Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
Studies of human and mammalian have revealed that environmental exposure can affect paternal health conditions as well as those of the offspring. However, studies that explore the mechanisms that meditate this transmission are rare. Recently, small noncoding RNAs (sncRNAs) in sperm have seemed crucial to this transmission due to their alteration in sperm in response to environmental exposure, and the methodology of microinjection of isolated total RNA or sncRNAs or synthetically identified sncRNAs gradually lifted the veil of sncRNA regulation during intergenerational inheritance along the male line. Hence, by reviewing relevant literature, this study intends to answer the following research concepts: (1) paternal environmental factors that can be passed on to offspring and are attributed to spermatozoal sncRNAs, (2) potential role of paternal spermatozoal sncRNAs during the intergenerational inheritance process, and (3) the potential mechanism by which spermatozoal sncRNAs meditate intergenerational inheritance. In summary, increased attention highlights the hidden wonder of spermatozoal sncRNAs during intergenerational inheritance. Therefore, in the future, more studies should focus on the origin of RNA alteration, the target of RNA regulation, and how sncRNA regulation during embryonic development can be sustained even in adult offspring.
Y Zhang, J Shi, M Rassoulzadegan, F Tuorto, Q Chen. Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol 2019; 15(8): 489–498 https://doi.org/10.1038/s41574-019-0226-2
pmid: 31235802
K Weigmann. Lifestyle in the sperm: there is growing evidence that epigenetic marks can be inherited. But what is the nature of the information they store and over how many generations do they prevail? EMBO Rep 2014; 15(12): 1233–1237 https://doi.org/10.15252/embr.201439759
pmid: 25381662
4
VM Sales, AC Ferguson-Smith, ME Patti. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab 2017; 25(3): 559–571 https://doi.org/10.1016/j.cmet.2017.02.016
pmid: 28273478
5
LK Klastrup, ST Bak, AL Nielsen. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol Genet Genomics 2019; 294(1): 1–11 https://doi.org/10.1007/s00438-018-1492-8
pmid: 30229293
6
AB Rodgers, CP Morgan, NA Leu, TL Bale. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 2015; 112(44): 13699–13704 https://doi.org/10.1073/pnas.1508347112
pmid: 26483456
7
K Gapp, A Jawaid, P Sarkies, J Bohacek, P Pelczar, J Prados, L Farinelli, E Miska, IM Mansuy. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014; 17(5): 667–669 https://doi.org/10.1038/nn.3695
pmid: 24728267
8
Q Chen, M Yan, Z Cao, X Li, Y Zhang, J Shi, GH Feng, H Peng, X Zhang, Y Zhang, J Qian, E Duan, Q Zhai, Q Zhou. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016; 351(6271): 397–400 https://doi.org/10.1126/science.aad7977
pmid: 26721680
9
U Sharma, CC Conine, JM Shea, A Boskovic, AG Derr, XY Bing, C Belleannee, A Kucukural, RW Serra, F Sun, L Song, BR Carone, EP Ricci, XZ Li, L Fauquier, MJ Moore, R Sullivan, CC Mello, M Garber, OJ Rando. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016; 351(6271): 391–396 https://doi.org/10.1126/science.aad6780
pmid: 26721685
10
V Grandjean, S Fourré, DA De Abreu, MA Derieppe, JJ Remy, M Rassoulzadegan. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 2016; 5: 18193 https://doi.org/10.1038/srep18193
pmid: 26658372
11
D Vågerö, PR Pinger, V Aronsson, GJ van den Berg. Paternal grandfather’s access to food predicts all-cause and cancer mortality in grandsons. Nat Commun 2018; 9(1): 5124 https://doi.org/10.1038/s41467-018-07617-9
pmid: 30538239
12
LH Lumey, AD Stein, HS Kahn, KM van der Pal-de Bruin, GJ Blauw, PA Zybert, ES Susser. Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 2007; 36(6): 1196–1204 https://doi.org/10.1093/ije/dym126
pmid: 17591638
13
LO Bygren, G Kaati, S Edvinsson. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 2001; 49(1): 53–59 https://doi.org/10.1023/A:1010241825519
pmid: 11368478
G Kaati, LO Bygren, S Edvinsson. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002; 10(11): 682–688 https://doi.org/10.1038/sj.ejhg.5200859
pmid: 12404098
16
ME Pembrey, LO Bygren, G Kaati, S Edvinsson, K Northstone, M Sjöström, JA; LSPAC Study Team Golding. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006; 14(2): 159–166 https://doi.org/10.1038/sj.ejhg.5201538
pmid: 16391557
17
TH Chen, YH Chiu, BJ Boucher. Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am J Clin Nutr 2006; 83(3): 688–692 https://doi.org/10.1093/ajcn.83.3.688
pmid: 16522918
18
K Northstone, J Golding, G Davey Smith, LL Miller, M Pembrey. Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses. Eur J Hum Genet 2014; 22(12): 1382–1386 https://doi.org/10.1038/ejhg.2014.31
pmid: 24690679
19
R Yehuda, NP Daskalakis, A Lehrner, F Desarnaud, HN Bader, I Makotkine, JD Flory, LM Bierer, MJ Meaney. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am J Psychiatry 2014; 171(8): 872–880 https://doi.org/10.1176/appi.ajp.2014.13121571
pmid: 24832930
20
EL Marczylo, AA Amoako, JC Konje, TW Gant, TH Marczylo. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 2012; 7(5): 432–439 https://doi.org/10.4161/epi.19794
pmid: 22441141
DM Ruden, MD Garfinkel, VE Sollars, X Lu. Waddington’s widget: Hsp90 and the inheritance of acquired characters. Semin Cell Dev Biol 2003; 14(5): 301–310 https://doi.org/10.1016/j.semcdb.2003.09.024
pmid: 14986860
BJ Boucher, SW Ewen, JM Stowers. Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring. Diabetologia 1994; 37(1): 49–55 https://doi.org/10.1007/BF00428777
pmid: 8150230
25
M Rassoulzadegan, V Grandjean, P Gounon, S Vincent, I Gillot, F Cuzin. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006; 441(7092): 469–474 https://doi.org/10.1038/nature04674
pmid: 16724059
26
EL Greer, TJ Maures, AG Hauswirth, EM Green, DS Leeman, GS Maro, S Han, MR Banko, O Gozani, A Brunet. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010; 466(7304): 383–387 https://doi.org/10.1038/nature09195
pmid: 20555324
E Benito, C Kerimoglu, B Ramachandran, T Pena-Centeno, G Jain, RM Stilling, MR Islam, V Capece, Q Zhou, D Edbauer, C Dean, A Fischer. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment. Cell Rep 2018; 23(2): 546–554 https://doi.org/10.1016/j.celrep.2018.03.059
pmid: 29642011
30
K Gapp, S Soldado-Magraner, M Alvarez-Sánchez, J Bohacek, G Vernaz, H Shu, TB Franklin, D Wolfer, IM Mansuy. Early life stress in fathers improves behavioural flexibility in their offspring. Nat Commun 2014; 5(1): 5466 https://doi.org/10.1038/ncomms6466
pmid: 25405779
31
L Wu, Y Lu, Y Jiao, B Liu, S Li, Y Li, F Xing, D Chen, X Liu, J Zhao, X Xiong, Y Gu, J Lu, X Chen, X Li. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab 2016; 23(4): 735–743 https://doi.org/10.1016/j.cmet.2016.01.014
pmid: 26908462
32
A Schuster, MK Skinner, W Yan. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ Epigenet 2016; 2(1): dvw001 https://doi.org/10.1093/eep/dvw001
pmid: 27390623
33
GR Rompala, A Mounier, CM Wolfe, Q Lin, I Lefterov, GE Homanics. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Front Genet 2018; 9: 32 https://doi.org/10.3389/fgene.2018.00032
pmid: 29472946
34
KD Wagner, N Wagner, H Ghanbarian, V Grandjean, P Gounon, F Cuzin, M Rassoulzadegan. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 2008; 14(6): 962–969 https://doi.org/10.1016/j.devcel.2008.03.009
pmid: 18539123
35
V Grandjean, P Gounon, N Wagner, L Martin, KD Wagner, F Bernex, F Cuzin, M Rassoulzadegan. The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 2009; 136(21): 3647–3655 https://doi.org/10.1242/dev.041061
pmid: 19820183
BR Carone, L Fauquier, N Habib, JM Shea, CE Hart, R Li, C Bock, C Li, H Gu, PD Zamore, A Meissner, Z Weng, HA Hofmann, N Friedman, OJ Rando. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010; 143(7): 1084–1096 https://doi.org/10.1016/j.cell.2010.12.008
pmid: 21183072
38
T Fullston, EM Ohlsson Teague, NO Palmer, MJ DeBlasio, M Mitchell, M Corbett, CG Print, JA Owens, M Lane. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 2013; 27(10): 4226–4243 https://doi.org/10.1096/fj.12-224048
pmid: 23845863
39
H Peng, J Shi, Y Zhang, H Zhang, S Liao, W Li, L Lei, C Han, L Ning, Y Cao, Q Zhou, Q Chen, E Duan. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 2012; 22(11): 1609–1612 https://doi.org/10.1038/cr.2012.141
pmid: 23044802
40
JN Reilly, EA McLaughlin, SJ Stanger, AL Anderson, K Hutcheon, K Church, BP Mihalas, S Tyagi, JE Holt, AL Eamens, B Nixon. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 2016; 6(1): 31794 https://doi.org/10.1038/srep31794
pmid: 27549865
41
K Hutcheon, EA McLaughlin, SJ Stanger, IR Bernstein, MD Dun, AL Eamens, B Nixon. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. RNA Biol 2017; 14(12): 1776–1790 https://doi.org/10.1080/15476286.2017.1356569
pmid: 28816603
42
R Sullivan. Epididymosomes: role of extracellular microvesicles in sperm maturation. Front Biosci (Schol Ed) 2016; 8(1): 106–114 https://doi.org/10.2741/s450
pmid: 26709900
43
M Hua, W Liu, Y Chen, F Zhang, B Xu, S Liu, G Chen, H Shi, L Wu. Identification of small non-coding RNAs as sperm quality biomarkers for in vitro fertilization. Cell Discov 2019; 5(1): 20 https://doi.org/10.1038/s41421-019-0087-9
pmid: 30992999
44
Y Zhang, X Zhang, J Shi, F Tuorto, X Li, Y Liu, R Liebers, L Zhang, Y Qu, J Qian, M Pahima, Y Liu, M Yan, Z Cao, X Lei, Y Cao, H Peng, S Liu, Y Wang, H Zheng, R Woolsey, D Quilici, Q Zhai, L Li, T Zhou, W Yan, F Lyko, Y Zhang, Q Zhou, E Duan, Q Chen. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 2018; 20(5): 535–540 https://doi.org/10.1038/s41556-018-0087-2
pmid: 29695786
45
D Nätt, U Kugelberg, E Casas, E Nedstrand, S Zalavary, P Henriksson, C Nijm, J Jäderquist, J Sandborg, E Flinke, R Ramesh, L Örkenby, F Appelkvist, T Lingg, N Guzzi, C Bellodi, M Löf, T Vavouri, A Öst. Human sperm displays rapid responses to diet. PLoS Biol 2019; 17(12): e3000559 https://doi.org/10.1371/journal.pbio.3000559
pmid: 31877125
46
J Shi, Y Zhang, D Tan, X Zhang, M Yan, Y Zhang, R Franklin, M Shahbazi, K Mackinlay, S Liu, B Kuhle, ER James, L Zhang, Y Qu, Q Zhai, W Zhao, L Zhao, C Zhou, W Gu, J Murn, J Guo, DT Carrell, Y Wang, X Chen, BR Cairns, XL Yang, P Schimmel, M Zernicka-Goetz, S Cheloufi, Y Zhang, T Zhou, Q Chen. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol 2021; 23(4): 424–436 https://doi.org/10.1038/s41556-021-00652-7
pmid: 33820973
47
J Kiani, V Grandjean, R Liebers, F Tuorto, H Ghanbarian, F Lyko, F Cuzin, M Rassoulzadegan. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 2013; 9(5): e1003498 https://doi.org/10.1371/journal.pgen.1003498
pmid: 23717211
48
G Sarker, W Sun, D Rosenkranz, P Pelczar, L Opitz, V Efthymiou, C Wolfrum, D Peleg-Raibstein. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci USA 2019; 116(21): 10547–10556 https://doi.org/10.1073/pnas.1820810116
pmid: 31061112
49
D Peleg-Raibstein, G Sarker, K Litwan, SD Krämer, SM Ametamey, R Schibli, C Wolfrum. Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition. Transl Psychiatry 2016; 6(10): e911 https://doi.org/10.1038/tp.2016.176
pmid: 27701408
50
G Sarker, R Berrens, J von Arx, P Pelczar, W Reik, C Wolfrum, D Peleg-Raibstein. Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition. Transl Psychiatry 2018; 8(1): 195 https://doi.org/10.1038/s41398-018-0243-2
pmid: 30315171
51
EJ Radford, M Ito, H Shi, JA Corish, K Yamazawa, E Isganaitis, S Seisenberger, TA Hore, W Reik, S Erkek, AHFM Peters, ME Patti, AC Ferguson-Smith. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014; 345(6198): 1255903 https://doi.org/10.1126/science.1255903
pmid: 25011554
52
JM Shea, RW Serra, BR Carone, HP Shulha, A Kucukural, MJ Ziller, MP Vallaster, H Gu, AR Tapper, PD Gardner, A Meissner, M Garber, OJ Rando. Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev Cell 2015; 35(6): 750–758 https://doi.org/10.1016/j.devcel.2015.11.024
pmid: 26702833
53
E Sendler, GD Johnson, S Mao, RJ Goodrich, MP Diamond, R Hauser, SA Krawetz. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 2013; 41(7): 4104–4117 https://doi.org/10.1093/nar/gkt132
pmid: 23471003
54
M Kawano, H Kawaji, V Grandjean, J Kiani, M Rassoulzadegan. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One 2012; 7(9): e44542 https://doi.org/10.1371/journal.pone.0044542
pmid: 22984523
55
SA Krawetz, A Kruger, C Lalancette, R Tagett, E Anton, S Draghici, MP Diamond. A survey of small RNAs in human sperm. Hum Reprod 2011; 26(12): 3401–3412 https://doi.org/10.1093/humrep/der329
pmid: 21989093
56
DM Dietz, Q Laplant, EL Watts, GE Hodes, SJ Russo, J Feng, RS Oosting, V Vialou, EJ Nestler. Paternal transmission of stress-induced pathologies. Biol Psychiatry 2011; 70(5): 408–414 https://doi.org/10.1016/j.biopsych.2011.05.005
pmid: 21679926
J Bohacek, M Farinelli, O Mirante, G Steiner, K Gapp, G Coiret, M Ebeling, G Durán-Pacheco, AL Iniguez, F Manuella, JL Moreau, IM Mansuy. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol Psychiatry 2015; 20(5): 621–631 https://doi.org/10.1038/mp.2014.80
pmid: 25092246
59
K Gapp, J Bohacek, J Grossmann, AM Brunner, F Manuella, P Nanni, IM Mansuy. Potential of environmental enrichment to prevent transgenerational effects of paternal trauma. Neuropsychopharmacology 2016; 41(11): 2749–2758 https://doi.org/10.1038/npp.2016.87
pmid: 27277118
60
KR McGreevy, P Tezanos, I Ferreiro-Villar, A Pallé, M Moreno-Serrano, A Esteve-Codina, I Lamas-Toranzo, P Bermejo-Álvarez, J Fernández-Punzano, A Martín-Montalvo, R Montalbán, SR Ferrón, EJ Radford, Á Fontán-Lozano, JL Trejo. Intergenerational transmission of the positive effects of physical exercise on brain and cognition. Proc Natl Acad Sci USA 2019; 116(20): 10103–10112 https://doi.org/10.1073/pnas.1816781116
pmid: 31010925
61
Y Wang, ZP Chen, H Hu, J Lei, Z Zhou, B Yao, L Chen, G Liang, S Zhan, X Zhu, F Jin, R Ma, J Zhang, H Liang, M Xing, XR Chen, CY Zhang, JN Zhu, X Chen. Sperm microRNAs confer depression susceptibility to offspring. Sci Adv 2021; 7(7): eabd7605 https://doi.org/10.1126/sciadv.abd7605
pmid: 33568480
62
K Gapp, G van Steenwyk, PL Germain, W Matsushima, KLM Rudolph, F Manuella, M Roszkowski, G Vernaz, T Ghosh, P Pelczar, IM Mansuy, EA Miska. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry 2020; 25(9): 2162–2174 https://doi.org/10.1038/s41380-018-0271-6
pmid: 30374190
63
JC Chan, CP Morgan, N Adrian Leu, A Shetty, YM Cisse, BM Nugent, KE Morrison, E Jašarević, W Huang, N Kanyuch, AB Rodgers, NV Bhanu, DS Berger, BA Garcia, S Ament, M Kane, C Neill Epperson, TL Bale. Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat Commun 2020; 11(1): 1499 https://doi.org/10.1038/s41467-020-15305-w
pmid: 32198406
64
WM Liu, RT Pang, PC Chiu, BP Wong, K Lao, KF Lee, WS Yeung. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA 2012; 109(2): 490–494 https://doi.org/10.1073/pnas.1110368109
pmid: 22203953
65
Y Hong, C Wang, Z Fu, H Liang, S Zhang, M Lu, W Sun, C Ye, CY Zhang, K Zen, L Shi, C Zhang, X Chen. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci Rep 2016; 6(1): 24229 https://doi.org/10.1038/srep24229
pmid: 27068805
L Sinkkonen, T Hugenschmidt, P Berninger, D Gaidatzis, F Mohn, CG Artus-Revel, M Zavolan, P Svoboda, W Filipowicz. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 2008; 15(3): 259–267 https://doi.org/10.1038/nsmb.1391
pmid: 18311153