
308 ML Silva-Vergara, ER Da Cunha Colombo, E De Figueiredo Vissotto, AC Silva, JE Chica, RM Etchebehere, SJ Adad. Disseminated Balamuthia mandrillaris amoeba infection in an AIDS patient from Brazil. Am J Trop Med Hyg 2007; 77(6): 1096–1098
https://doi.org/10.4269/ajtmh.2007.77.1096 pmid: 18165529
309 RA Silva, SA Araújo, IF Avellar, JE Pittella, JT Oliveira, PP Christo. Granulomatous amoebic meningoencephalitis in an immunocompetent patient. Arch Neurol 2010; 67(12): 1516–1520
https://doi.org/10.1001/archneurol.2010.309 pmid: 21149814
310 JH Diaz. The public health threat from Balamuthia mandrillaris in the southern United States. J La State Med Soc 2011; 163(4): 197–204
pmid: 21954652
311 A Krasaelap, S Prechawit, J Chansaenroj, P Punyahotra, T Puthanakit, K Chomtho, S Shuangshoti, J Amornfa, Y Poovorawan. Fatal Balamuthia amebic encephalitis in a healthy child: a case report with review of survival cases. Korean J Parasitol 2013; 51(3): 335–341
https://doi.org/10.3347/kjp.2013.51.3.335 pmid: 23864745
312 M Galarza, V Cuccia, FP Sosa, JA Monges. Pediatric granulomatous cerebral amebiasis: a delayed diagnosis. Pediatr Neurol 2002; 26(2): 153–156
https://doi.org/10.1016/S0887-8994(01)00360-5 pmid: 11897483
313 TN Pindyck, LE Dvorscak, BL Hart, MD Palestine, JE Gallant, SE Allen, KS SantaCruz. Fatal granulomatous amebic encephalitis due to Balamuthia mandrillaris in New Mexico: a case report. Open Forum Infect Dis 2014; 1(2): ofu062
https://doi.org/10.1093/ofid/ofu062 pmid: 25734132
314 L Retana-Moreira, E Abrahams-Sandí, AM Cabello-Vílchez, M Reyes-Batlle, B Valladares, E Martínez-Carretero, JE Piñero, J Lorenzo-Morales. Isolation and molecular characterization of Acanthamoeba and Balamuthia mandrillaris from combination shower units in Costa Rica. Parasitol Res 2014; 113(11): 4117–4122
https://doi.org/10.1007/s00436-014-4083-6 pmid: 25134946
315 S Gabriel, NA Khan, R Siddiqui. Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. J Water Health 2019; 17(1): 160–171
https://doi.org/10.2166/wh.2018.164 pmid: 30758312
316 C Mbaeyi, CG Hlth. Notes From the Field: transplant-transmitted Balamuthia mandrillaris—Arizona, 2010 (Reprinted from MMWR, vol 59, pg 1182, 2010). JAMA 2011; 305(3): 249
317 DaSilvaNo author listed. Balamuthia mandrillaris transmitted through organ transplantation—Mississippi, 2009. Am J Transplant 2011; 11(1): 173–176
https://doi.org/10.1111/j.1600-6143.2010.03395_1.x
318 FL Schuster, C Glaser, S Honarmand, JH Maguire, GS Visvesvara. Balamuthia amebic encephalitis risk, Hispanic Americans. Emerg Infect Dis 2004; 10(8): 1510–1512
https://doi.org/10.3201/eid1008.040139 pmid: 15503402
319 FL Schuster, BJ Guglielmo, GS Visvesvara. In-vitro activity of miltefosine and voriconazole on clinical isolates of free-living amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. J Eukaryot Microbiol 2006; 53(2): 121–126
https://doi.org/10.1111/j.1550-7408.2005.00082.x pmid: 16579814
320 JS Doyle, E Campbell, A Fuller, DW Spelman, R Cameron, G Malham, D Gin, SR Lewin. Balamuthia mandrillaris brain abscess successfully treated with complete surgical excision and prolonged combination antimicrobial therapy. J Neurosurg 2011; 114(2): 458–462
https://doi.org/10.3171/2010.10.JNS10677 pmid: 21073255
321 R Siddiqui, Y Aqeel, NA Khan. Killing the dead: chemotherapeutic strategies against free-living cyst-forming protists (Acanthamoeba sp. and Balamuthia mandrillaris). J Eukaryot Microbiol 2013; 60(3): 291–297
https://doi.org/10.1111/jeu.12026 pmid: 23346945
322 F Marciano-Cabral, G Cabral. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 2003; 16(2): 273–307
https://doi.org/10.1128/CMR.16.2.273-307.2003 pmid: 12692099
323 AR Tunkel, CA Glaser, KC Bloch, JJ Sejvar, CM Marra, KL Roos, BJ Hartman, SL Kaplan, WM Scheld, RJ; Infectious Diseases Society of America Whitley. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2008; 47(3): 303–327
https://doi.org/10.1086/589747 pmid: 18582201
324 LC Cary, E Maul, C Potter, P Wong, PT Nelson, C Given 2nd, W Robertson Jr. Balamuthia mandrillaris meningoencephalitis: survival of a pediatric patient. Pediatrics 2010; 125(3): e699–e703
https://doi.org/10.1542/peds.2009-1797 pmid: 20123772
325 L Orozco, W Hanigan, M Khan, J Fratkin, M Lee. Neurosurgical intervention in the diagnosis and treatment of Balamuthia mandrillaris encephalitis. J Neurosurg 2011; 115(3): 636–640
https://doi.org/10.3171/2011.4.JNS102057 pmid: 21619411
326 MT Laurie, CV White, H Retallack, W Wu, MS Moser, JA Sakanari, K Ang, C Wilson, MR Arkin, JL DeRisi. Functional assessment of 2,177 U.S. and international drugs identifies the quinoline nitroxoline as a potent amoebicidal agent against the pathogen Balamuthia mandrillaris. MBio 2018; 9(5): e02051-18
https://doi.org/10.1128/mBio.02051-18 pmid: 30377287
327 TR Deetz, MH Sawyer, G Billman, FL Schuster, GS Visvesvara. Successful treatment of Balamuthia amoebic encephalitis: presentation of 2 cases. Clin Infect Dis 2003; 37(10): 1304–1312
https://doi.org/10.1086/379020 pmid: 14583863
328 BLC Gondim, J da Silva Catarino, MAD de Sousa, M de Oliveira Silva, MR Lemes, TM de Carvalho-Costa, TR de Lima Nascimento, JR Machado, V Rodrigues, CJF Oliveira, LR Cançado Castellano, MV da Silva. Nanoparticle-mediated drug delivery: blood–brain barrier as the main obstacle to treating infectious diseases in CNS. Curr Pharm Des 2019; 25(37): 3983–3996
https://doi.org/10.2174/1381612825666191014171354 pmid: 31612822
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed