Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2021, Vol. 15 Issue (6): 805-828   https://doi.org/10.1007/s11684-021-0886-x
  本期目录
Emerging immunological strategies: recent advances and future directions
Hongyun Zhao2, Fan Luo3, Jinhui Xue2, Su Li2, Rui-Hua Xu1()
1. Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
2. Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
3. Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
 全文: PDF(824 KB)   HTML
Abstract

Immunotherapy plays a compelling role in cancer treatment and has already made remarkable progress. However, many patients receiving immune checkpoint inhibitors fail to achieve clinical benefits, and the response rates vary among tumor types. New approaches that promote anti-tumor immunity have recently been developed, such as small molecules, bispecific antibodies, chimeric antigen receptor T cell products, and cancer vaccines. Small molecule drugs include agonists and inhibitors that can reach the intracellular or extracellular targets of immune cells participating in innate or adaptive immune pathways. Bispecific antibodies, which bind two different antigens or one antigen with two different epitopes, are of great interest. Chimeric antigen receptor T cell products and cancer vaccines have also been investigated. This review explores the recent progress and challenges of different forms of immunotherapy agents and provides an insight into future immunotherapeutic strategies.

Key wordscancer immunotherapy    bispecific antibodies    small molecules    chimeric antigen receptor T therapy    cancer vaccines
收稿日期: 2021-03-05      出版日期: 2021-12-27
Corresponding Author(s): Rui-Hua Xu   
 引用本文:   
. [J]. Frontiers of Medicine, 2021, 15(6): 805-828.
Hongyun Zhao, Fan Luo, Jinhui Xue, Su Li, Rui-Hua Xu. Emerging immunological strategies: recent advances and future directions. Front. Med., 2021, 15(6): 805-828.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0886-x
https://academic.hep.com.cn/fmd/CN/Y2021/V15/I6/805
Small molecule Target Clinical studies Phase Cancer type
CA-170 PD-L1/VISTA NCT02812875 Phase 1 Advanced solid tumors or lymphomas
Imiquimod TLR7   Approved  
Motolimod TLR78 NCT02431559 Phase 1/2 Ovarian cancer
    NCT03906526 Phase 1 Head and neck cancer
    NCT04272333 Early phase 1 Head and neck squamous cell carcinoma
    NCT02650635 Phase 1 Metastatic, persistent, recurrent, or progressive solid tumors
    NCT02124850 Phase 1 Head and neck squamous cell carcinoma
Resiquimod TLR7/8 NCT00821652 Phase 1 Tumors
NCT00948961 Phase 1/2 Advanced malignancies
NCT00960752 Phase 2 Melanoma
NCT01204684 Phase 2 Brain tumors
NCT01808950 Phase 1/2 Nodular basal cell carcinoma
NCT00470379 Phase 1 Melanoma (skin)
NCT01748747 Phase 1 Melanoma
NCT02126579 Phase 1/2 Melanoma
NCT01676831 Phase 1/2 Cutaneous T cell lymphoma
VTX-2337 TLR8 NCT01666444 Phase 1/2 Epithelial ovarian cancer, fallopian tube cancer, primary peritoneal cancer
NCT01334177 Phase 1 Locally advanced, recurrent, or metastatic squamous cell cancer of head and neck
NCT03906526 Phase 1 Head and neck cancer
NCT01836029 Phase 2 Head and neck squamous cell carcinoma
NCT02124850 Phase 1 Head and neck squamous cell carcinoma
Epacadostat IDO1 NCT03322540 Phase 2 Metastatic non-small cell lung cancer
NCT03348904 Phase 3 Non-small cell lung cancer
NCT03322566 Phase 2 Metastatic non-small cell lung cancer
NCT02959437 Phase 1/2 Advanced solid tumors
NCT03085914 Phase 1/2 Advanced or metastatic solid tumors
NCT02318277 Phase 1/2 Advanced solid tumors
NCT03347123 Phase 1/2 Advanced or metastatic malignancies
NCT03006302 Phase 2 Metastatic pancreas cancer
NCT03361865 Phase 3 Urothelial carcinoma
NCT02327078 Phase 1/2 B cell malignancies, colorectal cancer, head and neck cancer, lung cancer, lymphoma, melanoma, ovarian cancer, glioblastoma
NCT03374488 Phase 3 Recurrent or progressive metastatic urothelial carcinoma
NCT03196232 Phase 2 Metastatic or unresectable gastresophageal junction or gastric cancer
NCT03358472 Phase 3 Recurrent or metastatic head and neck squamous cell carcinoma
NCT02364076 Phase 2 Thymic carcinoma
NCT03493945 Phase 1/2 Metastatic prostate cancer, prostate cancer, prostate neoplasm, advanced solid tumors, solid tumor
NCT03823131 Phase 2 Unresectable head and neck cancer
NCT03414229 Phase 2 Advanced sarcoma
NCT03260894 Phase 3 Renal cell carcinoma
NCT02752074 Phase3 Melanoma
NCT03532295 Phase 2 Recurrent gliomas
Navoximod (GDC-0919) IDO1 NCT02048709 Phase1 Advanced solid tumors
NCT02471846 Phase1 Locally advanced or metastatic solid tumors
BMS-986205 IDO1 NCT03519256 Phase 2 Bladder cancer
NCT03792750 Phase 1/2 Advanced malignant solid tumors
NCT03192943 Phase 1 Advanced cancer
NCT03661320 Phase 3 Muscle-invasive bladder cancer
NCT02658890 Phase 1/2 Advanced cancer
NCT04106414 Phase 2 Endometrial cancer or endometrial carcinosarcoma
NCT03329846 Phase 3 Advanced melanoma
NCT03854032 Phase 2 Head and neck squamous cell carcinoma
NCT03695250 Phase 1/2 Liver cancer
NCT04047706 Phase 1 Glioblastoma
PF-06840003 IDO1 NCT02764151 Phase1 Malignant gliomas
CB-1158 (INCB001158) ARG NCT03910530 Phase 1 Advanced solid tumors
NCT02903914 Phase 1/2 Advanced/metastatic solid tumors
NCT03837509 Phase 1/2 Multiple myeloma
AT-38 ARG NCT01109004 Phase 3 Multiple myeloma
CB-839 Glutaminase 1 NCT03263429 Phase 1/2 Ras wildtype colorectal cancer
NCT02771626 Phase 1/2 Clear cell renal cell carcinoma, melanoma, non-small cell lung cancer
CPI-444 (V81444; ciforadenant) A2A receptor NCT02655822 Phase 1 Renal cell cancer, metastatic castration resistant prostate cancer
NCT04280328 Phase 1 Multiple myeloma
NCT03454451 Phase 1 Advanced cancers
Preladenant A2A receptor NCT03099161 Phase 1 Advanced solid tumors
PBF 509 A2A receptor NCT02403193 Phase 1/2 Non-small cell lung cancer
AZD4635 A2A receptor NCT04089553 Phase 2 Prostate cancer
NCT04495179 Phase 2 Prostate cancer
NCT03980821 Phase 1 Advanced solid malignancies
NCT02740985 Phase 1 Advanced solid malignancies
NCT03381274 Phase 1/2 Non-small-cell lung cancer
ADU-S100 STING NCT03937141 Phase 2 Head and neck cancer
NCT02675439 Phase 1 Advanced/metastatic solid tumors or lymphomas
NCT03172936 Phase 1 Solid tumors and lymphomas
MK1454 STING NCT03010176 Phase 1 Solid tumors, lymphoma
NCT04220866 Phase 2 Head and neck squamous cell carcinoma
Turalio (pexidartinib) (PLX3397) CSF1R NCT02777710 Phase 1 Metastatic/advanced pancreatic or colorectal cancers
NCT02734433 Phase 1 Advanced solid tumors
NCT01525602 Phase 1 Advanced solid tumors
NCT02452424 Phase 1/2 Advanced melanoma and other solid tumors
NCT01349036 Phase 2 Recurrent glioblastoma
NCT02975700 Not applicable Melanoma
NCT01790503 Phase 1/2 Glioblastoma
LYC-55716 RORγt NCT02929862 Phase 1/2 Advanced or metastatic cancer
NCT03396497 Phase 1 Non-small cell lung cancer
TNO155 SHP2 NCT04000529 Phase 1 Non-small cell lung carcinoma, head and neck squamous cell carcinoma, esophageal SCC, gastrointestinal stromal tumors, colorectal cancer
NCT03114319 Phase 1 Advanced solid tumors
RMC-4630 (SAR442720) SHP2 NCT03989115 Phase 1/2 Solid tumor
NCT03634982 Phase 1 Relapsed/refractory solid tumors
    NCT04418661 Phase 1 Metastatic neoplasm
JAB-3068 SHP2 NCT03518554 Phase 1 Advanced solid tumors
NCT03565003 Phase 1/2a Advanced solid tumors
JAB-3312 SHP2 NCT04121286 Phase 1 Advanced solid tumors
NCT04045496 Phase 1 Advanced solid tumors
Idelalisib PI3K-δ   Approved  
IPI-549 PI3K-γ NCT03961698 Phase 2 Breast cancer, renal cell carcinoma
NCT03719326 Phase 1 Triple-negative breast cancer, ovarian cancer
NCT02637531 Phase 1 Advanced solid tumors
NCT03980041 Phase 2 Advanced urothelial carcinoma
NCT03795610 Phase 2 Head and neck squamous cell carcinoma
Ibrutinib BTK   Approved  
Plerixafor (AMD3100) CXCR4   Approved  
SX-682 Dual CXCR1/2 NCT04599140 Phase 1/2 Metastatic colorectal cancer
NCT04574583 Phase 1/2 Advanced solid tumors
NCT04477343 Phase 1 Metastatic pancreatic ductal adenocarcinoma
NCT03161431 Phase 1 Melanoma
NCT04245397 Phase 1 Myelodysplastic syndromes
AZD5069 CXCR2 NCT03177187 Phase 1/2 Metastatic castration resistant prostate cancer
NCT02499328 Phase 2 Advanced solid tumors, metastatic head and neck squamous cell carcinoma
NCT02583477 Phase 1/2 Metastatic pancreatic ductal adenocarcinoma
X4P-001 CXCR4 NCT02823405 Phase 1 Melanoma
NCT02923531 Phase 1/2 Clear cell renal cell carcinoma
NCT02667886 Phase 1/2 Clear cell renal cell carcinoma
Maraviroc CCR5 NCT01785810 Phase 2 Metastatic colorectal cancer
NCT03274804 Phase 1 Colorectal cancer
BMS-813160 Dual CCR2/5 NCT03184870 Phase 1/2 Colorectal cancer, pancreatic cancer
NCT04123379 Phase 2 Non-small cell lung cancer, hepatocellular carcinoma
NCT02996110 Phase 2 Advanced renal cell carcinoma
NCT03767582 Phase 1/2 Locally advanced pancreatic ductal adenocarcinomas.
NCT03496662 Phase 1/2 Pancreatic ductal adenocarcinoma
FLX-475 CCR4 NCT03674567 Phase 1/2 Advanced cancer
Tab.1  
Fig.1  
Fig.2  
Antibody name Targets Clinical studies Phase Cancer type
MBS-301 HER2 × HER2 NCT03842085 Phase 1 Her2 positive recurrent or metastatic malignant solid tumor
IBI-318 PD-1 × PD-L1 NCT03875157 Phase 1 Advanced malignancy
IBI-322 PD-L1 × CD47 NCT04338659 Phase 1 Advanced malignancies
IBI-315 PD-1 × HER2 NCT04162327 Phase 1 Advanced solid tumor
A-319 CD3 × CD19 NCT04056975 Phase 1 Relapsed or refractory B cell lymphoma
CTR20190205 Phase 1 Relapsed or refractory B cell lymphoma
M701 CD3 × EpCAM NCT04501744 Phase 1 Malignant ascites
M802 HER2 × CD3 NCT04501770 Phase 1 Her2 positive advanced solid tumor
IMM0306 CD47 × CD20 CTR20192612 Phase 1 Refractory or recurrent CD20 positive B cell non-Hodgkin’s lymphoma
KN-026 HER2 × HER2 CTR20190853 Phase 2 Her2 positive advanced solid tumor
EMB-01 EGFR ×c-MET CTR20190241 Phase 2 Advanced or metastatic solid tumors
KN-046 PD-L1 × CTLA-4 NCT04469725 Phase 2 Thymic carcinoma
NCT04474119 Phase 3 Non-small-cell lung cancer
NCT04521179 Phase 2 Her2 positive solid tumors
AK-104 PD-1 × CTLA-4 CTR20182027 Phase 1/2 Advanced solid tumor and advanced or metastatic gastric adenocarcinoma or gastresophageal junction adenocarcinoma
CTR20200779 Phase 2 Hepatocellular carcinoma
CTR20202184 Phase 2 Locally advanced unresectable or metastatic highly unstable satellite or mismatch repair defective solid tumor, gastric carcinoma and colorectal cancer
MGD-013 PD-1 × LAG-3 NCT04009460 Phase 1 Solid tumors
CTR20200549 Phase 2 Advanced hepatocellular carcinoma
HX-009 PD-1 × CD47 CTR20192299 Phase 1 Advanced solid tumor
M7824 PD-L1 × TGF-β NCT04396886 Phase 2 Recurrent or metastatic carcinoma
SHR-1701 PD-L1 × TGF-β CTR20182404 Phase 1 Advanced solid tumor
CTR20181823 Phase 1 Advanced solid tumor
SI-B001 HER3 × EGFR CTR20200502 Phase 1 Locally advanced or metastatic epithelial tumors
K193 CD3 × CD19 CTR20191955 Phase 1 Refractory or recurrent B cell non-Hodgkin’s lymphoma
Tab.2  
Antibody name Targets Clinical studies Phase Cancer type
KN-026 HER2 × HER2 NCT04165993 Phase 2 Metastatic breast cancer
NCT03847168 Phase 1 Breast cancer
NCT04040699 Phase 1 Her2 positive solid tumors
NCT03619681 Phase 1 Breast cancer, gastric cancer
NCT03925974 Phase 2 Gastric, gastresophageal junction cancer
EMB-01 EGFR × c-MET NCT03797391 Phase 1/2 Neoplasm metastasis, non-small-cell lung cancer
JNJ-61186372, JNJ-6372 EGFR × c-MET NCT02609776 Phase 1 Non-small-cell lung cancer
NCT04077463 Phase 1 Carcinoma, non-small-cell lung
KN-046 PD-L1 × CTLA-4 NCT04040699 Phase 1 Her2 positive solid tumors
NCT03838848 Phase 2 Advanced non-small cell lung cancer
NCT03927495 Phase 2 Esophageal squamous cell carcinoma
NCT03925870 Phase 2 Esophageal squamous cell carcinoma
NCT03733951 Phase 1 Advanced solid tumors
NCT04054531 Phase 2 Non-small cell lung cancer
NCT03872791 Phase 1/2 Triple-negative breast cancer
NCT03529526 Phase 1 Advanced solid tumors
AK-104 PD-1 × CTLA-4 NCT04380805 Phase 2 Recurrent or metastatic cervical cancer
NCT04172454 Phase 1/2 Advanced solid tumors
NCT04220307 Phase 2 Nasopharyngeal carcinoma
NCT03261011 Phase 1 Advanced cancer
NCT03852251 Phase 1/ 2 Advanced solid tumors
MGD-013 PD-1 × LAG-3 NCT04212221 Phase 1/2 Advanced hepatocellular carcinoma
NCT03219268 Phase 1 Advanced solid tumors
NCT04178460 Phase 1 Gastric cancer
NCT04082364 Phase 2/3 Her2 positive gastric cancer, breast cancer
INBRX-105-1, INBRX-105, ES-101 PD-L1 × 4-1BB NCT03809624 Phase 1 Metastatic solid tumors
NCT04009460 Phase 1 Solid tumors
HX-009 PD-1 × CD47 NCT04097769 Phase 1 Advanced solid tumors
M7824 PD-L1 × TGF-β NCT04246489 Phase 2 Uterine cervical neoplasms
NCT04066491 Phase 2/3 Biliary tract cancer
NCT04396535 Phase 2 Advanced lung non-small cell carcinoma
NCT04220775 Phase 1/2 Recurrent head and neck squamous cell carcinoma
NCT03631706 Phase 3 Non-small cell lung cancer
NCT02517398 Phase 1 Solid tumors
NCT03840915 Phase 1/2 Non-small cell lung cancer
NCT03840902 Phase 2 Non-small cell lung cancer
NCT03833661 Phase 2 Biliary tract cancer
SHR-1701 PD-L1 × TGF-β NCT03710265 Phase 1 Solid tumors
NCT03774979 Phase 1 Solid tumors
NCT04282070 Phase 1 Nasopharyngeal carcinoma
NCT04324814 Phase 1 Advanced solid tumors
Tab.3  
Antibody name Targets Clinical studies Phases Cancer type
Dilpacimab, ABT-165 VEGF × DLL4 NCT01946074 Phase 1 Advanced solid tumors
NCT03368859 Phase 2 Neoplasms
MP0250 VEGF × HGF NCT03136653 Phase 1/2 Relapsed multiple myeloma
NCT03418532 Phase 1/2 EGFR positive lung cancer
NCT02194426 Phase 1/2 Neoplasms
ABL-001, NOV-1501, TR-009 VEGF × DLL4 NCT02857868 Phase 1 Neoplasms
NCT03595917 Phase 1 Chronic myeloid leukemia, acute lymphoblastic leukemia
NCT03106779 Phase 3 Chronic myelogenous leukemia
NCT04216563 Phase 2 Philadelphia chromosome negative, BCR-ABL1 positive chronic myelogenous leukemia
NCT03292783 Phase 1 Advanced solid tumors
NCT02081378 Phase 1 Chronic myelogenous leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia
NCT03605277 Phase 1 Neoplasms
NCT03906292 Phase 2 Chronic myeloid leukemia
NCT03578367 Phase 2 Chronic myelogenous leukemia
Vanucizumab, RG-7221 ANGPT2 × VEGF NCT01688206 Phase 1 Neoplasms
NCT02141295 Phase 2 Colorectal cancer
NCT02665416 Phase 1 Advanced or metastatic solid tumors
BI-836880 ANGPT2 × VEGF NCT02689505 Phase 1 Neoplasms
NCT02674152 Phase 1 Neoplasms
NCT03972150 Phase 1 Neoplasms
NCT03861234 Phase 1 Neoplasms
NCT03468426 Phase 1 Non-squamous, non-small-cell lung cancer, neoplasms
Navicixizumab, OMP-305B83 VEGF × DLL4 NCT03035253 Phase 1 Metastatic colorectal cancer
NCT03030287 Phase 1 Ovaries cancer, fallopian tube cancer
NCT02298387 Phase 1 Advanced solid tumor malignancies
ZW-25 HER2 × HER2 NCT04224272 Phase 2 Her2 or HR positive breast cancer
NCT02892123 Phase 1 Her2 positive cancers
NCT03929666 Phase 2 Her2 positive gastresophageal adenocarcinoma
NCT04276493 Phase 1/2 Breast cancer, gastric cancer, gastresophageal junction cancer
MCLA-128 HER2 × HER3 NCT03321981 Phase 2 Metastatic breast cancer
NCT02912949 Phase 1/2 Harboring NRG1 fusion solid tumors
BCD-147 HER2 × HER2 NCT03912441 Phase 1 Neoplasms
BI-905677 LRP5 × LRP6 NCT03604445 Phase 1 Neoplasms
MP0274 HER2 × HER2 NCT03084926 Phase 1 Neoplasms
DuoBody-PD-L1x4-1BB, GEN-1046 PD-L1 × 4-1BB NCT03917381 Phase 1/2 Solid tumors
REGN-5678 CD28 × PSMA NCT03972657 Phase 1/2 Metastatic castration-resistant prostate cancer
FS118 mAb2, FS-118, LAG-3/PD-L1 mAb2 PD-L1 × LAG-3 NCT03440437 Phase 1 Advanced cancer
LY-3434172 PD-1 × PD-L1 NCT03936959 Phase 1 Advanced cancer
XmAb-23104 PD-1 × ICOS NCT03752398 Phase 1 Advanced solid tumors
ABBV-428 MSLN × CD40 NCT02955251 Phase 1 Advanced solid tumors cancer
ADC-1015, ATOR-1015 OX40 × CTLA-4 NCT03782467 Phase 1 Solid tumor
MCLA-145 PD-L1 × 4-1BB NCT03922204 Phase 1 Advanced solid tumor, B cell lymphoma
MEDI-5752 PD-1 × CTLA-4 NCT03530397 Phase 1 Selected advanced solid tumors
MGD-019 PD-1 × CTLA-4 NCT03761017 Phase 1 Advanced solid tumor,
PRS-343 HER2 × 4-1BB NCT03330561 Phase 1 Her2 positive solid tumor
NCT03650348 Phase 1 Her2 positive solid tumor
RG-7769, RO-7121661 PD-1 × TIM-3 NCT03708328 Phase 1 Solid tumors
XmAb-20717 PD-1 × CTLA-4 NCT03517488 Phase 1 Solid tumors
XmAb-22841 CTLA-4 × LAG-3 NCT03849469 Phase 1 Solid tumors
MP0310 FAP × CD40 NCT04049903 Phase 1 Advanced solid tumor
AK-112 VEGF × PD-1 NCT04047290 Phase 1 Neoplasms malignant
GEN-1042 CD40 × 4-1BB NCT04083599 Phase 1/2 Solid tumor, non-small cell lung cancer, colorectal cancer, melanoma
AGEN-1423, GS-1423 CD73 × TGF-β NCT03954704 Phase 1 Advanced solid tumors
Tebentafusp (IMCgp100) gp100/HLA-A*0201 × CD3 NCT03070392 Phase 2 Uveal melanoma
NCT02889861 Phase 2 Malignant melanoma
NCT02535078 Phase 1/2 Malignant melanoma
NCT01209676 Early phase 1 Melanoma, advanced tumors
NCT02570308 Phase 1/2 Uveal melanoma
NCT01211262 Phase 1 Malignant melanoma
OXS-1550, DT-2219 CD19 × CD22 NCT02370160 Phase 1/2 Refractory or relapsed B-lineage leukemia
NCT00889408 Phase 1 Leukemia, lymphoma
AFM-13 CD16 × CD30 NCT02321592 Phase 2 Hodgkin lymphoma
NCT01221571 Phase 1 Hodgkin lymphoma
NCT03192202 Phase 1/2 T cell lymphoma
NCT04074746 Phase 1 Recurrent anaplastic large cell lymphoma, recurrent B cell non-Hodgkin lymphoma, recurrent classic Hodgkin lymphoma
NCT04101331 Phase 2 Peripheral T cell lymphoma
NCT02665650 Phase 1 Hodgkin lymphoma
Odronextamab, REGN-1979 CD3 × CD20 NCT02651662 Phase 1 Lymphoma
NCT03888105 Phase 2 B cell non-Hodgkin lymphoma
NCT02290951 Phase 1 Non-Hodgkin lymphoma, chronic lymphocytic leukemia
IMC-C103C MAGE-A4/HLA*A0201 × CD3 NCT03973333 Phase 1/2 Advanced solid tumors
IMCnyeso NY-ESO-1/HLA*A0201 × CD3 NCT03515551 Phase 1/2 Advanced solid tumors
Mosunetuzumab, RG-7828 CD3 × CD20 NCT03671018 Phase 1/2 B cell non-Hodgkin lymphoma
NCT04313608 Phase 1 B cell lymphoma
NCT03677141 Phase 1/2 B cell non-Hodgkin lymphoma
NCT04246086 Phase 1 Follicular lymphoma
NCT03677154 Phase 1/2 Diffuse large B cell lymphoma
NCT02500407 Phase 1 Lymphocytic leukemia
OXS-3550, CD161533 TriKE CD16 × CD33 NCT03214666 Phase 1/2 Acute myelogenous leukemia, mast cell leukemia
GEN-3013 CD3 × CD20 NCT03625037 Phase 1/2 Lymphoma
MCLA-117 CD3 × CLEC12 NCT03038230 Phase 1 Acute myelogenous leukemia, acute myeloid leukemia
Flotetuzumab, MGD-006 CD3 × CD123 NCT03739606 Phase 2 Acute and chronic myelogenous leukemia
NCT04158739 Phase 1 Recurrent or refractory acute myeloid leukemia
MGD-007 CD3 × GPA33 NCT03531632 Phase 1/2 Colorectal cancer metastatic
NCT02248805 Phase 1 Colorectal carcinoma
REGN-4018 CD3 × MUC16 NCT03564340 Phase 1/2 Recurrent ovarian cancer, recurrent fallopian tube cancer, recurrent primary peritoneal cancer
Cibisatamab, RO-6958688, RG-7802 CD3 × CEA NCT02650713 Phase 1 Solid tumors
NCT02324257 Phase 1 Solid tumors
NCT03337698 Phase 1/2 Carcinoma, non-small-cell lung
NCT03866239 Phase 1 Colorectal cancer
AMG-701 CD3 × BCMA NCT03287908 Phase 1 Relapsed or refractory multiple myeloma
AMG-160 CD3 × PSMA NCT03792841 Phase 1 Metastatic castration-resistant prostate cancer, prostate cancer
AMG-330, MT-114 CD3 × CD33 NCT02520427 Phase 1 Relapsed or refractory acute myeloid leukemia
AMG-424 CD3 × CD38 NCT03445663 Phase 1 Relapsed or refractory multiple myeloma
AMG-427 CD3 × FLT3 NCT03541369 Phase 1 Relapsed or refractory acute myeloid leukemia
AMG-562 CD3 × CD19 NCT03571828 Phase 1 Diffuse large B cell lymphoma, mantle cell lymphoma, follicular lymphoma
AMG-596 CD3 × EGFRvIII NCT03296696 Phase 1 Glioblastoma or malignant glioma
AMG-673 CD3 × CD33 NCT03224819 Early Phase 1 Acute myeloid leukemia
AMG-757 CD3 × DLL3 NCT03319940 Phase 1 Small cell lung carcinoma
AMV-564, TandAb T564 CD3 × CD33 NCT03144245 Phase 1 Acute myeloid leukemia
NCT04128423 Phase 1 Locally advanced or metastatic solid tumors
NCT03516591 Phase 1 Myelodysplastic syndrome
APVO-436 CD3 × CD123 NCT03647800 Phase 1 Acute myeloid leukemia, myelodysplastic syndrome
BI-836909, AMG-420 CD3 × BCMA NCT02514239 Phase 1 Multiple myeloma
NCT03836053 Phase 1 Relapsed or refractory multiple myeloma
RG-6026, RO-7082859 CD3 × CD20 NCT03533283 Phase 1 Non-Hodgkin’s lymphoma
NCT03467373 Phase 1 B cell lymphoma, non-Hodgkin lymphoma
NCT04313608 Phase 1 B cell lymphoma
NCT04246086 Phase 1 Follicular lymphoma
NCT03075696 Phase 1 Non-Hodgkin’s lymphoma
NCT04077723 Phase 1 Lymphoma, non-Hodgkin
EM-901, CC-93269 CD3 × BCMA NCT03486067 Phase 1 Multiple myeloma
ERY-974 CD3 × GPC3 NCT02748837 Phase 1 Solid tumors
GBR-1302 CD3 × HER2 NCT02829372 Phase 1 Her2 positive solid tumors
NCT03983395 Phase 1/2 Breast cancer
GBR-1342 CD3 × CD38 NCT03309111 Phase 1/2 Multiple myeloma
GEM-333 CD3 × CD33 NCT03516760 Phase 1 Acute myeloid leukemia
GEM-3PSCA, GEM3PSCA CD3 × PSCA NCT03927573 Phase 1 Non-small cell lung cancer, breast cancer, pancreatic cancer, urogenital cancer
IGM-2323 CD3 × CD20 NCT04082936 Phase 1 Non-Hodgkin lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma
JNJ-67571244, JNJ-1244 CD3 × CD33 NCT03915379 Phase 1 Leukemia
JNJ-63709178, JNJ-9178 CD3 × CD123 NCT02715011 Phase 1 Leukemia
JNJ-64007957, JNJ-7957 CD3 × BCMA NCT03145181 Phase 1 Hematological malignancies
JNJ-63898081, JNJ-8081 CD3 × PSMA NCT03926013 Phase 1 Neoplasms
Orlotamab, MGD-009 CD3 × B7-H3 NCT03406949 Phase 1 Advanced solid tumors
NCT02628535 Phase 1 Advanced solid tumors
Pasotuxizumab, AMG-212, (BAY2010112/MT112) CD3 × PSMA NCT01723475 Phase 1 Prostatic neoplasms
PF-06671008 CD3 × CDH3 NCT02659631 Phase 1 Neoplasms
PF-06863135, PF-3135 CD3 × BCMA NCT03269136 Phase 1 Multiple myeloma
REGN-5458 CD3 × BCMA NCT03761108 Phase 1/2 Multiple myeloma
RG-6194, BTRC-4017A CD3 × HER2 NCT03448042 Phase 1 Solid tumors
TNB-383B CD3 × BCMA NCT03933735 Phase 1 Multiple myeloma
XmAb-13676, THG-338 CD3 × CD20 NCT02924402 Phase 1 B cell non-Hodgkins lymphoma, chronic lymphocytic leukemia
XmAb-14045, SQZ-622 CD3 × CD123 NCT02730312 Phase 1 Acute myelogenous leukemia, B cell acute lymphoblastic leukemia, blastic plasmacytoid dendritic cell neoplasm, chronic myeloid leukemia
XmAb-18087, XENP-18087 CD3 × SSTR2 NCT03411915 Phase 1 Neuroendocrine tumor, gastrointestinal neoplasm
HPN-424 CD3 × PSMA NCT03577028 Phase 1 Advanced prostate cancer
JNJ-64407564 CD3 × GPRC5D NCT03399799 Phase 1 Hematological malignancies
NCT04108195 Phase 1 Multiple myeloma
RG-6160 (BFCR4350A) CD3 × FcRH5 NCT03275103 Phase 1 Multiple myeloma
NI-1701, TG-1801 CD19 × CD47 NCT03804996 Phase 1 B cell lymphoma
MCLA-158 EGFR × LGR5 NCT03526835 Phase 1 Advanced or metastatic solid tumors, colorectal cancer
ZW-49 HER2 × HER2 NCT03821233 Phase 1 Her2 positive cancers
SAR-440234 CD3 × CD123 NCT03594955 Phase 1/2 Leukemia
AFM-11 CD3 × CD19 NCT02848911 Phase 1 Leukemia
NCT02106091 Phase 1 Relapsed or refractory B cell non-Hodgkin lymphoma
AFM-24 EGFR × CD16 NCT04259450 Phase 1/2 Advanced solid tumor
CCW-702 CD3 × PSMA NCT04077021 Phase 1 Castration-resistant prostatic cancer
HPN-217 CD3 ×
BCMA
NCT04184050 Phase 1/2 Multiple myeloma in relapse
BI-905711 Cadherin-17 × TRAIL-R2 NCT04137289 Phase 1 Gastrointestinal neoplasms, cholangiocarcinoma, pancreatic neoplasms
MT110 CD3 × EpCAM NCT00635596 Phase 1 Solid tumors
Tab.4  
1 SL Topalian, FS Hodi, JR Brahmer, SN Gettinger, DC Smith, DF McDermott, JD Powderly, RD Carvajal, JA Sosman, MB Atkins, PD Leming, DR Spigel, SJ Antonia, L Horn, CG Drake, DM Pardoll, L Chen, WH Sharfman, RA Anders, JM Taube, TL McMiller, H Xu, AJ Korman, M Jure-Kunkel, S Agrawal, D McDonald, GD Kollia, A Gupta, JM Wigginton, M Sznol. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454
https://doi.org/10.1056/NEJMoa1200690 pmid: 22658127
2 F Skoulidis, ME Goldberg, DM Greenawalt, MD Hellmann, MM Awad, JF Gainor, AB Schrock, RJ Hartmaier, SE Trabucco, L Gay, SM Ali, JA Elvin, G Singal, JS Ross, D Fabrizio, PM Szabo, H Chang, A Sasson, S Srinivasan, S Kirov, J Szustakowski, P Vitazka, R Edwards, JA Bufill, N Sharma, SI Ou, N Peled, DR Spigel, H Rizvi, EJ Aguilar, BW Carter, J Erasmus, DF Halpenny, AJ Plodkowski, NM Long, M Nishino, WL Denning, A Galan-Cobo, H Hamdi, T Hirz, P Tong, J Wang, J Rodriguez-Canales, PA Villalobos, ER Parra, N Kalhor, LM Sholl, JL Sauter, AA Jungbluth, M Mino-Kenudson, R Azimi, YY Elamin, J Zhang, GC Leonardi, F Jiang, KK Wong, JJ Lee, VA Papadimitrakopoulou, II Wistuba, VA Miller, GM Frampton, JD Wolchok, AT Shaw, PA Jänne, PJ Stephens, CM Rudin, WJ Geese, LA Albacker, JV Heymach. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 2018; 8(7): 822–835
https://doi.org/10.1158/2159-8290.CD-18-0099 pmid: 29773717
3 MA Postow, R Sidlow, MD Hellmann. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018; 378(2): 158–168
https://doi.org/10.1056/NEJMra1703481 pmid: 29320654
4 SY van der Zanden, JJ Luimstra, J Neefjes, J Borst, H Ovaa. Opportunities for small molecules in cancer immunotherapy. Trends Immunol 2020; 41(6): 493–511
https://doi.org/10.1016/j.it.2020.04.004 pmid: 32381382
5 L Skalniak, KM Zak, K Guzik, K Magiera, B Musielak, M Pachota, B Szelazek, J Kocik, P Grudnik, M Tomala, S Krzanik, K Pyrc, A Dömling, G Dubin, TA Holak. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017; 8(42): 72167–72181
https://doi.org/10.18632/oncotarget.20050 pmid: 29069777
6 A Ganesan, M Ahmed, I Okoye, E Arutyunova, D Babu, WL Turnbull, JK Kundu, J Shields, KC Agopsowicz, L Xu, Y Tabana, N Srivastava, G Zhang, TC Moon, A Belovodskiy, M Hena, AS Kandadai, SN Hosseini, M Hitt, J Walker, M Smylie, FG West, AG Siraki, MJ Lemieux, S Elahi, JA Nieman, DL Tyrrell, M Houghton, K Barakat. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep 2019; 9(1): 12392
https://doi.org/10.1038/s41598-019-48826-6 pmid: 31455818
7 FF Chen, Z Li, D Ma, Q Yu. Small-molecule PD-L1 inhibitor BMS1166 abrogates the function of PD-L1 by blocking its ER export. OncoImmunology 2020; 9(1): 1831153
https://doi.org/10.1080/2162402X.2020.1831153 pmid: 33110706
8 K Guzik, KM Zak, P Grudnik, K Magiera, B Musielak, R Törner, L Skalniak, A Dömling, G Dubin, TA Holak. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J Med Chem 2017; 60(13): 5857–5867
https://doi.org/10.1021/acs.jmedchem.7b00293 pmid: 28613862
9 KM Zak, P Grudnik, K Guzik, BJ Zieba, B Musielak, A Dömling, G Dubin, TA Holak. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016; 7(21): 30323–30335
https://doi.org/10.18632/oncotarget.8730 pmid: 27083005
10 P Sasikumar, N Sudarshan, R Ramachandra, N Gowda, D Samiulla, P Bilugudi, S Adurthi, J Mani, R Nair, M Ramachandra. Pre-clinical efficacy in multiple syngeneic models with oral immune checkpoint antagonists targeting PD-L1 and TIM-3. Eur J Cancer 2016; 1(69): S98
https://doi.org/10.1016/S0959-8049(16)32890-8
11 J Powderly, M Patel, J Lee, J Brody, F Meric-Bernstam, E Hamilton, SP Aix, J Garcia-Corbacho, Y Bang, M Ahn. CA-170, a first in class oral small molecule dual inhibitor of immune checkpoints PD-L1 and VISTA, demonstrates tumor growth inhibition in pre-clinical models and promotes T cell activation in Phase 1 study. Ann Oncol 2017; 28: v405–v406
https://doi.org/10.1093/annonc/mdx376.007
12 V Radhakrishnan, S Banavali, S Gupta, A Kumar, C Deshmukh, S Nag, S Beniwal, M Gopichand, R Naik, K Lakshmaiah, D Mandavia, M Ramchandra, K Prabhash. Excellent CBR and prolonged PFS in non-squamous NSCLC with oral CA-170, an inhibitor of VISTA and PD-L1. Ann Oncol 2019; 30: v494
https://doi.org/10.1093/annonc/mdz253.035
13 T Kawai, S Akira. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5): 373–384
https://doi.org/10.1038/ni.1863 pmid: 20404851
14 Work Group; Invited Reviewers, JYS Kim, JH Kozlow, B Mittal, J Moyer, T Olencki, P Rodgers. Guidelines of care for the management of basal cell carcinoma. J Am Acad Dermatol 2018; 78(3): 540–559
https://doi.org/10.1016/j.jaad.2017.10.006 pmid: 29331385
15 NM Donin, K Chamie, AT Lenis, AJ Pantuck, M Reddy, D Kivlin, J Holldack, R Pozzi, G Hakim, LI Karsh, DL Lamm, LH Belkoff, AS Belldegrun, S Holden, N Shore. A phase 2 study of TMX-101, intravesical imiquimod, for the treatment of carcinoma in situ bladder cancer. Urol Oncol 2017; 35(2): 39.e1–39.e7
https://doi.org/10.1016/j.urolonc.2016.09.006 pmid: 28341495
16 GN Dietsch, H Lu, Y Yang, C Morishima, LQ Chow, ML Disis, RM Hershberg. Coordinated activation of Toll-like receptor 8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS One 2016; 11(2): e0148764
https://doi.org/10.1371/journal.pone.0148764 pmid: 26928328
17 CB Rodell, SP Arlauckas, MF Cuccarese, CS Garris, R Li, MS Ahmed, RH Kohler, MJ Pittet, R Weissleder. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2018; 2(8): 578–588
https://doi.org/10.1038/s41551-018-0236-8 pmid: 31015631
18 SR Woo, MB Fuertes, L Corrales, S Spranger, MJ Furdyna, MY Leung, R Duggan, Y Wang, GN Barber, KA Fitzgerald, ML Alegre, TF Gajewski. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014; 41(5): 830–842
https://doi.org/10.1016/j.immuni.2014.10.017 pmid: 25517615
19 L Corrales, LH Glickman, SM McWhirter, DB Kanne, KE Sivick, GE Katibah, SR Woo, E Lemmens, T Banda, JJ Leong, K Metchette, TW Dubensky Jr, TF Gajewski. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015; 11(7): 1018–1030
https://doi.org/10.1016/j.celrep.2015.04.031 pmid: 25959818
20 KE Sivick, AL Desbien, LH Glickman, GL Reiner, L Corrales, NH Surh, TE Hudson, UT Vu, BJ Francica, T Banda, GE Katibah, DB Kanne, JJ Leong, K Metchette, JR Bruml, CO Ndubaku, JM McKenna, Y Feng, L Zheng, SL Bender, CY Cho, ML Leong, A van Elsas, TW Dubensky Jr, SM McWhirter. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep 2018; 25(11): 3074–3085.e5
https://doi.org/10.1016/j.celrep.2018.11.047 pmid: 30540940
21 F Meric-Bernstam, S K Sandhu, O Hamid, A Spreafico, S Kasper, R Dummer, T Shimizu, N Steeghs, N Lewis, C Talluto. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J Clin Oncol 2019; 37 (15_suppl): 2507
https://doi.org/10.1200/JCO.2019.37.15_suppl.2507
22 H Tye, CL Kennedy, M Najdovska, L McLeod, W McCormack, N Hughes, A Dev, W Sievert, CH Ooi, TO Ishikawa, H Oshima, PS Bhathal, AE Parker, M Oshima, P Tan, BJ Jenkins. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 2012; 22(4): 466–478
https://doi.org/10.1016/j.ccr.2012.08.010 pmid: 23079657
23 A Ochi, CS Graffeo, CP Zambirinis, A Rehman, M Hackman, N Fallon, RM Barilla, JR Henning, M Jamal, R Rao, S Greco, M Deutsch, MV Medina-Zea, U Bin Saeed, MO Ego-Osuala, C Hajdu, G Miller. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest 2012; 122(11): 4118–4129
https://doi.org/10.1172/JCI63606 pmid: 23023703
24 X Li, M Wenes, P Romero, SC Huang, SM Fendt, PC Ho. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol 2019; 16(7): 425–441
https://doi.org/10.1038/s41571-019-0203-7 pmid: 30914826
25 X Liu, N Shin, HK Koblish, G Yang, Q Wang, K Wang, L Leffet, MJ Hansbury, B Thomas, M Rupar, P Waeltz, KJ Bowman, P Polam, RB Sparks, EW Yue, Y Li, R Wynn, JS Fridman, TC Burn, AP Combs, RC Newton, PA Scherle. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010; 115(17): 3520–3530
https://doi.org/10.1182/blood-2009-09-246124 pmid: 20197554
26 J Luke, J Tabernero, A Joshua, J Desai, A Varga, V Moreno, C Gomez-Roca, B Markman, F Braud, S Patel, M Carlino, L Siu, G Curigliano, Z Liu, Y Ishii, M Wind-Rotolo, P Basciano, A Azrilevich, K Gelmon. BMS-986205, an indoleamine 2, 3-dioxygenase 1 inhibitor (IDO1i), in combination with nivolumab (nivo): Updated safety across all tumor cohorts and efficacy in advanced bladder cancer (advBC). J Clin Oncol 2019; 37(7 suppl): 358
https://doi.org/10.1200/JCO.2019.37.7_suppl.358
27 KH Jung, P LoRusso, H Burris, M Gordon, YJ Bang, MD Hellmann, A Cervantes, M Ochoa de Olza, A Marabelle, FS Hodi, MJ Ahn, LA Emens, F Barlesi, O Hamid, E Calvo, D McDermott, H Soliman, I Rhee, R Lin, T Pourmohamad, J Suchomel, A Tsuhako, K Morrissey, S Mahrus, R Morley, A Pirzkall, SL Davis. Phase I study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors. Clin Cancer Res 2019; 25(11): 3220–3228
https://doi.org/10.1158/1078-0432.CCR-18-2740 pmid: 30770348
28 GV Long, R Dummer, O Hamid, TF Gajewski, C Caglevic, S Dalle, A Arance, MS Carlino, JJ Grob, TM Kim, L Demidov, C Robert, J Larkin, JR Anderson, J Maleski, M Jones, SJ Diede, TC Mitchell. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 2019; 20(8): 1083–1097
https://doi.org/10.1016/S1470-2045(19)30274-8 pmid: 31221619
29 JL Adams, J Smothers, R Srinivasan, A Hoos. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 2015; 14(9): 603–622
https://doi.org/10.1038/nrd4596 pmid: 26228631
30 SM Steggerda, MK Bennett, J Chen, E Emberley, T Huang, JR Janes, W Li, AL MacKinnon, A Makkouk, G Marguier, PJ Murray, S Neou, A Pan, F Parlati, MLM Rodriguez, LA Van de Velde, T Wang, M Works, J Zhang, W Zhang, MI Gross. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer 2017; 5(1): 101
https://doi.org/10.1186/s40425-017-0308-4 pmid: 29254508
31 M O Johnson, M Wolf, M Z Madden, G Andrejeva, A Sugiura, D C Contreras, D Maseda, M V Liberti, K Paz, R J Kishton, M E Johnson, A de Cubas, P Wu, G Li, Y Zhang, D C Newcomb, A D Wells, N P Restifo, W K Rathmell, J W Locasale, M L Davila, B R Blazar, J C Rathmell. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 2018; 175(7): 1780–1795.e1719
https://doi.org/DOI: 10.1016/j.cell.2018.10.001
32 S Deaglio, KM Dwyer, W Gao, D Friedman, A Usheva, A Erat, JF Chen, K Enjyoji, J Linden, M Oukka, VK Kuchroo, TB Strom, SC Robson. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204(6): 1257–1265
https://doi.org/10.1084/jem.20062512 pmid: 17502665
33 PA Beavis, N Milenkovski, MA Henderson, LB John, B Allard, S Loi, MH Kershaw, J Stagg, PK Darcy. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunol Res 2015; 3(5): 506–517
https://doi.org/10.1158/2326-6066.CIR-14-0211 pmid: 25672397
34 L Emens, J Powderly, L Fong, J Brody, P Forde, M Hellmann, B Hughes, S Kummar, S Loi, J Luke. CPI-444, an oral adenosine A2a receptor (A2aR) antagonist, demonstrates clinical activity in patients with advanced solid tumors. Cancer Res 2017; 77(13 suppl): CT119
https://doi.org/10.1158/1538-7445.AM2017-CT119
35 II Ivanov, BS McKenzie, L Zhou, CE Tadokoro, A Lepelley, JJ Lafaille, DJ Cua, DR Littman. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126(6): 1121–1133
https://doi.org/10.1016/j.cell.2006.07.035 pmid: 16990136
36 X Hu, X Liu, J Moisan, Y Wang, CA Lesch, C Spooner, RW Morgan, EM Zawidzka, D Mertz, D Bousley, K Majchrzak, I Kryczek, C Taylor, C Van Huis, D Skalitzky, A Hurd, TD Aicher, PL Toogood, GD Glick, CM Paulos, W Zou, LL Carter. Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity. OncoImmunology 2016; 5(12): e1254854
https://doi.org/10.1080/2162402X.2016.1254854 pmid: 28123897
37 S Herbertz, JS Sawyer, AJ Stauber, I Gueorguieva, KE Driscoll, ST Estrem, AL Cleverly, D Desaiah, SC Guba, KA Benhadji, CA Slapak, Lahn MMdevelopment, therapy. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther 2015; 9: 4479–4499 PMID: 26309397
https://doi.org/10.2147/DDDT.S86621
38 RB Holmgaard, DA Schaer, Y Li, SP Castaneda, MY Murphy, X Xu, I Inigo, J Dobkin, JR Manro, PW Iversen, D Surguladze, GE Hall, RD Novosiadly, KA Benhadji, GD Plowman, M Kalos, KE Driscoll. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer 2018; 6(1): 47
https://doi.org/10.1186/s40425-018-0356-4 pmid: 29866156
39 T Yokosuka, M Takamatsu, W Kobayashi-Imanishi, A Hashimoto-Tane, M Azuma, T Saito. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012; 209(6): 1201–1217
https://doi.org/10.1084/jem.20112741 pmid: 22641383
40 M Zhao, W Guo, Y Wu, C Yang, L Zhong, G Deng, Y Zhu, W Liu, Y Gu, Y Lu, L Kong, X Meng, Q Xu, Y Sun. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm Sin B 2019; 9(2): 304–315
https://doi.org/10.1016/j.apsb.2018.08.009 pmid: 30972278
41 F Dammeijer, LA Lievense, ME Kaijen-Lambers, M van Nimwegen, K Bezemer, JP Hegmans, T van Hall, RW Hendriks, JG Aerts. Depletion of tumor-associated macrophages with a CSF-1R kinase inhibitor enhances antitumor immunity and survival induced by DC immunotherapy. Cancer Immunol Res 2017; 5(7): 535–546
https://doi.org/10.1158/2326-6066.CIR-16-0309 pmid: 28536100
42 M Gumbleton, R Sudan, S Fernandes, RW Engelman, CM Russo, JD Chisholm, WG Kerr. Dual enhancement of T and NK cell function by pulsatile inhibition of SHIP1 improves antitumor immunity and survival. Sci Signal 2017; 10(500): eaam5353
https://doi.org/10.1126/scisignal.aam5353 pmid: 29018171
43 CA Evans, T Liu, A Lescarbeau, SJ Nair, L Grenier, JA Pradeilles, Q Glenadel, T Tibbitts, AM Rowley, JP DiNitto, EE Brophy, EL O’Hearn, JA Ali, DG Winkler, SI Goldstein, P O’Hearn, CM Martin, JG Hoyt, JR Soglia, C Cheung, MM Pink, JL Proctor, VJ Palombella, MR Tremblay, AC Castro. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med Chem Lett 2016; 7(9): 862–867
https://doi.org/10.1021/acsmedchemlett.6b00238 pmid: 27660692
44 CJ Dwyer, DC Arhontoulis, GO Rangel Rivera, HM Knochelmann, AS Smith, MM Wyatt, MP Rubinstein, C Atkinson, JE Thaxton, DM Neskey, CM Paulos. Ex vivo blockade of PI3K gamma or delta signaling enhances the antitumor potency of adoptively transferred CD8+ T cells. Eur J Immunol 2020; 50(9): 1386–1399
https://doi.org/10.1002/eji.201948455 pmid: 32383488
45 M Long, K Beckwith, P Do, BL Mundy, A Gordon, AM Lehman, KJ Maddocks, C Cheney, JA Jones, JM Flynn, LA Andritsos, F Awan, JA Fraietta, CH June, MV Maus, JA Woyach, MA Caligiuri, AJ Johnson, N Muthusamy, JC Byrd. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest 2017; 127(8): 3052–3064
https://doi.org/10.1172/JCI89756 pmid: 28714866
46 A Zlotnik, O Yoshie. The chemokine superfamily revisited. Immunity 2012; 36(5): 705–716
https://doi.org/10.1016/j.immuni.2012.05.008 pmid: 22633458
47 DE Sanford, BA Belt, RZ Panni, A Mayer, AD Deshpande, D Carpenter, JB Mitchem, SM Plambeck-Suess, LA Worley, BD Goetz, A Wang-Gillam, TJ Eberlein, DG Denardo, SP Goedegebuure, DC Linehan. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 2013; 19(13): 3404–3415
https://doi.org/10.1158/1078-0432.CCR-13-0525 pmid: 23653148
48 Y Chen, RR Ramjiawan, T Reiberger, MR Ng, T Hato, Y Huang, H Ochiai, S Kitahara, EC Unan, TP Reddy, C Fan, P Huang, N Bardeesy, AX Zhu, RK Jain, DG Duda. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015; 61(5): 1591–1602
https://doi.org/10.1002/hep.27665 pmid: 25529917
49 GL Uy, MP Rettig, IH Motabi, K McFarland, KM Trinkaus, LM Hladnik, S Kulkarni, CN Abboud, AF Cashen, KE Stockerl-Goldstein, R Vij, P Westervelt, JF DiPersio. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012; 119(17): 3917–3924
https://doi.org/10.1182/blood-2011-10-383406 pmid: 22308295
50 A Nisonoff, FC Wissler, LN Lipman. Properties of the major component of a peptic digest of rabbit antibody. Science 1960; 132(3441): 1770–1771
https://doi.org/10.1126/science.132.3441.1770 pmid: 13729245
51 AF Labrijn, ML Janmaat, JM Reichert, PWHI Parren. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18(8): 585–608
https://doi.org/10.1038/s41573-019-0028-1 pmid: 31175342
52 D Chelius, P Ruf, P Gruber, M Plöscher, R Liedtke, E Gansberger, J Hess, M Wasiliu, H Lindhofer. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010; 2(3): 309–319
https://doi.org/10.4161/mabs.2.3.11791 pmid: 20418662
53 M Klinger, C Brandl, G Zugmaier, Y Hijazi, RC Bargou, MS Topp, N Gökbuget, S Neumann, M Goebeler, A Viardot, M Stelljes, M Brüggemann, D Hoelzer, E Degenhard, D Nagorsen, PA Baeuerle, A Wolf, P Kufer. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012; 119(26): 6226–6233
https://doi.org/10.1182/blood-2012-01-400515 pmid: 22592608
54 T Kitazawa, K Esaki, T Tachibana, S Ishii, T Soeda, A Muto, Y Kawabe, T Igawa, H Tsunoda, K Nogami, M Shima, K Hattori. Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens. Thromb Haemost 2017; 117(7): 1348–1357
https://doi.org/10.1160/TH17-01-0030 pmid: 28451690
55 S Dickopf, GJ Georges, U Brinkmann. Format and geometries matter: structure-based design defines the functionality of bispecific antibodies. Comput Struct Biotechnol J 2020; 18: 1221–1227
https://doi.org/10.1016/j.csbj.2020.05.006 pmid: 32542108
56 Y Mazor, A Hansen, C Yang, PS Chowdhury, J Wang, G Stephens, H Wu, WF Dall’Acqua. Insights into the molecular basis of a bispecific antibody’s target selectivity. MAbs 2015; 7(3): 461–469
https://doi.org/10.1080/19420862.2015.1022695 pmid: 25730144
57 Y Mazor, KF Sachsenmeier, C Yang, A Hansen, J Filderman, K Mulgrew, H Wu, WF Dall’Acqua. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7(1): 40098
https://doi.org/10.1038/srep40098 pmid: 28067257
58 A Lopez-Albaitero, H Xu, H Guo, L Wang, Z Wu, H Tran, S Chandarlapaty, M Scaltriti, Y Janjigian, E de Stanchina, NK Cheung. Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody. OncoImmunology 2017; 6(3): e1267891
https://doi.org/10.1080/2162402X.2016.1267891 pmid: 28405494
59 SL Moores, ML Chiu, BS Bushey, K Chevalier, L Luistro, K Dorn, RJ Brezski, P Haytko, T Kelly, SJ Wu, PL Martin, J Neijssen, PW Parren, J Schuurman, RM Attar, S Laquerre, MV Lorenzi, GM Anderson. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res 2016; 76(13): 3942–3953
https://doi.org/10.1158/0008-5472.CAN-15-2833 pmid: 27216193
60 A Thakur, M Huang, LG Lum. Bispecific antibody based therapeutics: strengths and challenges. Blood Rev 2018; 32(4): 339–347
https://doi.org/10.1016/j.blre.2018.02.004 pmid: 29482895
61 MY Zhang, JJ Lu, L Wang, ZC Gao, H Hu, CO Ung, YT Wang. Development of monoclonal antibodies in China: overview and prospects. BioMed Res Int 2015; 2015: 168935
https://doi.org/10.1155/2015/168935 pmid: 25811022
62 UD Staerz, O Kanagawa, MJ Bevan. Hybrid antibodies can target sites for attack by T cells. Nature 1985; 314(6012): 628–631
https://doi.org/10.1038/314628a0 pmid: 2859527
63 UD Staerz, MJ Bevan. Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 1986; 83(5): 1453–1457
https://doi.org/10.1073/pnas.83.5.1453 pmid: 2869486
64 RE Kontermann. Dual targeting strategies with bispecific antibodies. MAbs 2012; 4(2): 182–197
https://doi.org/10.4161/mabs.4.2.19000 pmid: 22453100
65 S Nie, Z Wang, M Moscoso-Castro, P D’Souza, C Lei, J Xu, J Gu. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther 2020; 3(1): 18–62
https://doi.org/10.1093/abt/tbaa003 pmid: 33928225
66 KD Grugan, K Dorn, SW Jarantow, BS Bushey, JR Pardinas, S Laquerre, SL Moores, ML Chiu. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs 2017; 9(1): 114–126
https://doi.org/10.1080/19420862.2016.1249079 pmid: 27786612
67 Q Wang, CY Chung, S Chough, MJ Betenbaugh. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115(6): 1378–1393
https://doi.org/10.1002/bit.26567 pmid: 29457629
68 RE Kontermann, U Brinkmann. Bispecific antibodies. Drug Discov Today 2015; 20(7): 838–847
https://doi.org/10.1016/j.drudis.2015.02.008 pmid: 25728220
69 A Gupta, Y Kumar. Bispecific antibodies: a novel approach for targeting prominent biomarkers. Hum Vaccin Immunother 2020; 16(11): 2831–2839
https://doi.org/10.1080/21645515.2020.1738167 pmid: 32614706
70 RE Kontermann, U Brinkmann. Bispecific antibodies. Drug Discov Today 2015; 20(7): 838–847 PMID: 25728220
https://doi.org/10.1016/j.drudis.2015.02.008
71 T Xu, X Tau, X Wang, Q Li, P Minjie, H Zhang, L Han, Q Zhang. Patent US 10808043 (B2); PCT/CN2016/070447. 2020
72 F Li, B Zhang, P Ye, J Zhao, S Huang, C Jin. Patent US 9745382 (B1); PCT/CN2017/093816, 2017
73 J Liu, N Song, Y Yang, M Jin. Patent WO2018177324 (A1); PCT/CN2018/080858. 2018
74 J Liu, N Song, Y Yang. Patent WO2018090950 (A1); PCT/CN2017/111310. 2018
75 T Xu, Y Dong, P Wang. Patent US 20180291103 (A1); PCT/CN2016/092679. 2017
76 C Wu. Patent US 10266608 (B2); PCT/US2014/072336. 2019
77 B Eckelman, JC Timmer, C Hata, KS Jones, A Hussain, AS Razai, B Becklund, R Pandit, M Kaplan, L Rason, Q Deveraux, BP Eckelman, JC Timmer, C Hata, KS Jones, A Hussain, AS Razai, B Becklund, R Pandit, M Kaplan, L Rascon, Q Deveraux. Patent US 20170198050 (A1); PCT/US2017/013040. 2017
78 J Kong, Y Ye, P Zhou, Y Huang, Q Kong, S Yang, L Xu, K Zhang, K Zhang, S Wang. Patent US 20190284279 (A1); PCT/CN2018/085397. 2019
79 B Li, Y Xia, ZM Wang, P Zhang. Patent US 20190185569 (A1); PCT/CN2017/098466. 2019
80 Z Gao, P TAN, B Kovacevich, B Renshaw, J Adamo, SA Mak, S Zhuo, L Chen. Patent WO2016106157 (A1); PCT/US2015/066951. 2015
81 R LaMotte-Mohs, K Shah, D Smith, S Gorlatov, V Ciccarone, J Tamura, H Li, J Rillema, M Licea. MGD013, a bispecific PD-1 X LAG-3 dual affinity re-targeting (DARTs) protein with T-cell immunomodulatory activity for cancer treatment. Cancer Res 2016; 76 (14 Supplement): 3217–3217
https://doi.org/10.1158/1538-7445.AM2016-3217
82 J Gu, X Luo, W Tao. Patent CN 201880004344.6A; PCT/CN2018/086451. 2018
83 W Tian, S Li. Patent WO201816650; PCT/CN2018/079187. 2018
84 Y Huang, F Zhang, G Xi. Patent WO2019109357; PCT/CN2017/115323. 2019
85 MJ Hinner, RSB Aiba, A Wiedenmann, C Schlosser, A Allersdorfer, G Matschiner, C Rothe, U Moebius, HE Kohrt, SA Olwill. Costimulatory T cell engagement via a novel bispecific anti-CD137/anti-HER2 protein. J Immunother Cancer 2015; 3(Suppl 2): 187
https://doi.org/10.1186/2051-1426-3-S2-P187
86 P Chames, D Baty. Bispecific antibodies for cancer therapy. Curr Opin Drug Discov Devel 2009; 12(2): 276–283
pmid: 19333873
87 RM Poole. Pembrolizumab: first global approval. Drugs 2014; 74(16): 1973–1981
https://doi.org/10.1007/s40265-014-0314-5 pmid: 25331768
88 A Markham. Atezolizumab: first global approval. Drugs 2016; 76(12): 1227–1232
https://doi.org/10.1007/s40265-016-0618-8 pmid: 27412122
89 ES Kim. Avelumab: first global approval. Drugs 2017; 77(8): 929–937
https://doi.org/10.1007/s40265-017-0749-6 pmid: 28456944
90 YY Syed. Durvalumab: first global approval. Drugs 2017; 77(12): 1369–1376
https://doi.org/10.1007/s40265-017-0782-5 pmid: 28643244
91 A Osipov, N Zaidi, DA Laheru. Dual checkpoint inhibition in pancreatic cancer: revealing the limitations of synergy and the potential of novel combinations. JAMA Oncol 2019; 5(10): 1438–1439
https://doi.org/10.1001/jamaoncol.2019.1583 pmid: 31318378
92 M Reck, H Borghaei, KJ O’Byrne. Nivolumab plus ipilimumab in non-small-cell lung cancer. Future Oncol 2019; 15(19): 2287–2302
https://doi.org/10.2217/fon-2019-0031 pmid: 31066582
93 A Winer, P Ghatalia, N Bubes, F Anari, A Varshavsky, V Kasireddy, Y Liu, WS El-Deiry. Dual checkpoint inhibition with ipilimumab plus nivolumab after progression on sequential PD-1/PDL-1 inhibitors pembrolizumab and atezolizumab in a patient with Lynch syndrome, metastatic colon, and localized urothelial cancer. Oncologist 2019; 24(11): 1416–1419
https://doi.org/10.1634/theoncologist.2018-0686 pmid: 31444293
94 JC Hassel, L Heinzerling, J Aberle, O Bähr, TK Eigentler, MO Grimm, V Grünwald, J Leipe, N Reinmuth, JK Tietze, J Trojan, L Zimmer, R Gutzmer. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions. Cancer Treat Rev 2017; 57: 36–49
https://doi.org/10.1016/j.ctrv.2017.05.003 pmid: 28550712
95 SL Topalian, CG Drake, DM Pardoll. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012; 24(2): 207–212
https://doi.org/10.1016/j.coi.2011.12.009 pmid: 22236695
96 W Hugo, JM Zaretsky, L Sun, C Song, BH Moreno, S Hu-Lieskovan, B Berent-Maoz, J Pang, B Chmielowski, G Cherry, E Seja, S Lomeli, X Kong, MC Kelley, JA Sosman, DB Johnson, A Ribas, RS Lo. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016; 165(1): 35–44
https://doi.org/10.1016/j.cell.2016.02.065 pmid: 26997480
97 JA Engelman, K Zejnullahu, T Mitsudomi, Y Song, C Hyland, JO Park, N Lindeman, CM Gale, X Zhao, J Christensen, T Kosaka, AJ Holmes, AM Rogers, F Cappuzzo, T Mok, C Lee, BE Johnson, LC Cantley, PA Jänne. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316(5827): 1039–1043
https://doi.org/10.1126/science.1141478 pmid: 17463250
98 AB Turke, K Zejnullahu, YL Wu, Y Song, D Dias-Santagata, E Lifshits, L Toschi, A Rogers, T Mok, L Sequist, NI Lindeman, C Murphy, S Akhavanfard, BY Yeap, Y Xiao, M Capelletti, AJ Iafrate, C Lee, JG Christensen, JA Engelman, PA Jänne. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010; 17(1): 77–88
https://doi.org/10.1016/j.ccr.2009.11.022 pmid: 20129249
99 S Yano, T Yamada, S Takeuchi, K Tachibana, Y Minami, Y Yatabe, T Mitsudomi, H Tanaka, T Kimura, S Kudoh, H Nokihara, Y Ohe, J Yokota, H Uramoto, K Yasumoto, K Kiura, M Higashiyama, M Oda, H Saito, J Yoshida, K Kondoh, M Noguchi. Hepatocyte growth factor expression in EGFR mutant lung cancer with intrinsic and acquired resistance to tyrosine kinase inhibitors in a Japanese cohort. J Thorac Oncol 2011; 6(12): 2011–2017
https://doi.org/10.1097/JTO.0b013e31823ab0dd pmid: 22052230
100 B van Lengerich, C Agnew, EM Puchner, B Huang, N Jura. EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. Proc Natl Acad Sci USA 2017; 114(14): E2836–E2845
https://doi.org/10.1073/pnas.1617994114 pmid: 28320942
101 K Mujoo, BK Choi, Z Huang, N Zhang, Z An. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget 2014; 5(21): 10222–10236
https://doi.org/10.18632/oncotarget.2655 pmid: 25400118
102 W Tian, S Li, D Chen, G Liang, L Zhang, W Zhang, X Tu, L Peng, J Weng, G Zhao. Preclinical development of a bispecific antibody-trap selectively targeting CD47 and CD20 for the treatment of B cell lineage cancer. Cancer Res 2019; 79(13 Suppl): Abstract nr 545,
https://doi.org/10.1158/1538-7445.AM2019-545
103 B Robert, M Dorvillius, F Buchegger, V Garambois, JC Mani, M Pugnières, JP Mach, A Pèlegrin. Tumor targeting with newly designed biparatopic antibodies directed against two different epitopes of the carcinoembryonic antigen (CEA). Int J Cancer 1999; 81(2): 285–291
https://doi.org/10.1002/(SICI)1097-0215(19990412)81:2<285::AID-IJC19>3.0.CO;2-T pmid: 10188732
104 H Wei, H Cai, Y Jin, P Wang, Q Zhang, Y Lin, W Wang, J Cheng, N Zeng, T Xu, A Zhou. Structural basis of a novel heterodimeric Fc for bispecific antibody production. Oncotarget 2017; 8(31): 51037–51049
https://doi.org/10.18632/oncotarget.17558 pmid: 28881627
105 F Li, B Zhang, P Ye, J Zhao, S Huang, C. JinBispecific anti-HER2 antibody. 2017,
106 Center for Drug Evaluation of the National Medical Products Authority. (accessed August 31st, 2020)
107 B Li, Y Xia, Z M Wang, P Zhang. Patent MX2019002254 (A). 2019
108 X Du, M Liu, J Su, P Zhang, F Tang, P Ye, M Devenport, X Wang, Y Zhang, Y Liu, P Zheng. Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res 2018; 28(4): 433–447
https://doi.org/10.1038/s41422-018-0012-z pmid: 29463898
109 X Du, F Tang, M Liu, J Su, Y Zhang, W Wu, M Devenport, CA Lazarski, P Zhang, X Wang, P Ye, C Wang, E Hwang, T Zhu, T Xu, P Zheng, Y Liu. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res 2018; 28(4): 416–432
https://doi.org/10.1038/s41422-018-0011-0 pmid: 29472691
110 Y Liu, P Zheng. Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol Sci 2020; 41(1): 4–12
https://doi.org/10.1016/j.tips.2019.11.003 pmid: 31836191
111 J Duell, S Lurati, M Dittrich, T Bedke, M Pule, H Einsele, C Rossig, M S Topp. First generation chimeric antigen receptor display functional defects in key signal pathways upon antigen stimulation. Blood 2010; 116(21):2088-
https://doi.org/10.1182/blood.V116.21.2088.2088
112 C Carpenito, MC Milone, R Hassan, JC Simonet, M Lakhal, MM Suhoski, A Varela-Rohena, KM Haines, DF Heitjan, SM Albelda, RG Carroll, JL Riley, I Pastan, CH June. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106(9): 3360–3365
https://doi.org/10.1073/pnas.0813101106 pmid: 19211796
113 CH June, RS O’Connor, OU Kawalekar, S Ghassemi, MC Milone. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361–1365
https://doi.org/10.1126/science.aar6711 pmid: 29567707
114 V Prasad. Tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat Rev Clin Oncol 2018; 15(1): 11–12
https://doi.org/10.1038/nrclinonc.2017.156 pmid: 28975930
115 N Bouchkouj, YL Kasamon, RA de Claro, B George, X Lin, S Lee, GM Blumenthal, W Bryan, AE McKee, R Pazdur. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res 2019; 25(6): 1702–1708
https://doi.org/10.1158/1078-0432.CCR-18-2743 pmid: 30413526
116 R Voelker. CAR-T therapy is approved for mantle cell lymphoma. JAMA 2020; 324(9): 832
pmid: 32870282
117 A Mullard. FDA approves fourth CAR-T cell therapy. Nat Rev Drug Discov 2021; 20(3): 166
pmid: 33574586
118 CA Ramos, NS Grover, AW Beaven, PD Lulla, MF Wu, A Ivanova, T Wang, TC Shea, CM Rooney, C Dittus, SI Park, AP Gee, PW Eldridge, KL McKay, B Mehta, CJ Cheng, FB Buchanan, BJ Grilley, K Morrison, MK Brenner, JS Serody, G Dotti, HE Heslop, B Savoldo. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J Clin Oncol 2020; 38(32): 3794–3804
https://doi.org/10.1200/JCO.20.01342 pmid: 32701411
119 R Huang, X Li, Y He, W Zhu, L Gao, Y Liu, L Gao, Q Wen, JF Zhong, C Zhang, X Zhang. Recent advances in CAR-T cell engineering. J Hematol Oncol 2020; 13(1): 86
https://doi.org/10.1186/s13045-020-00910-5 pmid: 32616000
120 Y Liu, Y Guo, Z Wu, K Feng, C Tong, Y Wang, H Dai, F Shi, Q Yang, W Han. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase I clinical trial. Cytotherapy 2020; 22(10): 573–580
https://doi.org/10.1016/j.jcyt.2020.04.088 pmid: 32527643
121 LC Cutmore, NF Brown, D Raj, S Chauduri, P Wang, J Maher, Y Wang, NR Lemoine, JF Marshall. Pancreatic Cancer UK Grand Challenge: developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology 2020; 20(3): 394–408
https://doi.org/10.1016/j.pan.2020.02.006 pmid: 32173257
122 S Depil, P Duchateau, SA Grupp, G Mufti, L Poirot. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 2020; 19(3): 185–199
https://doi.org/10.1038/s41573-019-0051-2 pmid: 31900462
123 LC Cutmore, JF Marshall. Current perspectives on the use of off the Shelf CAR-T/NK cells for the treatment of cancer. Cancers (Basel) 2021; 13(8): 1926
https://doi.org/10.3390/cancers13081926 pmid: 33923528
124 A Capsomidis, G Benthall, HH Van Acker, J Fisher, AM Kramer, Z Abeln, Y Majani, T Gileadi, R Wallace, K Gustafsson, B Flutter, J Anderson. Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol Ther 2018; 26(2): 354–365
https://doi.org/10.1016/j.ymthe.2017.12.001 pmid: 29310916
125 H Torikai, A Reik, PQ Liu, Y Zhou, L Zhang, S Maiti, H Huls, JC Miller, P Kebriaei, B Rabinovich, DA Lee, RE Champlin, C Bonini, L Naldini, EJ Rebar, PD Gregory, MC Holmes, LJ Cooper. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 2012; 119(24): 5697–5705
https://doi.org/10.1182/blood-2012-01-405365 pmid: 22535661
126 JJ Melenhorst, AM Leen, CM Bollard, MF Quigley, DA Price, CM Rooney, MK Brenner, AJ Barrett, HE Heslop. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood 2010; 116(22): 4700–4702
https://doi.org/10.1182/blood-2010-06-289991 pmid: 20709906
127 JN Kochenderfer, ME Dudley, RO Carpenter, SH Kassim, JJ Rose, WG Telford, FT Hakim, DC Halverson, DH Fowler, NM Hardy, AR Mato, DD Hickstein, JC Gea-Banacloche, SZ Pavletic, C Sportes, I Maric, SA Feldman, BG Hansen, JS Wilder, B Blacklock-Schuver, B Jena, MR Bishop, RE Gress, SA Rosenberg. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013; 122(25): 4129–4139
https://doi.org/10.1182/blood-2013-08-519413 pmid: 24055823
128 F Guo, J Cui. CAR-T in cancer treatment: develop in self-optimization, win-win in cooperation. Cancers (Basel) 2021; 13(8): 1955
https://doi.org/10.3390/cancers13081955 pmid: 33921581
129 J Hu, C Sun, C Bernatchez, X Xia, P Hwu, G Dotti, S Li. T-cell homing therapy for reducing regulatory T cells and preserving effector T-cell function in large solid tumors. Clin Cancer Res 2018; 24(12): 2920–2934
https://doi.org/10.1158/1078-0432.CCR-17-1365 pmid: 29391351
130 S Murty, ST Haile, C Beinat, A Aalipour, IS Alam, T Murty, TM Shaffer, CB Patel, EE Graves, CL Mackall, SS Gambhir. Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. OncoImmunology 2020; 9(1): 1757360
https://doi.org/10.1080/2162402X.2020.1757360 pmid: 32923113
131 R Grosser, L Cherkassky, N Chintala, PS Adusumilli. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 2019; 36(5): 471–482
https://doi.org/10.1016/j.ccell.2019.09.006 pmid: 31715131
132 YG Lee, I Marks, M Srinivasarao, AK Kanduluru, SM Mahalingam, X Liu, H Chu, PS Low. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Cancer Res 2019; 79(2): 387–396
https://doi.org/10.1158/0008-5472.CAN-18-1834 pmid: 30482775
133 L Driouk, JK Gicobi, Y Kamihara, K Rutherford, G Dranoff, J Ritz, SHC Baumeister. Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Front Immunol 2020; 11: 580328
https://doi.org/10.3389/fimmu.2020.580328 pmid: 33384686
134 I Caruana, G Weber, BC Ballard, MS Wood, B Savoldo, G Dotti. K562-derived whole-cell vaccine enhances antitumor responses of CAR-redirected virus-specific cytotoxic T lymphocytes in vivo. Clin Cancer Res 2015; 21(13): 2952–2962
https://doi.org/10.1158/1078-0432.CCR-14-2998 pmid: 25691731
135 PK Bommareddy, M Shettigar, HL Kaufman. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 2018; 18(8): 498–513
https://doi.org/10.1038/s41577-018-0014-6 pmid: 29743717
136 Z Hu, PA Ott, CJ Wu. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 2018; 18(3): 168–182
https://doi.org/10.1038/nri.2017.131 pmid: 29226910
137 MR Parkhurst, JC Yang, RC Langan, ME Dudley, DA Nathan, SA Feldman, JL Davis, RA Morgan, MJ Merino, RM Sherry, MS Hughes, US Kammula, GQ Phan, RM Lim, SA Wank, NP Restifo, PF Robbins, CM Laurencot, SA Rosenberg. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19(3): 620–626
https://doi.org/10.1038/mt.2010.272 pmid: 21157437
138 E Blass, PA Ott. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021; 18(4): 215–229
https://doi.org/10.1038/s41571-020-00460-2 pmid: 33473220
139 PA Ott, Z Hu, DB Keskin, SA Shukla, J Sun, DJ Bozym, W Zhang, A Luoma, A Giobbie-Hurder, L Peter, C Chen, O Olive, TA Carter, S Li, DJ Lieb, T Eisenhaure, E Gjini, J Stevens, WJ Lane, I Javeri, K Nellaiappan, AM Salazar, H Daley, M Seaman, EI Buchbinder, CH Yoon, M Harden, N Lennon, S Gabriel, SJ Rodig, DH Barouch, JC Aster, G Getz, K Wucherpfennig, D Neuberg, J Ritz, ES Lander, EF Fritsch, N Hacohen, CJ Wu. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017; 547(7662): 217–221
https://doi.org/10.1038/nature22991 pmid: 28678778
140 Z Hu, DE Leet, RL Allesøe, G Oliveira, S Li, AM Luoma, J Liu, J Forman, T Huang, JB Iorgulescu, R Holden, S Sarkizova, SH Gohil, RA Redd, J Sun, L Elagina, A Giobbie-Hurder, W Zhang, L Peter, Z Ciantra, S Rodig, O Olive, K Shetty, J Pyrdol, M Uduman, PC Lee, P Bachireddy, EI Buchbinder, CH Yoon, D Neuberg, BL Pentelute, N Hacohen, KJ Livak, SA Shukla, LR Olsen, DH Barouch, KW Wucherpfennig, EF Fritsch, DB Keskin, CJ Wu, PA Ott. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med 2021; 27(3): 515–525
https://doi.org/10.1038/s41591-020-01206-4 pmid: 33479501
141 DB Keskin, AJ Anandappa, J Sun, I Tirosh, ND Mathewson, S Li, G Oliveira, A Giobbie-Hurder, K Felt, E Gjini, SA Shukla, Z Hu, L Li, PM Le, RL Allesøe, AR Richman, MS Kowalczyk, S Abdelrahman, JE Geduldig, S Charbonneau, K Pelton, JB Iorgulescu, L Elagina, W Zhang, O Olive, C McCluskey, LR Olsen, J Stevens, WJ Lane, AM Salazar, H Daley, PY Wen, EA Chiocca, M Harden, NJ Lennon, S Gabriel, G Getz, ES Lander, A Regev, J Ritz, D Neuberg, SJ Rodig, KL Ligon, ML Suvà, KW Wucherpfennig, N Hacohen, EF Fritsch, KJ Livak, PA Ott, CJ Wu, DA Reardon. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019; 565(7738): 234–239
https://doi.org/10.1038/s41586-018-0792-9 pmid: 30568305
142 PA Ott, S Hu-Lieskovan, B Chmielowski, R Govindan, A Naing, N Bhardwaj, K Margolin, MM Awad, MD Hellmann, JJ Lin, T Friedlander, ME Bushway, KN Balogh, TE Sciuto, V Kohler, SJ Turnbull, R Besada, RR Curran, B Trapp, J Scherer, A Poran, D Harjanto, D Barthelme, YS Ting, JZ Dong, Y Ware, Y Huang, Z Huang, A Wanamaker, LD Cleary, MA Moles, K Manson, J Greshock, ZS Khondker, E Fritsch, MS Rooney, M DeMario, RB Gaynor, L Srinivasan. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 2020; 183(2): 347–362.e24 PMID:33064988
https://doi.org/10.1016/j.cell.2020.08.053
143 M Lindskog, A Laurell, A Kjellman, B Melichar, J Niezabitowski, P Maroto, H Zieliński, F Villacampa, P Bigot, Z. BajoryA randomized phase II study with ilixadencel, a cell-based immune primer, plus sunitinib versus sunitinib alone in synchronous metastatic renal cell carcinoma. J Clin Oncol 2020; 38(5_suppl):11
https://doi.org/10.1200/JCO.2020.38.5_suppl.11
144 JL Tanyi, S Bobisse, E Ophir, S Tuyaerts, A Roberti, R Genolet, P Baumgartner, BJ Stevenson, C Iseli, D Dangaj, B Czerniecki, A Semilietof, J Racle, A Michel, I Xenarios, C Chiang, DS Monos, DA Torigian, HL Nisenbaum, O Michielin, CH June, BL Levine, DJ Powell Jr, D Gfeller, R Mick, U Dafni, V Zoete, A Harari, G Coukos, LE Kandalaft. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 2018; 10(436): eaao5931
https://doi.org/10.1126/scitranslmed.aao5931 pmid: 29643231
145 KD Moynihan, CF Opel, GL Szeto, A Tzeng, EF Zhu, JM Engreitz, RT Williams, K Rakhra, MH Zhang, AM Rothschilds, S Kumari, RL Kelly, BH Kwan, W Abraham, K Hu, NK Mehta, MJ Kauke, H Suh, JR Cochran, DA Lauffenburger, KD Wittrup, DJ Irvine. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 2016; 22(12): 1402–1410
https://doi.org/10.1038/nm.4200 pmid: 27775706
146 I Chau, G Haag, O Rahma, T Macarulla, S McCune, D Yardley, B Solomon, M Johnson, G Vidal, P Schmid, G Argiles, K Dimick, S Mahrus, H Abdullah, X He, P Sayyed, H Barak, C Bleul, E Cha, A Drakaki. MORPHEUS: A phase Ib/II umbrella study platform evaluating the safety and efficacy of multiple cancer immunotherapy (CIT)-based combinations in different tumour types. Ann Oncol 2018; 29(suppl_8): 439–440
https://doi.org/10.1093/annonc/mdy288.110
147 KL Simonsen, PM Fracasso, SH Bernstein, M Wind-Rotolo, M Gupta, A Comprelli, TP Reilly, J Cassidy. The Fast Real-time Assessment of Combination Therapies in Immuno-ONcology (FRACTION) program: innovative, high-throughput clinical screening of immunotherapies. Eur J Cancer 2018; 103: 259–266
https://doi.org/10.1016/j.ejca.2018.07.127 pmid: 30292142
148 JM Redman, SM Steinberg, JL Gulley. Quick efficacy seeking trial (QuEST1): a novel combination immunotherapy study designed for rapid clinical signal assessment metastatic castration-resistant prostate cancer. J Immunother Cancer 2018; 6(1): 91
https://doi.org/10.1186/s40425-018-0409-8 pmid: 30227893
149 J Tang, A Shalabi, VM Hubbard-Lucey. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 2018; 29(1): 84–91
https://doi.org/10.1093/annonc/mdx755 pmid: 29228097
150 BJ Monk, MF Brady, C Aghajanian, HA Lankes, T Rizack, J Leach, JM Fowler, R Higgins, P Hanjani, M Morgan, R Edwards, W Bradley, T Kolevska, P Foukas, EM Swisher, KS Anderson, R Gottardo, JK Bryan, M Newkirk, KL Manjarrez, RS Mannel, RM Hershberg, G Coukos. A phase 2, randomized, double-blind, placebo-controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study. Ann Oncol 2017; 28(5): 996–1004
https://doi.org/10.1093/annonc/mdx049 pmid: 28453702
151 S Yu, M Yi, S Qin, K Wu. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 2019; 18(1): 125
https://doi.org/10.1186/s12943-019-1057-4 pmid: 31429760
152 BP Levy, G Giaccone, B Besse, E Felip, MC Garassino, M Domine Gomez, P Garrido, B Piperdi, S Ponce-Aix, D Menezes, KJ MacBeth, A Risueño, R Slepetis, X Wu, A Fandi, L Paz-Ares. Randomised phase 2 study of pembrolizumab plus CC-486 versus pembrolizumab plus placebo in patients with previously treated advanced non-small cell lung cancer. Eur J Cancer 2019; 108: 120–128
https://doi.org/10.1016/j.ejca.2018.11.028 pmid: 30654297
153 AJ Mijalis, DA Thomas 3rd, MD Simon, A Adamo, R Beaumont, KF Jensen, BL Pentelute. A fully automated flow-based approach for accelerated peptide synthesis. Nat Chem Biol 2017; 13(5): 464–466
https://doi.org/10.1038/nchembio.2318 pmid: 28244989
[1] FMD-21040-OF-XRH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed