Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (3): 483-495   https://doi.org/10.1007/s11684-021-0872-3
  本期目录
Characterization of chromatin accessibility in psoriasis
Zheng Zhang1, Lu Liu2, Yanyun Shen1, Ziyuan Meng2, Min Chen2,3, Zhong Lu1(), Xuejun Zhang1,2,3()
1. Department of Dermatology, Huashan Hospital, Fudan University. Shanghai 200040, China
2. Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei 230032, China
3. Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215123, China
 全文: PDF(2871 KB)   HTML
Abstract

The pathological hallmarks of psoriasis involve alterations in T cell genes associated with transcriptional levels, which are determined by chromatin accessibility. However, to what extent these alterations in T cell transcriptional levels recapitulate the epigenetic features of psoriasis remains unknown. Here, we systematically profiled chromatin accessibility on Th1, Th2, Th1-17, Th17, and Treg cells and found that chromatin remodeling contributes significantly to the pathogenesis of the disease. The chromatin remodeling tendency of different subtypes of Th cells were relatively consistent. Next, we profiled chromatin accessibility and transcriptional dynamics on memory Th/Treg cells. In the memory Th cells, 803 increased and 545 decreased chromatin-accessible regions were identified. In the memory Treg cells, 713 increased and 1206 decreased chromatin-accessible regions were identified. A total of 54 and 53 genes were differentially expressed in the peaks associated with the memory Th and Treg cells. FOSL1, SPI1, ATF3, NFKB1, RUNX, ETV4, ERG, FLI1, and ETC1 were identified as regulators in the development of psoriasis. The transcriptional regulatory network showed that NFKB1 and RELA were highly connected and central to the network. NFKB1 regulated the genes of CCL3, CXCL2, and IL1RN. Our results provided candidate transcription factors and a foundational framework of the regulomes of the disease.

Key wordspsoriasis    ATAC-seq    epigenetics    transcription factor
收稿日期: 2020-12-14      出版日期: 2022-07-18
Corresponding Author(s): Zhong Lu,Xuejun Zhang   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(3): 483-495.
Zheng Zhang, Lu Liu, Yanyun Shen, Ziyuan Meng, Min Chen, Zhong Lu, Xuejun Zhang. Characterization of chromatin accessibility in psoriasis. Front. Med., 2022, 16(3): 483-495.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0872-3
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I3/483
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 JE Hawkes, TC Chan, JG Krueger. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 2017; 140(3): 645–653
https://doi.org/10.1016/j.jaci.2017.07.004 pmid: 28887948
2 J Kim, JG Krueger. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis. Annu Rev Med 2017; 68(1): 255–269
https://doi.org/10.1146/annurev-med-042915-103905 pmid: 27686018
3 C Enerbäck, C Sandin, S Lambert, M Zawistowski, PE Stuart, D Verma, LC Tsoi, RP Nair, A Johnston, JT Elder. The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Sci Rep 2018; 8(1): 7043
https://doi.org/10.1038/s41598-018-25282-2 pmid: 29728633
4 S Lambert, WR Swindell, LC Tsoi, SW Stoll, JT Elder. Dual role of Act1 in keratinocyte differentiation and host defense: TRAF3IP2 silencing alters keratinocyte differentiation and inhibits IL-17 responses. J Invest Dermatol 2017; 137(7): 1501–1511
https://doi.org/10.1016/j.jid.2016.12.032 pmid: 28274739
5 H Tang, X Jin, Y Li, H Jiang, X Tang, X Yang, H Cheng, Y Qiu, G Chen, J Mei, F Zhou, R Wu, X Zuo, Y Zhang, X Zheng, Q Cai, X Yin, C Quan, H Shao, Y Cui, F Tian, X Zhao, H Liu, F Xiao, F Xu, J Han, D Shi, A Zhang, C Zhou, Q Li, X Fan, L Lin, H Tian, Z Wang, H Fu, F Wang, B Yang, S Huang, B Liang, X Xie, Y Ren, Q Gu, G Wen, Y Sun, X Wu, L Dang, M Xia, J Shan, T Li, L Yang, X Zhang, Y Li, C He, A Xu, L Wei, X Zhao, X Gao, J Xu, F Zhang, J Zhang, Y Li, L Sun, J Liu, R Chen, S Yang, J Wang, X Zhang. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet 2014; 46(1): 45–50
https://doi.org/10.1038/ng.2827 pmid: 24212883
6 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57–74
https://doi.org/10.1038/nature11247 pmid: 22955616
7 JD Buenrostro, PG Giresi, LC Zaba, HY Chang, WJ Greenleaf. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013; 10(12): 1213–1218
https://doi.org/10.1038/nmeth.2688 pmid: 24097267
8 K Qu, LC Zaba, PG Giresi, R Li, M Longmire, YH Kim, WJ Greenleaf, HY Chang. Individuality and variation of personal regulomes in primary human T cells. Cell Syst 2015; 1(1): 51–61
https://doi.org/10.1016/j.cels.2015.06.003 pmid: 26251845
9 JD Buenrostro, B Wu, HY Chang, WJ Greenleaf. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 2015; 109: 21.29.1–21.29.9
https://doi.org/10.1002/0471142727.mb2129s109 pmid: 25559105
10 AM Bolger, M Lohse, B Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–2120
https://doi.org/10.1093/bioinformatics/btu170 pmid: 24695404
11 B Langmead, SL Salzberg. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357–359
https://doi.org/10.1038/nmeth.1923 pmid: 22388286
12 Y Zhang, T Liu, CA Meyer, J Eeckhoute, DS Johnson, BE Bernstein, C Nusbaum, RM Myers, M Brown, W Li, XS Liu. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137
https://doi.org/10.1186/gb-2008-9-9-r137 pmid: 18798982
13 CS Ross-Innes, R Stark, AE Teschendorff, KA Holmes, HR Ali, MJ Dunning, GD Brown, O Gojis, IO Ellis, AR Green, S Ali, SF Chin, C Palmieri, C Caldas, JS Carroll. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 2012; 481(7381): 389–393
https://doi.org/10.1038/nature10730 pmid: 22217937
14 MD Robinson, DJ McCarthy, GK Smyth. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139–140
https://doi.org/10.1093/bioinformatics/btp616 pmid: 19910308
15 G Yu, LG Wang, QY He. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015; 31(14): 2382–2383
https://doi.org/10.1093/bioinformatics/btv145 pmid: 25765347
16 S Heinz, C Benner, N Spann, E Bertolino, YC Lin, P Laslo, JX Cheng, C Murre, H Singh, CK Glass. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38(4): 576–589
https://doi.org/10.1016/j.molcel.2010.05.004 pmid: 20513432
17 JT Robinson, H Thorvaldsdóttir, W Winckler, M Guttman, ES Lander, G Getz, JP Mesirov. Integrative genomics viewer. Nat Biotechnol 2011; 29(1): 24–26
https://doi.org/10.1038/nbt.1754 pmid: 21221095
18 D Karolchik, AS Hinrichs, TS Furey, KM Roskin, CW Sugnet, D Haussler, WJ Kent. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004; 32(Database issue): D493–D496
https://doi.org/10.1093/nar/gkh103 pmid: 14681465
19 Z Gu, R Eils, M Schlesner. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32(18): 2847–2849
https://doi.org/10.1093/bioinformatics/btw313 pmid: 27207943
20 A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
https://doi.org/10.1093/bioinformatics/bts635 pmid: 23104886
21 B Li, CN Dewey. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12(1): 323
https://doi.org/10.1186/1471-2105-12-323 pmid: 21816040
22 F Ramírez, DP Ryan, B Grüning, V Bhardwaj, F Kilpert, AS Richter, S Heyne, F Dündar, T Manke. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016; 44(W1): W160–W165
https://doi.org/10.1093/nar/gkw257 pmid: 27079975
23 CY McLean, D Bristor, M Hiller, SL Clarke, BT Schaar, CB Lowe, AM Wenger, G Bejerano. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010; 28(5): 495–501
https://doi.org/10.1038/nbt.1630 pmid: 20436461
24 Z Li, MH Schulz, T Look, M Begemann, M Zenke, IG Costa. Identification of transcription factor binding sites using ATAC-seq. Genome Biol 2019; 20(1): 45
https://doi.org/10.1186/s13059-019-1642-2 pmid: 30808370
25 H Han, H Shim, D Shin, JE Shim, Y Ko, J Shin, H Kim, A Cho, E Kim, T Lee, H Kim, K Kim, S Yang, D Bae, A Yun, S Kim, CY Kim, HJ Cho, B Kang, S Shin, I Lee. TRRUST: a reference database of human transcriptional regulatory interactions. Sci Rep 2015; 5(1): 11432
https://doi.org/10.1038/srep11432 pmid: 26066708
26 MR Corces, JM Granja, S Shams, BH Louie, JA Seoane, W Zhou, TC Silva, C Groeneveld, CK Wong, SW Cho, AT Satpathy, MR Mumbach, KA Hoadley, AG Robertson, NC Sheffield, I Felau, MAA Castro, BP Berman, LM Staudt, JC Zenklusen, PW Laird, C Curtis, Cancer Genome Atlas Analysis Network; WJ Greenleaf, HY Chang. The chromatin accessibility landscape of primary human cancers. Science 2018; 362(6413):eaav1898
https://doi.org/10.1126/science.aav1898 pmid: 30361341
27 K Qu, LC Zaba, AT Satpathy, PG Giresi, R Li, Y Jin, R Armstrong, C Jin, N Schmitt, Z Rahbar, H Ueno, WJ Greenleaf, YH Kim, HY Chang. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell 2017; 32(1): 27–41.e4
https://doi.org/10.1016/j.ccell.2017.05.008 pmid: 28625481
28 C Mazumdar, Y Shen, S Xavy, F Zhao, A Reinisch, R Li, MR Corces, RA Flynn, JD Buenrostro, SM Chan, D Thomas, JL Koenig, WJ Hong, HY Chang, R Majeti. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell 2015; 17(6): 675–688
https://doi.org/10.1016/j.stem.2015.09.017 pmid: 26607380
29 M Murrell, LM Khachigian, MR Ward. Divergent roles of NF-κB and Egr-1 in flow-dependent restenosis after angioplasty and stenting. Atherosclerosis 2011; 214(1): 65–72
https://doi.org/10.1016/j.atherosclerosis.2010.10.003 pmid: 21075375
30 AA Cera, E Cacci, C Toselli, S Cardarelli, A Bernardi, R Gioia, M Giorgi, G Poiana, S Biagioni. Egr-1 maintains NSC proliferation and its overexpression counteracts cell cycle exit triggered by the withdrawal of epidermal growth factor. Dev Neurosci 2018; 40(3): 223–233
https://doi.org/10.1159/000489699 pmid: 29975945
31 G Castro, X Liu, K Ngo, A De Leon-Tabaldo, S Zhao, R Luna-Roman, J Yu, T Cao, R Kuhn, P Wilkinson, K Herman, MI Nelen, J Blevitt, X Xue, A Fourie, WP Fung-Leung. RORγt and RORα signature genes in human Th17 cells. PLoS One 2017; 12(8): e0181868
https://doi.org/10.1371/journal.pone.0181868 pmid: 28763457
32 ME Alarcón-Riquelme. Role of RUNX in autoimmune diseases linking rheumatoid arthritis, psoriasis and lupus. Arthritis Res Ther 2004; 6(4): 169–173
https://doi.org/10.1186/ar1203 pmid: 15225361
33 R Zenz, EF Wagner. Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 2006; 38(7): 1043–1049
https://doi.org/10.1016/j.biocel.2005.11.011 pmid: 16423552
34 XJ Zhang, W Huang, S Yang, LD Sun, FY Zhang, QX Zhu, FR Zhang, C Zhang, WH Du, XM Pu, H Li, FL Xiao, ZX Wang, Y Cui, F Hao, J Zheng, XQ Yang, H Cheng, CD He, XM Liu, LM Xu, HF Zheng, SM Zhang, JZ Zhang, HY Wang, YL Cheng, BH Ji, QY Fang, YZ Li, FS Zhou, JW Han, C Quan, B Chen, JL Liu, D Lin, L Fan, AP Zhang, SX Liu, CJ Yang, PG Wang, WM Zhou, GS Lin, WD Wu, X Fan, M Gao, BQ Yang, WS Lu, Z Zhang, KJ Zhu, SK Shen, M Li, XY Zhang, TT Cao, W Ren, X Zhang, J He, XF Tang, S Lu, JQ Yang, L Zhang, DN Wang, F Yuan, XY Yin, HJ Huang, HF Wang, XY Lin, JJ Liu. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 2009; 41(2): 205–210
https://doi.org/10.1038/ng.310 pmid: 19169255
35 LD Sun, H Cheng, ZX Wang, AP Zhang, PG Wang, JH Xu, QX Zhu, HS Zhou, E Ellinghaus, FR Zhang, XM Pu, XQ Yang, JZ Zhang, AE Xu, RN Wu, LM Xu, L Peng, CA Helms, YQ Ren, C Zhang, SM Zhang, RP Nair, HY Wang, GS Lin, PE Stuart, X Fan, G Chen, T Tejasvi, P Li, J Zhu, ZM Li, HM Ge, M Weichenthal, WZ Ye, C Zhang, SK Shen, BQ Yang, YY Sun, SS Li, Y Lin, JH Jiang, CT Li, RX Chen, J Cheng, X Jiang, P Zhang, WM Song, J Tang, HQ Zhang, L Sun, J Cui, LJ Zhang, B Tang, F Huang, Q Qin, XP Pei, AM Zhou, LM Shao, JL Liu, FY Zhang, WD Du, A Franke, AM Bowcock, JT Elder, JJ Liu, S Yang, XJ Zhang. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet 2010; 42(11): 1005–1009
https://doi.org/10.1038/ng.690 pmid: 20953187
36 X Yin, HQ Low, L Wang, Y Li, E Ellinghaus, J Han, X Estivill, L Sun, X Zuo, C Shen, C Zhu, A Zhang, F Sanchez, L Padyukov, JJ Catanese, GG Krueger, KC Duffin, S Mucha, M Weichenthal, S Weidinger, W Lieb, JN Foo, Y Li, K Sim, H Liany, I Irwan, Y Teo, CT Theng, R Gupta, A Bowcock, PL De Jager, AA Qureshi, PI de Bakker, M Seielstad, W Liao, M Ståhle, A Franke, X Zhang, J Liu. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015; 6(1): 6916
https://doi.org/10.1038/ncomms7916 pmid: 25903422
37 X Zuo, L Sun, X Yin, J Gao, Y Sheng, J Xu, J Zhang, C He, Y Qiu, G Wen, H Tian, X Zheng, S Liu, W Wang, W Li, Y Cheng, L Liu, Y Chang, Z Wang, Z Li, L Li, J Wu, L Fang, C Shen, F Zhou, B Liang, G Chen, H Li, Y Cui, A Xu, X Yang, F Hao, L Xu, X Fan, Y Li, R Wu, X Wang, X Liu, M Zheng, S Song, B Ji, H Fang, J Yu, Y Sun, Y Hui, F Zhang, R Yang, S Yang, X Zhang. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat Commun 2015; 6(1): 6793
https://doi.org/10.1038/ncomms7793 pmid: 25854761
38 T Shashikant, CA Ettensohn. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol 2019; 151: 219–235
https://doi.org/10.1016/bs.mcb.2018.11.002 pmid: 30948010
39 ML Dechassa, V Tryndyak, A de Conti, W Xiao, FA Beland, IP Pogribny. Identification of chromatin-accessible domains in non-alcoholic steatohepatitis-derived hepatocellular carcinoma. Mol Carcinog 2018; 57(8): 978–987
https://doi.org/10.1002/mc.22818 pmid: 29603380
40 JL Ruiz, JJ Tena, C Bancells, A Cortés, JL Gómez-Skarmeta, E Gómez-Díaz. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2018; 46(18): 9414–9431
https://doi.org/10.1093/nar/gky643 pmid: 30016465
41 YL Qu, CH Deng, Q Luo, XY Shang, JX Wu, Y Shi, L Wang, ZG Han. Arid1a regulates insulin sensitivity and lipid metabolism. EBioMedicine 2019; 42: 481–493
https://doi.org/10.1016/j.ebiom.2019.03.021 pmid: 30879920
42 Y Wang, X Zhang, Q Song, Y Hou, J Liu, Y Sun, P Wang. Characterization of the chromatin accessibility in an Alzheimer’s disease (AD) mouse model. Alzheimers Res Ther 2020; 12(1): 29
https://doi.org/10.1186/s13195-020-00598-2 pmid: 32293531
43 A Rendon, K Schäkel. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475
https://doi.org/10.3390/ijms20061475 pmid: 30909615
44 EG Lee, DL Boone, S Chai, SL Libby, M Chien, JP Lodolce, A Ma. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000; 289(5488): 2350–2354
https://doi.org/10.1126/science.289.5488.2350 pmid: 11009421
45 L Yang, DE Anderson, C Baecher-Allan, WD Hastings, E Bettelli, M Oukka, VK Kuchroo, DA Hafler. IL-21 and TGF-β are required for differentiation of human T(H)17 cells. Nature 2008; 454(7202): 350–352
https://doi.org/10.1038/nature07021 pmid: 18469800
46 T Kopp, E Riedl, C Bangert, EP Bowman, E Greisenegger, A Horowitz, H Kittler, WM Blumenschein, TK McClanahan, T Marbury, C Zachariae, D Xu, XS Hou, A Mehta, AS Zandvliet, D Montgomery, F van Aarle, S Khalilieh. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature 2015; 521(7551): 222–226
https://doi.org/10.1038/nature14175 pmid: 25754330
47 P Nikamo, J Lysell, M Ståhle. Association with genetic variants in the IL-23 and NF-κB pathways discriminates between mild and severe psoriasis skin disease. J Invest Dermatol 2015; 135(8): 1969–1976
https://doi.org/10.1038/jid.2015.103 pmid: 25789703
48 F Zhou, Z Zhu, J Gao, C Yang, L Wen, L Liu, X Zuo, X Zheng, Y Shi, C Zhu, B Liang, X Yin, W Wang, H Cheng, S Shen, X Tang, H Tang, L Sun, A Zhang, S Yang, X Zhang, Y Sheng. NFKB1 mediates Th1/Th17 activation in the pathogenesis of psoriasis. Cell Immunol 2018; 331: 16–21
https://doi.org/10.1016/j.cellimm.2018.04.016 pmid: 29748001
49 L Dortet, L Radoshevich, E Veiga, P Cossart. Listeria monocytogenes. In: Schmidt TM. Encyclopedia of Microbiology (Fourth Edition). Oxford: Academic Press, 2019: 803–818
50 CL Wilson, D Jurk, N Fullard, P Banks, A Page, S Luli, AM Elsharkawy, RG Gieling, JB Chakraborty, C Fox, C Richardson, K Callaghan, GE Blair, N Fox, A Lagnado, JF Passos, AJ Moore, GR Smith, DG Tiniakos, J Mann, F Oakley, DA Mann. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 2015; 6(1): 6818
https://doi.org/10.1038/ncomms7818 pmid: 25879839
51 G Singhal, BT Baune. Chapter 8—Do chemokines have a role in the pathophysiology of depression? In: Baune BT. Inflammation and Immunity in Depression. Adelaide: Academic Press, 2018: 135–159
52 JL Huret, M Ahmad, M Arsaban, A Bernheim, J Cigna, F Desangles, JC Guignard, MC Jacquemot-Perbal, M Labarussias, V Leberre, A Malo, C Morel-Pair, H Mossafa, JC Potier, G Texier, F Viguié, S Yau Chun Wan-Senon, A Zasadzinski, P Dessen. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res 2013; 41(Database issue): D920–D924
pmid: 23161685
53 A Nakajima, T Matsuki, M Komine, A Asahina, R Horai, S Nakae, H Ishigame, S Kakuta, S Saijo, Y Iwakura. TNF, but not IL-6 and IL-17, is crucial for the development of T cell-independent psoriasis-like dermatitis in Il1rn−/− mice. J Immunol 2010; 185(3): 1887–1893
https://doi.org/10.4049/jimmunol.1001227 pmid: 20610641
[1] FMD-21026-of-ZXJ_suppl_1 Download
[2] FMD-21026-of-ZXJ_suppl_2 Download
[3] FMD-21026-of-ZXJ_suppl_3 Download
[4] FMD-21026-of-ZXJ_suppl_4 Download
[5] FMD-21026-of-ZXJ_suppl_5 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed