Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (1): 83-92   https://doi.org/10.1007/s11684-021-0894-x
  本期目录
Prevalence of antifolate drug resistance markers in Plasmodium vivax in China
Fang Huang1(), Yanwen Cui1, He Yan1, Hui Liu2, Xiangrui Guo3, Guangze Wang4, Shuisen Zhou1, Zhigui Xia1
1. National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai 200025, China
2. Yunnan Institute of Parasitic Diseases, Puer 665000, China
3. Yingjiang County for Disease Control and Prevention, Yingjiang 679300, China
4. Hainan Center for Disease Control & Prevention, Haikou 570203, China
 全文: PDF(1681 KB)   HTML
Abstract

The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009–2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.

Key wordsdrug resistance    antifolates    molecular markers    Plasmodium vivax    China
收稿日期: 2021-06-03      出版日期: 2022-03-28
Corresponding Author(s): Fang Huang   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(1): 83-92.
Fang Huang, Yanwen Cui, He Yan, Hui Liu, Xiangrui Guo, Guangze Wang, Shuisen Zhou, Zhigui Xia. Prevalence of antifolate drug resistance markers in Plasmodium vivax in China. Front. Med., 2022, 16(1): 83-92.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0894-x
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I1/83
Locations Sites Pvdhfr
n WT I13L A15V F57L/Ia S58Rb T61M R76G H99S S117T/Nc I173L
Northeastern Dandong 7 1 2 1 2
Central Suining 16 10 6
Southwestern Nyingchi 3 1 2 1
Southern Hainan 3 3 3
Southwestern Yingjiang 58 3 16 28 16 19 28
Southwestern Tengchong 204 2 6 161 189 157 1 3 186 3
Total 291 16 6 1 179 222 173 1 23 226 3
Locations Sites Pvdhps
n WT S382C A383G M399I K512M/T/E A553Gb E571Q
Northeastern Dandong 8 5 3
Central Suining 16 16
Southwestern Nyingchi 25 23 1 1
Southern Hainan 26 24 1 1
Southwestern Yingjiang 58 29 1 29 1 9
Southwestern Tengchong 216 14 40 202 5 155 1
Total 349 111 41 233 5 6 164 1
Tab.1  
Haplotypes Total
(n)
Prevalence
(%)
Temperate region Subtropical region P value
Dandong Suining Nyingchi Yingjiang Tengchong Hainan
Pvdhfr Total 291   7 16 3 58 204 3
Wild-type 16 5.5          
I13A15F57 S58 T61R76H99S117I173 16 5.5 10 1 3 2   <0.0001
Single mutant 24 8.2          
I13A15F57 R58T61R76H99S117I173 2 0.7   1   1   0.1727
I13A15F57 S58T61R76H99N117I173 1 0.3 1         0.0903
I13A15F57 S58T61R76S99S117I173 21 7.2 1     17 3   0.7051
Double mutant 8 2.7          
I13A15F57R58T61R76H99N117I173 4 1.4   1     3 0.3165
I13A15L57R58T61R76H99S117I173 4 1.4       4   0.6835
Quadruple mutant 85 29.2          
I13A15L57R58M61R76H99T117I173 85 29.2     5 80   0.0005a
Quintuple mutant 88 30.2          
I13A15I57R58M61R76S99T117I173 82 28.2     11 71   0.0007a
L13A15L57R58M61R76H99T117I173 6 2.1       6   0.5639
Tandem repeat with mutant 70 24.1          
I13A15F57 S58T61R76_S117I173 20 6.9 2     10 8   0.6989
I13A15F57S58T61R76_N117I173 8 2.7 1 5     2   <0.0001
I13A15L57S58T61R76_S117I173 2 0.7 2           0.0079
I13A15F57R58T61R76_N117I173 36 12.4     12 24   0.0555
I13V15F57S58T61R76_T117I173 1 0.3 1           0.0903
I13A15F57R58T61R76_N117L173 3 1.0         3   0.7521
Pvdhps Total 349 8 16 25 58 216 26
Wild-type 111 31.8
S382A383M399K512A553E571 111 31.8 5 16 23 29 14 24 <0.0001a
Single mutant 54 15.5
S382A383I399K512A553E571 5 1.4 3 1 1 0.0016
S382G383M399K512A553E571 49 14.0 1 20 27 1 0.0091a
Double mutant 157 45.0
C382G383M399K512A553E571 19 5.4 19 0.0881
S382G383M399K512A553Q571 1 0.3 1 0.8596
S382G383M399K512G553E571 137 39.3 8 129 <0.0001a
Triple mutant 26 7.4
C382G383M399K512G553E571 21 6.0 21 0.0548
S382G383M399M512G553E571 3 0.9 3 0.6343
S382G383M399T512G553E571 2 0.6 2 0.7386
Quadruple mutant 1 0.3
C382G383M399E512G553E571 1 0.3 1 0.8596
Tab.2  
Fig.1  
Pvdhfr Pvdhps Haplotype of Pvdhfr/Pvdhps Dandong
n = 7
Suining
n = 16
Nyingchi
n = 1
Hainan
n = 3
Yingjiang
n = 58
Tengchong
n = 195
Total
(n)
Prevalence
(%)
57 58 61 117 173 382 383 512 553
F S T S I S A K A WT/WT 3 10 1   13 10 37 13.2
F S T N I S A K A N117/WT 1 6 7 2.5
F S T T I S A K A T117/WT 1 1 0.4
L S T S I S A K A L57/WT 2 2 0.7
F R T N I S A K A R58N117/WT 3 9 12 4.3
I R M T I S A K A I57R58M61T117/WT 5 1 6 2.1
L R M T I S A K A L57R58M61T117/WT 2 2 4 1.4
F S T S I S G K A WT/G383 17 17 6.1
F R T N I S G K A R58N117/G383 1 5 6 2.1
I R M T I S G K A I57R58M61T117/G383 1 5 6 2.1
L R M T I S G K A L57R58M61T117/G383 1 13 14 5.0
L R T S I S G K A L57R58/G383 3 3 1.1
F S T N I S G K G N117/G383 1 1 0.4
F R T N I S G K G R58N117/G383G553 2 12 14 5.0
F S/R T S I S G K G S/R58/G383G553 1 1 0.4
F R T N L S G K G R58N117L173/G383G553 3 3 1.1
I R M T I S G K G I57R58M61T117/G383G553         5 46 51 18.2
I R M T I S G K A/G 1 1 0.4
L R M T I S G K G L57R58M61T117/G383G553         1 48 49 17.5
L R M T I S G K A/G 1 1 0.4
F R T N I C G K A R58N117/C382G383 1 1 0.4
I R M T I C G K A I57R58M61T117/C382G383 6 6 2.1
L R M T I C G K A L57R58M61T117/C382G383 10 10 3.6
F S T S I C G K G WT/C382G383G553 1 1 0.4
F R T N I C G K G R58N117/C382G383G553 1 1 0.4
L R T S I C G K G L57R58/C382G383G553 1 1 0.4
L R M T I C G K G L57R58M61T117/C382G383G553 8 8 2.9
I R M T I C G K G I57R58M61T117/C382G383G553 10 10 3.6
F R T N I S G M G R58N117/G383M512G553 2 2 0.7
F S T N I S G M G N117/G383M512G553 1 1 0.4
L R M T I S G T G I57R58M61T117/C382G383G553 1 1 0.4
I R M T I S G T G L57R58M61T117/G383T512G553 1 1 0.4
L R M T I C G E G I57R58M61T117/C382G383T512G553 1 1 0.4
Tab.3  
Fig.2  
1 RN Price, RJ Commons, KE Battle, K Thriemer, K Mendis. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol 2020; 36(6): 560–570
https://doi.org/10.1016/j.pt.2020.03.009 pmid: 32407682
2 World Health Organization. World malaria report 2020. Geneva: WHO, 2020
3 HW Zhang, Y Liu, SS Zhang, BL Xu, WD Li, JH Tang, SS Zhou, F Huang. Preparation of malaria resurgence in China: case study of vivax malaria re-emergence and outbreak in Huang-Huai Plain in 2006. Adv Parasitol 2014; 86: 205–230
https://doi.org/10.1016/B978-0-12-800869-0.00008-1 pmid: 25476886
4 S Zhang, S Guo, X Feng, A Afelt, R Frutos, S Zhou, S Manguin. Anopheles vectors in mainland China while approaching malaria elimination. Trends Parasitol 2017; 33(11): 889–900
https://doi.org/10.1016/j.pt.2017.06.010 pmid: 28734898
5 SS Zhou, F Huang, JJ Wang, SS Zhang, YP Su, LH Tang. Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malar J 2010; 9(1): 337
https://doi.org/10.1186/1475-2875-9-337 pmid: 21092326
6 A Nzila. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother 2006; 57(6): 1043–1054
https://doi.org/10.1093/jac/dkl104 pmid: 16617066
7 World Health Organization. Implementing malaria in pregnancy programs in the context of World Health Organization recommendations on antenatal care for a positive pregnancy experience. Geneva: WHO, 2018
8 World Health Organization. Intermittent preventive treatment for infants using sulfadoxinepyrimethamine (SP-IPTi) for malaria control in Africa: Implementation field guide. Geneva: WHO, 2011
9 World Health Organization. World malaria report 2019. Geneva: WHO, 2019
10 NS Mohamed, H Abdelbagi, HA Osman, AE Ahmed, AM Yousif, YB Edris, EY Osman, AR Elsadig, EE Siddig, M Mustafa, AA Mohammed, Y Ali, MM Osman, MS Ali, RA Omer, A Ahmed, CH Sibley. A snapshot of Plasmodium falciparum malaria drug resistance markers in Sudan: a pilot study. BMC Res Notes 2020; 13(1): 512
https://doi.org/10.1186/s13104-020-05363-0 pmid: 33160417
11 B Huang, S Huang, XZ Su, X Tong, J Yan, H Li, F Lu. Molecular surveillance of pvdhfr, pvdhps, and pvmdr-1 mutations in Plasmodium vivax isolates from Yunnan and Anhui provinces of China. Malar J 2014; 13(1): 346
https://doi.org/10.1186/1475-2875-13-346 pmid: 25179752
12 F Huang, S Zhou, S Zhang, W Li, H Zhang. Monitoring resistance of Plasmdium vivax: point mutations in dihydrofolate reductase gene in isolates from Central China. Parasit Vectors 2011; 4(1): 80
https://doi.org/10.1186/1756-3305-4-80 pmid: 21586132
13 National Health Commission of the People’s Republic of China. Technical regulations for application of antimalarials (WS/T 485-2016). 2016
14 M Imwong, S Pukrittakayamee, S Looareesuwan, G Pasvol, J Poirreiz, NJ White, G Snounou. Association of genetic mutations in Plasmodium vivax dhfr with resistance to sulfadoxine-pyrimethamine: geographical and clinical correlates. Antimicrob Agents Chemother 2001; 45(11): 3122–3127
https://doi.org/10.1128/AAC.45.11.3122-3127.2001 pmid: 11600366
15 M Imwong, S Pukrittayakamee, L Rénia, F Letourneur, JP Charlieu, U Leartsakulpanich, S Looareesuwan, NJ White, G Snounou. Novel point mutations in the dihydrofolate reductase gene of Plasmodium vivax: evidence for sequential selection by drug pressure. Antimicrob Agents Chemother 2003; 47(5): 1514–1521
https://doi.org/10.1128/AAC.47.5.1514-1521.2003 pmid: 12709316
16 P Thongdee, J Kuesap, K Rungsihirunrat, P Tippawangkosol, M Mungthin, K Na-Bangchang. Distribution of dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant alleles in Plasmodium vivax isolates from Thailand. Acta Trop 2013; 128(1): 137–143
https://doi.org/10.1016/j.actatropica.2013.07.005 pmid: 23880285
17 K Tantiamornkul, T Pumpaibool, J Piriyapongsa, R Culleton, U Lek-Uthai. The prevalence of molecular markers of drug resistance in Plasmodium vivax from the border regions of Thailand in 2008 and 2014. Int J Parasitol Drugs Drug Resist 2018; 8(2): 229–237
https://doi.org/10.1016/j.ijpddr.2018.04.003 pmid: 29677637
18 PE de Pécoulas, R Tahar, P Yi, KH Thai, LK Basco. Genetic variation of the dihydrofolate reductase gene in Plasmodium vivax in Snoul, northeastern Cambodia. Acta Trop 2004; 92(1): 1–6
https://doi.org/10.1016/j.actatropica.2004.03.011 pmid: 15301969
19 PB Asih, SS Marantina, R Nababan, NF Lobo, IE Rozi, W Sumarto, RM Dewi, S Tuti, AS Taufik, Mulyanto, RW Sauerwein, D Syafruddin. Distribution of Plasmodium vivax pvdhfr and pvdhps alleles and their association with sulfadoxine-pyrimethamine treatment outcomes in Indonesia. Malar J 2015; 14(1): 365
https://doi.org/10.1186/s12936-015-0903-0 pmid: 26395428
20 S Joy, SK Ghosh, RN Achur, DC Gowda, N Surolia. Presence of novel triple mutations in the pvdhfr from Plasmodium vivax in Mangaluru city area in the southwestern coastal region of India. Malar J 2018; 17(1): 167
https://doi.org/10.1186/s12936-018-2316-3 pmid: 29661235
21 K Rakmark, GR Awab, J Duanguppama, U Boonyuen, AM Dondorp, M Imwong. Polymorphisms in Plasmodium vivax antifolate resistance markers in Afghanistan between 2007 and 2017. Malar J 2020; 19(1): 251
https://doi.org/10.1186/s12936-020-03319-0 pmid: 32664924
22 C Barnadas, M Tichit, C Bouchier, A Ratsimbasoa, L Randrianasolo, R Raherinjafy, M Jahevitra, S Picot, D Ménard. Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine. Malar J 2008; 7(1): 35
https://doi.org/10.1186/1475-2875-7-35 pmid: 18302746
23 C Barnadas, L Timinao, S Javati, J Iga, E Malau, C Koepfli, LJ Robinson, N Senn, B Kiniboro, L Rare, JC Reeder, PM Siba, PA Zimmerman, H Karunajeewa, TM Davis, I Mueller. Significant geographical differences in prevalence of mutations associated with Plasmodium falciparum and Plasmodium vivax drug resistance in two regions from Papua New Guinea. Malar J 2015; 14(1): 399
https://doi.org/10.1186/s12936-015-0879-9 pmid: 26452541
24 G Snounou, S Viriyakosol, XP Zhu, W Jarra, L Pinheiro, VE do Rosario, S Thaithong, KN Brown. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993; 61(2): 315–320
https://doi.org/10.1016/0166-6851(93)90077-B pmid: 8264734
25 AL Price, NJ Patterson, RM Plenge, ME Weinblatt, NA Shadick, D Reich. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38(8): 904–909
https://doi.org/10.1038/ng1847 pmid: 16862161
26 PG Kremsner, S Krishna. Antimalarial combinations. Lancet 2004; 364(9430): 285–294
https://doi.org/10.1016/S0140-6736(04)16680-4 pmid: 15262108
27 KD Miller, HO Lobel, M Pappaioanou, LC Patchen, FC Churchill. Failures of combined chloroquine and Fansidar prophylaxis in American travelers to East Africa. J Infect Dis 1986; 154(4): 689–691
https://doi.org/10.1093/infdis/154.4.689 pmid: 3528321
28 CV Plowe, JF Cortese, A Djimde, OC Nwanyanwu, WM Watkins, PA Winstanley, JG Estrada-Franco, RE Mollinedo, JC Avila, JL Cespedes, D Carter, OK Doumbo. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J Infect Dis 1997; 176(6): 1590–1596
https://doi.org/10.1086/514159 pmid: 9395372
29 MD Hastings, KM Porter, JD Maguire, I Susanti, W Kania, MJ Bangs, CH Sibley, JK Baird. Dihydrofolate reductase mutations in Plasmodium vivax from Indonesia and therapeutic response to sulfadoxine plus pyrimethamine. J Infect Dis 2004; 189(4): 744–750
https://doi.org/10.1086/381397 pmid: 14767830
30 World Health Organization. Methods for the surveillance of antimalarial drug efficacy. Geneva: WHO, 2009
31 A Shaukat, Q Ali, T Connelley, MAU Khan, MA Saleem, M Evans, I Rashid, ND Sargison, U Chaudhry. Selective sweep and phylogenetic models for the emergence and spread of pyrimethamine resistance mutations in Plasmodium vivax. Infect Genet Evol 2019; 68:221–230
https://doi.org/10.1016/j.meegid.2018.12.032 pmid: 30594654
32 U Leartsakulpanich, M Imwong, S Pukrittayakamee, NJ White, G Snounou, W Sirawaraporn, Y Yuthavong. Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax. Mol Biochem Parasitol 2002; 119(1): 63–73
https://doi.org/10.1016/S0166-6851(01)00402-9 pmid: 11755187
33 BK Na, HW Lee, SU Moon, TS In, K Lin, M Maung, GT Chung, JK Lee, TS Kim, Y Kong. Genetic variations of the dihydrofolate reductase gene of Plasmodium vivax in Mandalay Division, Myanmar. Parasitol Res 2005; 96(5): 321–325
https://doi.org/10.1007/s00436-005-1364-0 pmid: 15924223
34 Z Zhou. Malaria Control and Research in China. Beijing: People’s Medical Publishing House, 1991
35 A Yaqoob, AA Khattak, MF Nadeem, H Fatima, G Mbambo, A Ouattara, M Adams, N Zeeshan, S Takala-Harrison. Prevalence of molecular markers of sulfadoxine-pyrimethamine and artemisinin resistance in Plasmodium falciparum from Pakistan. Malar J 2018; 17(1): 471
https://doi.org/10.1186/s12936-018-2620-y pmid: 30558587
36 PE de Pécoulas, R Tahar, T Ouatas, A Mazabraud, LK Basco. Sequence variations in the Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene and their relationship with pyrimethamine resistance. Mol Biochem Parasitol 1998; 92(2): 265–273
https://doi.org/10.1016/S0166-6851(97)00247-8 pmid: 9657331
37 F Lu, CS Lim, DH Nam, K Kim, K Lin, TS Kim, HW Lee, JH Chen, Y Wang, J Sattabongkot, ET Han. Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries. Am J Trop Med Hyg 2010; 83(3): 474–479
https://doi.org/10.4269/ajtmh.2010.10-0004 pmid: 20810806
38 M Korsinczky, K Fischer, N Chen, J Baker, K Rieckmann, Q Cheng. Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxine-binding site. Antimicrob Agents Chemother 2004; 48(6): 2214–2222
https://doi.org/10.1128/AAC.48.6.2214-2222.2004 pmid: 15155224
39 M Miao, Z Yang, L Cui, J Ahlum, Y Huang, L Cui. Different allele prevalence in the dihydrofolate reductase and dihydropteroate synthase genes in Plasmodium vivax populations from China. Am J Trop Med Hyg 2010; 83(6): 1206–1211
https://doi.org/10.4269/ajtmh.2010.10-0259 pmid: 21118923
40 LY Shang, CG Xue, SZ Su. Evaluation of the effect of 40 years anti-malaria measure in Henan Province. Chin J Parasitol Parasit Dis (Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi) 2000; 18(3): 189 (in Chinese)
pmid: 12567710
41 XZ Liu, BL Xu. Malaria situation and evaluation on the control effect in Henan Province during 1990−2005. Chin J Parasitol Parasit Dis (Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi) 2006; 24(3): 226–229(in Chinese) PMID:17094630
42 HL Yang. Retrospect and prospect of application of antimalarial drugs in Yunnan Province. J Practical Parasitic Dis 1999; 7(4): 174–176
43 VN Hawkins, H Joshi, K Rungsihirunrat, K Na-Bangchang, CH Sibley. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol 2007; 23(5): 213–222
https://doi.org/10.1016/j.pt.2007.03.002 pmid: 17368986
44 D Kyabayinze, A Cattamanchi, MR Kamya, PJ Rosenthal, G Dorsey. Validation of a simplified method for using molecular markers to predict sulfadoxine-pyrimethamine treatment failure in African children with falciparum malaria. Am J Trop Med Hyg 2003; 69(3): 247–252
https://doi.org/10.4269/ajtmh.2003.69.247 pmid: 14628939
45 T Triglia, AF Cowman. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 1994; 91(15): 7149–7153
https://doi.org/10.1073/pnas.91.15.7149 pmid: 8041761
46 AM Brashear, AC Huckaby, Q Fan, LJ Dillard, Y Hu, Y Li, Y Zhao, Z Wang, Y Cao, J Miao, JL Guler, L Cui. New Plasmodium vivax genomes from the China−Myanmar border. Front Microbiol 2020; 11: 1930
https://doi.org/10.3389/fmicb.2020.01930 pmid: 32849480
47 Y Liu, S Auburn, J Cao, H Trimarsanto, H Zhou, KA Gray, TG Clark, RN Price, Q Cheng, R Huang, Q Gao. Genetic diversity and population structure of Plasmodium vivax in Central China. Malar J 2014; 13(1): 262
https://doi.org/10.1186/1475-2875-13-262 pmid: 25008859
48 YC Li, GZ Wang, F Meng, W Zeng, CH He, XM Hu, SQ Wang. Genetic diversity of Plasmodium vivax population before elimination of malaria in Hainan Province, China. Malar J 2015; 14(1): 78
https://doi.org/10.1186/s12936-015-0545-2 pmid: 25888891
49 B Huang, S Huang, XZ Su, H Guo, Y Xu, F Xu, X Hu, Y Yang, S Wang, F Lu. Genetic diversity of Plasmodium vivax population in Anhui Province of China. Malar J 2014; 13(1): 13
https://doi.org/10.1186/1475-2875-13-13 pmid: 24401153
50 F Huang, S Zhou, S Zhang, H Zhang, W Li. Meteorological factors-based spatio-temporal mapping and predicting malaria in central China. Am J Trop Med Hyg 2011; 85(3): 560–567
https://doi.org/10.4269/ajtmh.2011.11-0156 pmid: 21896823
51 S Ding, R Ye, D Zhang, X Sun, H Zhou, TF McCutchan, W Pan. Anti-folate combination therapies and their effect on the development of drug resistance in Plasmodium vivax. Sci Rep 2013; 3(1): 1008
https://doi.org/10.1038/srep01008 pmid: 23301149
52 JY Pan, SS Zhou, X Zheng, F Huang, DQ Wang, YZ Shen, YP Su, GC Zhou, F Liu, JJ Jiang. Vector capacity of Anopheles sinensis in malaria outbreak areas of central China. Parasit Vectors 2012; 5(1): 136
https://doi.org/10.1186/1756-3305-5-136 pmid: 22776520
53 World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy. Geneva: WHO, 2019
[1] FMD-21048-OF-HF_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed