Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (1): 56-82   https://doi.org/10.1007/s11684-021-0900-3
  本期目录
Decellularized extracellular matrix mediates tissue construction and regeneration
Chuanqi Liu1,2, Ming Pei3, Qingfeng Li2(), Yuanyuan Zhang4()
1. Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
2. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
3. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
4. Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27109, USA
 全文: PDF(1299 KB)   HTML
Abstract

Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell–matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.

Key wordsdecellularized extracellular matrix    3D culture    organoids    tissue repair
收稿日期: 2021-04-28      出版日期: 2022-03-28
Corresponding Author(s): Qingfeng Li,Yuanyuan Zhang   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(1): 56-82.
Chuanqi Liu, Ming Pei, Qingfeng Li, Yuanyuan Zhang. Decellularized extracellular matrix mediates tissue construction and regeneration. Front. Med., 2022, 16(1): 56-82.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0900-3
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I1/56
ECM protein Tissue sources Functions
Collagen Resists tensile and shearing forces, affects various cellular ?functions [29,36]
?Collagen I (80%)
?Collagen II
?Collagen III
?Collagen IV
?Collagen V
Skin, tendon, internal organs, organic parts of bone
Cartilage
Bone marrow, lymphoid tissues
Basement membrane
Hair, surfaces of cells
Fibronectin Plasma, surfaces of cells Cell adhesion sites, influences cellular behaviors [29,37]
Laminin Basal lamina, placenta Cell adhesion sites [29]
Elastin Blood vessels, ligaments, skin, lung, bladder, elastic ?cartilage Recoil [33]
Proteoglycans Connective tissues, intracellular compartments, surfaces ?of cells Resists compressive forces, provides recoil and participates in ?cell signaling and cellular behaviors [29,36]
Hyaluronan Placenta, amniotic fluid, vitreous body, articular cartilage, ?dermis of skin Lubricates, absorbs shock, affects cellular behaviors and ?signaling molecules [38,39]
Tab.1  
Fig.1  
Role Mechanism(s) Function(s)
Structural support Porosity, mechanical properties, ?cell–matrix communication Regulating cell adhesion, growth, differentiation and forming 3D tissue ?structures [43]
Biochemical regulation Integrins Regulating cell proliferation, adhesion, migration, differentiation, homing ?[45,46,49,64]
Growth factor regulation Reservoir, gradients, sequestration, ?activation, autocrine, paracrine Regulating growth factor bioavailability dynamically [52]; maintaining ?stem-cell survival, self-renewal, differentiation [6466]
Biomechanical regulation ECM topography, microstructure, ?stiffness, elasticity Modulating cell shape, tissue elongation, cell–ECM interactions; regulating ?stem-cell fate [5557,59,6264]
Tab.2  
Agents/techniques Mode of action Effects on ECM
Physical treatments
?Freeze and dry Xenogeneic cellular compounds can be washed away ?after microscopic ice crystals disrupt cell membrane Disrupt or fracture ECM fibers [9294]
?Mechanical-shaking ??force Shaking action promotes cell debris removal from matrix Disrupt ECM structure and clean up the cellular fragments ?[9597]
?NTIRE Electrical pulse disrupts cellular membranes Can disrupt ECM [98,99]
?scCO2 Deeply penetrates into tissues and solubilizes non-polar ?molecules Can disrupt ECM when the system is rapidly depressurized ?[81]
Chemical treatments
?Acids and bases Disrupts both intracellular organelles and cell membranes Break down collagen and GAGs and denature proteins or ?growth factors [95,100]
?Ionic detergents Solubilizes plasma membranes and nuclear membranes Denature proteins via damaging bonds between proteins ?[82,101,102]
?Non-ionic detergents Disrupts bonds between lipids and between lipids ?and proteins Beneficial to keep the ECM intact, may disrupt ultrastructure ?and GAGs [83,101,102]
Enzymatic treatments
?Trypsin Cleaves cell adhesion from ECM Extended exposure can destroy the structure of ECM, remove ?fibronectin, laminin, elastin, GAG [103105]
?Dispase Cleaves collagen IV and fibronectin Extended exposure can destroy the ultrastructure of ECM ?[95,106]
?Nuclease ??(DNase and RNase) Degrades nucleic acids Hard to remove, may induce immune reaction [107109]
?FBS (serum containing ??DNase and RNase) Retains bioactive proteins, degrades remaining DNA/RNA Can minimize the loss of major bioactive proteins, decrease ?xenogeneic immune response [8688]
Combined methodologies
?Shaking action+ FBS Optimizes approaches to remove xenogeneic cellular ?compounds by maintaining bioactive proteins and ?ECM structure
Tab.3  
Application ECM types Cell types and
?animal models
Outcomes
Tissue regeneration
?Cartilage tissue Porcine SDSCs Porcine SDSCs
In vitro and in vivo ?(13 minipigs)
Enhancing SDSCs’ expansion, chondrogenic ?potential, and repair of cartilage defects [139]
Human adult vs. ?fetal SDSCs Human adult SDSCs Promoting adult SDSCs’ chondrogenic capacity by ?fetal ECM [140]
Human fetal MSCs Human adult MSCs Promoting adult MSCs’ proliferation, multipotency, ?and stemness [141]
Porcine chondrocytes ?vs. rabbit BMSCs Rabbit
?chondrocytes
Supporting attachment and proliferation of ?chondrocytes [142]
Porcine SDSCs Porcine chondrocytes Delaying chondrocyte dedifferentiation and ?enhanced redifferentiation [134]
Porcine SDSCs vs. NPCs ?vs. SDSCs/NPCs Porcine SDSCs Guiding SDSCs’ differentiation toward the NP ?lineage [137]
Porcine SDSCs Porcine NPCs Rejuvenating NPCs in proliferation and ?redifferentiation capacity [136]
?Bone tissue Mouse BMSCs Mouse BMSCs
In vitro and in vivo ?(nude mice)
Enhancing colony formation ability and retaining ?stemness [143]
Human BMSCs Human BMSCs
In vitro and in vivo ?(nude mice)
Stimulating MSCs’ expansion and preserving their ?properties [144]
?Nerve tissue Rat Schwann cells Rat dorsal root ?ganglion neurons Improving axonal growth of dorsal root ganglion ?neurons [145]
Lineage commitment
?ESC differentiation Murine ESCs line Undifferentiated ?murine ESCs Boosting early differentiation of ESCs [131]
?Osteogenic differentiation Rat osteoblasts Human MSCs Inducing osteogenic differentiation [146]
Human BMSCs Human BMSCs Enhancing osteogenesis [124,125]
Human BMSCs Human BMSCs Further enhancing proliferation and osteogenesis ?when combined with melatonin [123]
Human USCs Human BMSCs (passage 8) Recharging BMSCs’ capacity in endochondral bone ?formation [125]
Human UCMSCs Human UCMSCs Enhancing UCMSCs’ osteogenic differentiation by ?protecting from H2O2 induced senescence [127]
?Chondrogenic differentiation Rabbit articular ?chondrocytes Human MSCs Guiding chondrogenic differentiation [146]
Porcine SDSCs Porcine SDSCs Promoting SDSCs’ proliferation and chondrogenic ?potential [115]
Porcine Porcine SDSCs Maximizing SDSCs’ proliferation while maintaining ?chondrogenic potential when combined with FGF2 ?and low oxygen [116]
Human fetal SDSCs Human fetal SDSCs Enhancing fetal SDSCs’ chondrogenic potential ?[118]
Human adult vs. ?fetal SDSCs Human fetal SDSCs Enhancing SDSCs’ proliferation and chondrogenic ?capacity in a pellet culture under hypoxia [117]
Passage 5 vs. ?15 human IPFSCs Passage 15 human IPFSCs Promoting IPFSCs’ proliferation and chondrogenic ?potential by C-ECM deposited by passage 5 cells ?[130]
Human adult SDSCs Human adult SDSCs Enhancing SDSCs’ chondrogenic potential ?compared with those in ECM [121]
Porcine IPFSCs ?vs. SDSCs Porcine IPFSCs Enhancing IPFSCs’ proliferation and ?chondrogenic potential in both ECM groups [128]
?Hepatic differentiation Human liver progenitor ?HepaRG Human DE cells Aiding hepatic differentiation [138]
Tab.4  
Application ECM type Seeded cell types Culture condition(s) Outcomes
In vitro 3D cultures
?Powder substrates Acellular rat skeletal muscle ?ECM; acellular rat liver ?ECM; acellular swine ?skin ECM Rat muscle cells; HepG2; ?human foreskin cells In vitro Promoting cell proliferation ?and differentiation [147]
?Hydrogel substrates Acellular skeletal muscle ?ECM combined with ?hyaluronan-based ?hydrogel and heparin MPCs In vitro Promoting MPCs’ proliferation ?and differentiation [30]
Cell sheet tissue ?regeneration
?Skin (dermis) Acellular human
dermal ECM, allogeneic
None In vivo (14 patients) [161]; ?in vivo (2 patients) [163] Reducing scar and?contracture [161,163]
?Cornea Acellular porcine cornea ?ECM, xenogeneic None In vivo (10 chinchilla ?bastard rabbits) [164]; ?in vivo (six eyes of rabbits) ?[165] Biocompatible with the host’s ?epithelium [164,165]
Tubular organ ?regeneration
?Blood vessels Acellular porcine aorta, ?xenogeneic Human ECs and ?myofibroblasts In vivo (5 Lewis rats) Successfully implanted ?subcutaneously in a rat ?model [176]
Acellular bovine pericardial ?ECM combined with poly ?propylene fumarate, ?xenogeneic None In vitro and in vivo ?(2 Lewis nude rats) Remaining patent for two ?weeks in rat model [178]
?Esophagus Acellular porcine SIS, ?xenogeneic None In vivo (5 patients) Promoting reconstruction of ?functional esophageal mucosa ?in patients [180]
Acellular porcine SIS Porcine BMSCs In vitro Meeting clinical-grade criteria, ?promising for clinical use ?[184]
?Bladder Acellular porcine SIS, ?xenogeneic None, or seeded with ?dog UCs and SMCs In vitro and in vivo ?(22 dogs) Not achieving the desired ?bladder regeneration resulting ?in a subtotal cystectomy model ?as in the 40% cystectomy ?model [185]
Acellular porcine SIS ?cross-linked with ?procyanidins, xenogeneic None In vitro and in vivo ?(48 New Zealand ?white rabbits) Promoting in situ tissue ?regrowth and regeneration of ?rabbit bladder [187]
3D organ regeneration
?Liver Acellular human liver ?ECM, allogeneic hUVECs, hFLCs In vitro Decellularizing a whole liver ?organ for liver regeneration ?in vitro [201]
Acellular human liver ?ECM, xenogeneic LX2, Sk-Hep-1, HepG2 In vitro and in vivo ?(6 C57BL/6J mice) Showing excellent viability, ?motility, proliferation and ?remodeling of the ECM in a ?mouse model [204]
?Lung Acellular adult rat lung ?ECM, allogeneic Neonatal rat lung ?epithelial cells In vitro and in vivo ?(344 rats) Engineered lungs participated ?in gas exchange in a rat model ?[85]
Acellular porcine lung ?ECM, xenogeneic Human airway epithelial ?progenitor cells In vitro and in vivo ?(3 pigs) Demonstrating the feasibility of ?engineering of viable lung ?scaffolds in a porcine model ?[208]
?Kidney Perfusion decellularization ?of rat kidney and mounted ?in a whole-organ bioreactor, ?autologous hUVECs, rat NKCs In vitro and in vivo ?(68 Sprague-Dawley rats) The resulting grafts produced ?rudimentary urine in an ?orthotopic transplantation ?model [210]
Tab.5  
Fig.2  
Fig.3  
Function Involved signaling pathway Cell–matrix interaction related with genes and proteins
Musculoskeletal system
?Osteogenesis BMP/TGFβ Mesenchymal progenitors-BMP2-deficient mice [212], BMP4-deficient mice [213], ?BMP7-deficient mice [214]
Wnt Primary osteoprogenitors in Axin2LacZ/LacZ mice-Wnt protein [215]
Fracture callus tissues-PTH [216]
Mesenchymal skeletal cells-peptide ligand with high affinity integrin (CRRETAWAC) [217]
Notch MSCs-Notch ligand (Jag1) [218220]
?Chondrogenesis Wnt/β-catenin Mesenchymal progenitors-ablation of β-catenin in mesenchymal condensations [221]
Micromass of MSCs-protein kinase C inhibitor (PMA), p38 kinase inhibitor (SB203580) [222]
TGFβ/Smad FSTL1 KO MSCs-exogenous recombinant FSTL1 [223]
Chondrocytes-Adamtsl2 KO growth plate [224]
BMP MSC pellets-BMP inhibitor (dorsomorphin) [225]
BMP/TGFβ hACs and hMSCs-BMP-2, TGFβ1 [226]
SDSCs-BMP-2, TGFβ1 (dexamethasone absent) [227]
IHH Chondrocytes-PPR–/– wild-type chimeric mice vs. Ihh–/–PPR–/– wild-type chimeric mice [228]
BMSCs-IHH, SHH [229]
?Skeletal myogenesis Wnt Adult muscle stem cells-combining APC and β-catenin siRNAs [230]
Satellite cells-Islr cKO mice [231]
Wnt/IGF Satellite cell-like reserve myoblasts-GSK-3 inhibitor (LiCl or SB216763), insulin [232]
Notch Adult muscle stem cells-COLV depleted mice (compound Tg: Pax7-CreERT2; Col5a1flox/flox; ?R26mTmG(Col5a1 cKO)), CALCR ligand (Elcatonin) injection [233]
Satellite cells-Syndecan-3 ablation [234]
Nervous system
?Neurogenesis in CNC PI3K/AKT/mTOR Cerebral organoids-mTOR activators (INSR, ITGB8, IFNAR1) and repressors (PTEN) [235]
Notch Neuronal progenitor cells-NOTCH2NL [236]
hSpS spheroids-Notch inhibitor (DAPT) [237]
Wnt/FGF mESCs-FGF/Wnt agonist (CHIR)/RA [238]
TGFβ/Shh/Wnt Astrocytes-TGFβ, Shh, and Wnt activators [239]
?Neurogenesis in PNS c-Myc-TERT Sensory axon-p53 inhibitor (PFTα), p53 activator (Tenovin-6) [240]
Circulatory system
?Cardiomyogenesis Wnt Cardiac organoids-Wnt agonist (CHIR) [241243], WNT inhibitor (IWP2) [243]
TGFβ Cardiac organoids-TGFβ receptor inhibitor (e.g., SB431542) or overexpression of TGFβ ?receptor negative form [244,245]
BMP NKX2-5+CD31+ endocardial-like cells from hPSCs-BMP4, CHIR/BMP10, VEGF/BMP10 ?[246]
?Angiogenesis Notch Vascular organoids-Notch inhibitor (DAPT), Notch ligands (Dll4, Notch3) [247]
Wnt/VEGF-A hPSCs aggregates-3D collagen I-matrigel gel driven by Wnt agonist (CHIR), BMP-4, VEGF-A, ?FGF-2 subsequently [248]
Digestive system
??Stomach tissue ???reconstruction Wnt Lgr5+ stem cells-matrigel containing Wnt activator (R-spondin1), Wnt3A [249]
Axin2+/Lgr5stem cells-Wnt activator (R-spondin3) [250]
??Intestine tissue ???reconstruction Wnt Lgr5+ ISCs-Wnt activator (R-spondin1), Wnt ligands [251253]
Wnt/Notch Lgr5+ ISCs-Wnt inhibitor (IWP-2)/Lgr5+ ISCs-Notch inhibitor (DAPT) [254]
Notch ISCs-Notch ligands driven by transient Yap1 activation [255]
??Hepatogenesis Wnt Lgr5+ stem cells-matrigel containing EGF, Wnt activator (R-spondin1) [256]
Lgr5+ stem cells-HGF/Wnt activator (R-spondin1) [257]
Hedgehog Hepatocytes and ductular cells-Hh ligands [258]
Stellate cells-JNK1 [259]
Urinary system
?Nephrogenesis Wnt Lgr5+ stem cells-Wnt receptor (Lgr5) [260]
hPSCs-Wnt agonist (CHIR), Wnt inhibitor (DAPT) [261]
Wnt, FGF hPSCs-Wnt agonist (CHIR), FGF9 [262,263]
?Urothelium ??regeneration Hedgehog/Wnt Stromal cells and epithelial cells in bladder-Shh-blocking antibody/stromal cells and epithelial ?cells-inactivation of essential component of Wnt pathway (Ctnnb1) [264]
Hedgehog Long-term bladder organoids-smoothened agonist (SAG), Hh inhibitor (vismodegib), genetic ?manipulation [265]
Wnt/Notch Urothelial organoids-Wnt agonist (CHIR)/urothelial organoids-Notch inhibitor (DBZ) [266]
Reproductive system
?Fallopian tube and ??oviduct tissue ??reconstruction Wnt/Notch Fallopian tube organoids-Wnt modulators (Wnt3a, R-spondin1, EGF, FGF10), TGFβ inhibitor ?(ALK4/5), BMP inhibitor (Noggin)/fallopian tube organoids-Notch inhibitor (DBZ) [267]
Fallopian tube organoids-Wnt antagonist (PKF118–310)/fallopian tube organoids-Notch ?inhibitor (DBZ) [268]
?Endometrium Wnt Endometrial organoids-Wnt activator (R-spondin1), Wnt inhibitor (IWP2), WNT3A, WNT7A, ?EGF, Noggin [269]
Endometrial organoids-WNT3A, Wnt activator (R-spondin1), EGF, Noggin [270]
?Vagina tissue ??reconstruction Wnt Vaginal organoids-EGF, TGFb/Alk inhibitor (A83-01), ROCK inhibitor (Y-27632), PALL ?Corporation (Ultraserum-G) [271]
?Prostate tissue ??reconstruction Notch Prostate organoids-Notch inhibitor (DAPT) [272]
Tab.6  
Fig.4  
1 MC Prewitz, FP Seib, M von Bonin, J Friedrichs, A Stißel, C Niehage, K Müller, K Anastassiadis, C Waskow, B Hoflack, M Bornhäuser, C Werner. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat Methods 2013; 10(8): 788–794
https://doi.org/10.1038/nmeth.2523 pmid: 23793238
2 RO Hynes. The extracellular matrix: not just pretty fibrils. Science 2009; 326(5957): 1216–1219
https://doi.org/10.1126/science.1176009 pmid: 19965464
3 S Sart, R Jeske, X Chen, T Ma, Y Li. Engineering stem cell-derived extracellular matrices: decellularization, characterization, and biological function. Tissue Eng Part B Rev 2020; 26(5): 402–422
https://doi.org/10.1089/ten.teb.2019.0349 pmid: 32220216
4 S Sart, SN Agathos, Y Li. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 2013; 29(6): 1354–1366
https://doi.org/10.1002/btpr.1825 pmid: 24124017
5 C Bonnans, J Chou, Z Werb. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786–801
https://doi.org/10.1038/nrm3904 pmid: 25415508
6 J Jin, Q Saiding, X Wang, M Qin, Y Xiang, R Cheng, W Cui, X Chen. Rapid extracellular matrix remodeling via gene-electrospun fibers as a “Patch” for tissue regeneration. Adv Funct Mater 2021; 31(15): 2009879
https://doi.org/10.1002/adfm.202009879
7 D Correa, E Hesse, D Seriwatanachai, R Kiviranta, H Saito, K Yamana, L Neff, A Atfi, L Coillard, D Sitara, Y Maeda, S Warming, NA Jenkins, NG Copeland, WC Horne, B Lanske, R Baron. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell 2010; 19(4): 533–546
https://doi.org/10.1016/j.devcel.2010.09.008 pmid: 20951345
8 X Wang, J Chang, C Wu. Bioactive inorganic/organic nanocomposites for wound healing. Appl Mater Today 2018; 11: 308–319
https://doi.org/10.1016/j.apmt.2018.03.001
9 JF Mano, GA Silva, HS Azevedo, PB Malafaya, RA Sousa, SS Silva, LF Boesel, JM Oliveira, TC Santos, AP Marques, NM Neves, RL Reis. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2007; 4(17): 999–1030
https://doi.org/10.1098/rsif.2007.0220 pmid: 17412675
10 M Zhu, W Li, X Dong, X Yuan, AC Midgley, H Chang, Y Wang, H Wang, K Wang, PX Ma, H Wang, D Kong. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun 2019; 10(1): 4620
https://doi.org/10.1038/s41467-019-12545-3 pmid: 31604958
11 Y Li, Y Xiao, C Liu. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev 2017; 117(5): 4376–4421
https://doi.org/10.1021/acs.chemrev.6b00654 pmid: 28221776
12 W Zhang, Y Zhu, J Li, Q Guo, J Peng, S Liu, J Yang, Y Wang. Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng Part B Rev 2016; 22(3): 193–207
https://doi.org/10.1089/ten.teb.2015.0290 pmid: 26671674
13 MM Smoak, KJ Hogan, KJ Grande-Allen, AG Mikos. Bioinspired electrospun dECM scaffolds guide cell growth and control the formation of myotubes. Sci Adv 2021; 7(20): eabg4123
https://doi.org/10.1126/sciadv.abg4123 pmid: 33990336
14 J Jang, JY Park, G Gao, DW Cho. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156: 88–106
https://doi.org/10.1016/j.biomaterials.2017.11.030 pmid: 29190501
15 SV Murphy, A Atala. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773–785
https://doi.org/10.1038/nbt.2958 pmid: 25093879
16 BS Kim, S Das, J Jang, DW Cho. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev 2020; 120(19): 10608–10661
https://doi.org/10.1021/acs.chemrev.9b00808 pmid: 32786425
17 F Pati, J Jang, DH Ha, S Won Kim, JW Rhie, JH Shim, DH Kim, DW Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014; 5(1): 3935
https://doi.org/10.1038/ncomms4935 pmid: 24887553
18 Y Li, J Wang, D Qian, L Chen, X Mo, L Wang, Y Wang, W Cui. Electrospun fibrous sponge via short fiber for mimicking 3D ECM. J Nanobiotechnology 2021; 19(1): 131
https://doi.org/10.1186/s12951-021-00878-5 pmid: 33964948
19 AP Kishan, EM Cosgriff-Hernandez. Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res A 2017; 105(10): 2892–2905
https://doi.org/10.1002/jbm.a.36124 pmid: 28556551
20 Y Su, Y Shi, MA Stolow, YB Shi. Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix. J Cell Biol 1997; 139(6): 1533–1543
https://doi.org/10.1083/jcb.139.6.1533 pmid: 9396758
21 P Simon-Assmann, M Kedinger, A De Arcangelis, V Rousseau, P Simo. Extracellular matrix components in intestinal development. Experientia 1995; 51(9–10): 883–900
https://doi.org/10.1007/BF01921739 pmid: 7556570
22 ZX Mahoney, TS Stappenbeck, JH Miner. Laminin α 5 influences the architecture of the mouse small intestine mucosa. J Cell Sci 2008; 121(15): 2493–2502
https://doi.org/10.1242/jcs.025528 pmid: 18628307
23 HY Kim, CM Nelson. Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 2012; 8(2): 56–64
https://doi.org/10.4161/org.19813 pmid: 22609561
24 C Frantz, KM Stewart, VM Weaver. The extracellular matrix at a glance. J Cell Sci 2010; 123(24): 4195–4200
https://doi.org/10.1242/jcs.023820 pmid: 21123617
25 G Zhen, X Cao. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014; 35(5): 227–236
https://doi.org/10.1016/j.tips.2014.03.005 pmid: 24745631
26 CW Cheng, LD Solorio, E Alsberg. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32(2): 462–484
https://doi.org/10.1016/j.biotechadv.2013.12.012 pmid: 24417915
27 S Özbek, PG Balasubramanian, R Chiquet-Ehrismann, RP Tucker, JC Adams. The evolution of extracellular matrix. Mol Biol Cell 2010; 21(24): 4300–4305
https://doi.org/10.1091/mbc.e10-03-0251 pmid: 21160071
28 G Michel, T Tonon, D Scornet, JM Cock, B Kloareg. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 2010; 188(1): 82–97
https://doi.org/10.1111/j.1469-8137.2010.03374.x pmid: 20618907
29 AD Theocharis, SS Skandalis, C Gialeli, NK Karamanos. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4–27
https://doi.org/10.1016/j.addr.2015.11.001 pmid: 26562801
30 L Li, G Liu, P Timashev, XS Sun, T Criswell, A Atala, Y Zhang. Biofabrication of tissue-specific extracellular matrix proteins to enhance the expansion and differentiation of skeletal muscle progenitor cells. Appl Phys Rev 2019; 6(2): 021309
https://doi.org/10.1063/1.5088726
31 S Ricard-Blum. The collagen family. Cold Spring Harb Perspect Biol 2011; 3(1): a004978
https://doi.org/10.1101/cshperspect.a004978 pmid: 21421911
32 VS LeBleu, B Macdonald, R Kalluri. Structure and function of basement membranes. Exp Biol Med (Maywood) 2007; 232(9): 1121–1129
https://doi.org/10.3181/0703-MR-72 pmid: 17895520
33 JE Wagenseil, RP Mecham. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 2007; 81(4): 229–240
https://doi.org/10.1002/bdrc.20111 pmid: 18228265
34 L Kjellén, U Lindahl. Specificity of glycosaminoglycan-protein interactions. Curr Opin Struct Biol 2018; 50: 101–108
https://doi.org/10.1016/j.sbi.2017.12.011 pmid: 29455055
35 CB Knudson, W Knudson. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 1993; 7(13): 1233–1241
https://doi.org/10.1096/fasebj.7.13.7691670 pmid: 7691670
36 LE Niklason. Understanding the extracellular matrix to enhance stem cell-based tissue regeneration. Cell Stem Cell 2018; 22(3): 302–305
https://doi.org/10.1016/j.stem.2018.02.001 pmid: 29499149
37 Z Avnur, B Geiger. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell 1981; 25(1): 121–132
https://doi.org/10.1016/0092-8674(81)90236-1 pmid: 6791830
38 S Vasvani, P Kulkarni, D Rawtani. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151: 1012–1029
https://doi.org/10.1016/j.ijbiomac.2019.11.066 pmid: 31715233
39 D Vigetti, M Viola, E Karousou, S Deleonibus, K Karamanou, G De Luca, A Passi. Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J 2014; 281(22): 4980–4992
https://doi.org/10.1111/febs.12938 pmid: 25040101
40 L Huleihel, GS Hussey, JD Naranjo, L Zhang, JL Dziki, NJ Turner, DB Stolz, SF Badylak. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv 2016; 2(6): e1600502
https://doi.org/10.1126/sciadv.1600502 pmid: 27386584
41 CM Nelson, MJ Bissell. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22(1): 287–309
https://doi.org/10.1146/annurev.cellbio.22.010305.104315 pmid: 16824016
42 W Wei, J Li, S Chen, M Chen, Q Xie, H Sun, J Ruan, H Zhou, X Bi, A Zhuang, Z You, P Gu, X Fan. In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. J Mater Chem B Mater Biol Med 2017; 5(13): 2468–2482
https://doi.org/10.1039/C6TB03150A pmid: 32264553
43 D Choudhury, HW Tun, T Wang, MW Naing. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol 2018; 36(8): 787–805
https://doi.org/10.1016/j.tibtech.2018.03.003 pmid: 29678431
44 A Satyam, MG Tsokos, JS Tresback, DI Zeugolis, GC Tsokos. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. Adv Funct Mater 2020; 30(44): 1908752
https://doi.org/10.1002/adfm.201908752 pmid: 33692659
45 KR Legate, SA Wickström, R Fässler. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 2009; 23(4): 397–418
https://doi.org/10.1101/gad.1758709 pmid: 19240129
46 Y Li, A Gautam, J Yang, L Qiu, Z Melkoumian, J Weber, L Telukuntla, R Srivastava, EM Whiteley, R Brandenberger. Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev 2013; 22(10): 1497–1505
https://doi.org/10.1089/scd.2012.0508 pmid: 23249362
47 S Mathews, R Bhonde, PK Gupta, S Totey. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 2012; 84(2): 185–192
https://doi.org/10.1016/j.diff.2012.05.001 pmid: 22664173
48 M Kanatsu-Shinohara, M Takehashi, S Takashima, J Lee, H Morimoto, S Chuma, A Raducanu, N Nakatsuji, R Fässler, T Shinohara. Homing of mouse spermatogonial stem cells to germline niche depends on β1-integrin. Cell Stem Cell 2008; 3(5): 533–542
https://doi.org/10.1016/j.stem.2008.08.002 pmid: 18983968
49 DA Brafman, C Phung, N Kumar, K Willert. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 2013; 20(3): 369–381
https://doi.org/10.1038/cdd.2012.138 pmid: 23154389
50 M Lu, R Xue, P Wang, X Wang, X Tian, Y Liu, S Wang, A Cui, J Xie, L Le, M Zhao, J Quan, N Li, D Meng, X Wang, N Sun, AF Chen, M Xiang, S Chen. Induced pluripotent stem cells attenuate chronic allogeneic vasculopathy in an integrin beta-1-dependent manner. Am J Transplant 2020; 20(10): 2755–2767
https://doi.org/10.1111/ajt.15900 pmid: 32277602
51 S Han, B Kang, HY Son, Y Choi, MK Shin, J Park, JK Min, D Park, EK Lim, YM Huh, S Haam. In vivo monitoring platform of transplanted human stem cells using magnetic resonance imaging. Biosens Bioelectron 2021; 178: 113039
https://doi.org/10.1016/j.bios.2021.113039 pmid: 33524707
52 MF Brizzi, G Tarone, P Defilippi. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 2012; 24(5): 645–651
https://doi.org/10.1016/j.ceb.2012.07.001 pmid: 22898530
53 M Ghaedi, Y Duan, MA Zern, A Revzin. Hepatic differentiation of human embryonic stem cells on growth factor-containing surfaces. J Tissue Eng Regen Med 2014; 8(11): 886–895
https://doi.org/10.1002/term.1595 pmid: 23086797
54 I Ullah, R Abu-Dawud, JF Busch, A Rabien, B Erguen, I Fischer, P Reinke, A Kurtz. VEGF-supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC. Biomaterials 2019; 216: 119283
https://doi.org/10.1016/j.biomaterials.2019.119283 pmid: 31247481
55 N Giamblanco, E Martines, G Marletta. Laminin adsorption on nanostructures: switching the molecular orientation by local curvature changes. Langmuir 2013; 29(26): 8335–8342
https://doi.org/10.1021/la304644z pmid: 23742648
56 C González-García, SR Sousa, D Moratal, P Rico, M Salmerón-Sánchez. Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf B Biointerfaces 2010; 77(2): 181–190
https://doi.org/10.1016/j.colsurfb.2010.01.021 pmid: 20185279
57 AJ Engler, S Sen, HL Sweeney, DE Discher. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677–689
https://doi.org/10.1016/j.cell.2006.06.044 pmid: 16923388
58 LK Sthanam, A Barai, A Rastogi, VK Mistari, A Maria, R Kauthale, M Gatne, S Sen. Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices. Biomaterials 2017; 119: 9–22
https://doi.org/10.1016/j.biomaterials.2016.12.006 pmid: 27988407
59 PM Gilbert, KL Havenstrite, KE Magnusson, A Sacco, NA Leonardi, P Kraft, NK Nguyen, S Thrun, MP Lutolf, HM Blau. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010; 329(5995): 1078–1081
https://doi.org/10.1126/science.1191035 pmid: 20647425
60 S Gobaa, S Hoehnel, M Roccio, A Negro, S Kobel, MP Lutolf. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 2011; 8(11): 949–955
https://doi.org/10.1038/nmeth.1732 pmid: 21983923
61 YR Shih, KF Tseng, HY Lai, CH Lin, OK Lee. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 2011; 26(4): 730–738
https://doi.org/10.1002/jbmr.278 pmid: 20939067
62 M Hirata, T Yamaoka. Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomater 2018; 65: 44–52
https://doi.org/10.1016/j.actbio.2017.10.032 pmid: 29066419
63 JM Muncie, NME Ayad, JN Lakins, X Xue, J Fu, VM Weaver. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells. Dev Cell 2020; 55(6): 679–694.e11
https://doi.org/10.1016/j.devcel.2020.10.015 pmid: 33207224
64 H Guo, N Deng, L Dou, H Ding, T Criswell, A Atala, CM Furdui, Y Zhang. 3-D human renal tubular organoids generated from urine-derived stem cells for nephrotoxicity screening. ACS Biomater Sci Eng 2020; 6(12): 6701–6709
https://doi.org/10.1021/acsbiomaterials.0c01468 pmid: 33320634
65 SJ Morrison, AC Spradling. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598–611
https://doi.org/10.1016/j.cell.2008.01.038 pmid: 18295578
66 E Fuchs, T Tumbar, G Guasch. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116(6): 769–778
https://doi.org/10.1016/S0092-8674(04)00255-7 pmid: 15035980
67 SF Badylak, D Taylor, K Uygun. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011; 13(1): 27–53
https://doi.org/10.1146/annurev-bioeng-071910-124743 pmid: 21417722
68 AV Ngangan, TC McDevitt. Acellularization of embryoid bodies via physical disruption methods. Biomaterials 2009; 30(6): 1143–1149
https://doi.org/10.1016/j.biomaterials.2008.11.001 pmid: 19042017
69 M Hirata, T Yamaoka. Hepatocytic differentiation of iPS cells on decellularized liver tissue. J Artif Organs 2017; 20(4): 318–325
https://doi.org/10.1007/s10047-017-0977-2 pmid: 28776092
70 H Lu, T Hoshiba, N Kawazoe, G Chen. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 2011; 32(10): 2489–2499
https://doi.org/10.1016/j.biomaterials.2010.12.016 pmid: 21211834
71 R Nair, S Shukla, TC McDevitt. Acellular matrices derived from differentiating embryonic stem cells. J Biomed Mater Res A 2008; 87A(4): 1075–1085
https://doi.org/10.1002/jbm.a.31851 pmid: 18260134
72 HC Ott, B Clippinger, C Conrad, C Schuetz, I Pomerantseva, L Ikonomou, D Kotton, JP Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 2010; 16(8): 927–933
https://doi.org/10.1038/nm.2193 pmid: 20628374
73 JE Reing, BN Brown, KA Daly, JM Freund, TW Gilbert, SX Hsiong, A Huber, KE Kullas, S Tottey, MT Wolf, SF Badylak. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010; 31(33): 8626–8633
https://doi.org/10.1016/j.biomaterials.2010.07.083 pmid: 20728934
74 R Haas, LA Culp. Binding of fibronectin to gelatin and heparin: effect of surface denaturation and detergents. FEBS Lett 1984; 174(2): 279–283
https://doi.org/10.1016/0014-5793(84)81173-4 pmid: 6468662
75 S Sart, T Ma, Y Li. Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Eng Part A 2014; 20(1–2): 54–66
https://doi.org/10.1089/ten.tea.2012.0690 pmid: 23848515
76 PM Crapo, TW Gilbert, SF Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233–3243
https://doi.org/10.1016/j.biomaterials.2011.01.057 pmid: 21296410
77 M Parmaksiz, AE Elçin, YM Elçin. Decellularized cell culture ECMs act as cell differentiation inducers. Stem Cell Rev Rep 2020; 16(3): 569–584
https://doi.org/10.1007/s12015-020-09963-y pmid: 32170583
78 DO Freytes, RM Stoner, SF Badylak. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater 2008; 84B(2): 408–414
https://doi.org/10.1002/jbm.b.30885 pmid: 17618508
79 B Yang, Y Zhang, L Zhou, Z Sun, J Zheng, Y Chen, Y Dai. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods 2010; 16(5): 1201–1211
https://doi.org/10.1089/ten.tec.2009.0311 pmid: 20170425
80 TW Gilbert, TL Sellaro, SF Badylak. Decellularization of tissues and organs. Biomaterials 2006; 27(19): 3675–3683
pmid: 16519932
81 ER Gafarova, EA Grebenik, AE Lazhko, AA Frolova, AS Kuryanova, AV Kurkov, IA Bazhanov, BS Kapomba, NV Kosheleva, IA Novikov, AB Shekhter, EN Golubeva, AB Soloviova, PS Timashev. Evaluation of supercritical CO2-assisted protocols in a model of ovine aortic root decellularization. Molecules 2020; 25(17): 3923
https://doi.org/10.3390/molecules25173923 pmid: 32867356
82 AM Seddon, P Curnow, PJ Booth. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 2004; 1666(1–2): 105–117
https://doi.org/10.1016/j.bbamem.2004.04.011 pmid: 15519311
83 RW Grauss, MG Hazekamp, S van Vliet, AC Gittenberger-de Groot, MC DeRuiter. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003; 126(6): 2003–2010
https://doi.org/10.1016/S0022-5223(03)00956-5 pmid: 14688719
84 A Hopkinson, VA Shanmuganathan, T Gray, AM Yeung, J Lowe, DK James, HS Dua. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods 2008; 14(4): 371–381
https://doi.org/10.1089/ten.tec.2008.0315 pmid: 18821842
85 TH Petersen, EA Calle, L Zhao, EJ Lee, L Gui, MB Raredon, K Gavrilov, T Yi, ZW Zhuang, C Breuer, E Herzog, LE Niklason. Tissue-engineered lungs for in vivo implantation. Science 2010; 329(5991): 538–541
https://doi.org/10.1126/science.1189345 pmid: 20576850
86 L Gui, SA Chan, CK Breuer, LE Niklason. Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 2010; 16(2): 173–184
https://doi.org/10.1089/ten.tec.2009.0120 pmid: 19419244
87 D Zhang, Y Zhang, Y Zhang, H Yi, Z Wang, R Wu, D He, G Wei, S Wei, Y Hu, J Deng, T Criswell, J Yoo, Y Zhou, A Atala. Tissue-specific extracellular matrix enhances skeletal muscle precursor cell expansion and differentiation for potential application in cell therapy. Tissue Eng Part A 2017; 23(15–16): 784–794
https://doi.org/10.1089/ten.tea.2016.0489 pmid: 28463580
88 H Yi, S Forsythe, Y He, Q Liu, G Xiong, S Wei, G Li, A Atala, A Skardal, Y Zhang. Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels. Acta Biomater 2017; 62: 222–233
https://doi.org/10.1016/j.actbio.2017.08.022 pmid: 28823716
89 MJ Buckenmeyer, TJ Meder, TA Prest, BN Brown. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2020; 171: 41–61
https://doi.org/10.1016/j.ymeth.2019.07.023 pmid: 31398392
90 PM Crapo, CJ Medberry, JE Reing, S Tottey, Y van der Merwe, KE Jones, SF Badylak. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 2012; 33(13): 3539–3547
https://doi.org/10.1016/j.biomaterials.2012.01.044 pmid: 22341938
91 T Jiang, XJ Ren, JL Tang, H Yin, KJ Wang, CL Zhou. Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C 2013; 33(6): 3514–3521
https://doi.org/10.1016/j.msec.2013.04.046 pmid: 23706241
92 BN Brown, JE Valentin, AM Stewart-Akers, GP McCabe, SF Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009; 30(8): 1482–1491
https://doi.org/10.1016/j.biomaterials.2008.11.040 pmid: 19121538
93 JM Wainwright, CA Czajka, UB Patel, DO Freytes, K Tobita, TW Gilbert, SF Badylak. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 2010; 16(3): 525–532
https://doi.org/10.1089/ten.tec.2009.0392 pmid: 19702513
94 J Cortiella, J Niles, A Cantu, A Brettler, A Pham, G Vargas, S Winston, J Wang, S Walls, JE Nichols. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 2010; 16(8): 2565–2580
https://doi.org/10.1089/ten.tea.2009.0730 pmid: 20408765
95 I Prasertsung, S Kanokpanont, T Bunaprasert, V Thanakit, S Damrongsakkul. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater 2008; 85B(1): 210–219
https://doi.org/10.1002/jbm.b.30938 pmid: 17853423
96 CV Montoya, PS McFetridge. Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 2009; 15(2): 191–200
https://doi.org/10.1089/ten.tec.2008.0372 pmid: 19196128
97 F Bolland, S Korossis, SP Wilshaw, E Ingham, J Fisher, JN Kearney, J Southgate. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 2007; 28(6): 1061–1070
https://doi.org/10.1016/j.biomaterials.2006.10.005 pmid: 17092557
98 MB Sano, RE Neal 2nd, PA Garcia, D Gerber, J Robertson, RV Davalos. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 2010; 9(1): 83
https://doi.org/10.1186/1475-925X-9-83 pmid: 21143979
99 M Phillips, E Maor, B Rubinsky. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 2010; 132(9): 091003
https://doi.org/10.1115/1.4001882 pmid: 20815637
100 X Dong, X Wei, W Yi, C Gu, X Kang, Y Liu, Q Li, D Yi. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med 2009; 20(11): 2327–2336
https://doi.org/10.1007/s10856-009-3791-4 pmid: 19507006
101 BE Uygun, A Soto-Gutierrez, H Yagi, ML Izamis, MA Guzzardi, C Shulman, J Milwid, N Kobayashi, A Tilles, F Berthiaume, M Hertl, Y Nahmias, ML Yarmush, K Uygun. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16(7): 814–820
https://doi.org/10.1038/nm.2170 pmid: 20543851
102 KH Nakayama, CA Batchelder, CI Lee, AF Tarantal. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010; 16(7): 2207–2216
https://doi.org/10.1089/ten.tea.2009.0602 pmid: 20156112
103 PS McFetridge, JW Daniel, T Bodamyali, M Horrocks, JB Chaudhuri. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 2004; 70A(2): 224–234
https://doi.org/10.1002/jbm.a.30060 pmid: 15227667
104 OE Teebken, A Bader, G Steinhoff, A Haverich. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 2000; 19(4): 381–386
https://doi.org/10.1053/ejvs.1999.1004 pmid: 10801371
105 PG Gamba, MT Conconi, R Lo Piccolo, G Zara, R Spinazzi, PP Parnigotto. Experimental abdominal wall defect repaired with acellular matrix. Pediatr Surg Int 2002; 18(5–6): 327–331
https://doi.org/10.1007/s00383-002-0849-5 pmid: 12415348
106 RN Chen, HO Ho, YT Tsai, MT Sheu. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004; 25(13): 2679–2686
https://doi.org/10.1016/j.biomaterials.2003.09.070 pmid: 14751754
107 E Rieder, MT Kasimir, G Silberhumer, G Seebacher, E Wolner, P Simon, G Weigel. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004; 127(2): 399–405
https://doi.org/10.1016/j.jtcvs.2003.06.017 pmid: 14762347
108 SLM Dahl, J Koh, V Prabhakar, LE Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 2003; 12(6): 659–666
https://doi.org/10.3727/000000003108747136
109 T Woods, PF Gratzer. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 2005; 26(35): 7339–7349
https://doi.org/10.1016/j.biomaterials.2005.05.066 pmid: 16023194
110 A Shakouri-Motlagh, AJ O’Connor, SP Brennecke, B Kalionis, DE Heath. Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater 2017; 55: 1–12
https://doi.org/10.1016/j.actbio.2017.04.014 pmid: 28412553
111 M Assunção, D Dehghan-Baniani, CHK Yiu, T Später, S Beyer, A Blocki. Cell-derived extracellular matrix for tissue engineering and regenerative medicine. Front Bioeng Biotechnol 2020; 8: 602009
https://doi.org/10.3389/fbioe.2020.602009 pmid: 33344434
112 M Pei, JT Li, M Shoukry, Y Zhang. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater 2011; 22: 333–343
https://doi.org/10.22203/eCM.v022a25 pmid: 22116651
113 M Pei. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials 2017; 117: 10–23
https://doi.org/10.1016/j.biomaterials.2016.11.049 pmid: 27923196
114 Y Sun, L Yan, S Chen, M Pei. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources. Acta Biomater 2018; 74: 56–73
https://doi.org/10.1016/j.actbio.2018.04.048 pmid: 29702288
115 F He, X Chen, M Pei. Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2009; 15(12): 3809–3821
https://doi.org/10.1089/ten.tea.2009.0188 pmid: 19545204
116 J Li, M Pei. Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2011; 17(5–6): 703–712
https://doi.org/10.1089/ten.tea.2010.0339 pmid: 20929284
117 J Li, F He, M Pei. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis. Cell Tissue Res 2011; 345(3): 357–365
https://doi.org/10.1007/s00441-011-1212-8 pmid: 21805113
118 J Li, F He, M Pei. Chondrogenic priming of human fetal synovium-derived stem cells in an adult stem cell matrix microenvironment. Genes Dis 2015; 2(4): 337–346
https://doi.org/10.1016/j.gendis.2015.06.004 pmid: 30258873
119 J Li, K Narayanan, Y Zhang, RC Hill, F He, KC Hansen, M Pei. Role of lineage-specific matrix in stem cell chondrogenesis. Biomaterials 2020; 231: 119681
https://doi.org/10.1016/j.biomaterials.2019.119681 pmid: 31864016
120 M Pei, Y Zhang, J Li, D Chen. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells Dev 2013; 22(6): 889–900
https://doi.org/10.1089/scd.2012.0495 pmid: 23092115
121 Y Zhang, J Li, ME Davis, M Pei. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Acta Biomater 2015; 20: 39–50
https://doi.org/10.1016/j.actbio.2015.04.001 pmid: 25861949
122 Y Zhang, T Pizzute, J Li, F He, M Pei. sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment—a feasible approach for autologous stem cell based osteoarthritic cartilage repair. Biomaterials 2015; 64: 88–97
https://doi.org/10.1016/j.biomaterials.2015.06.038 pmid: 26122165
123 F He, X Liu, K Xiong, S Chen, L Zhou, W Cui, G Pan, ZP Luo, M Pei, Y Gong. Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. J Endocrinol 2014; 223(2): 167–180
https://doi.org/10.1530/JOE-14-0430 pmid: 25210047
124 M Pei, F He, VL Kish. Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng Part A 2011; 17(23–24): 3067–3076
https://doi.org/10.1089/ten.tea.2011.0158 pmid: 21740327
125 M Pei, J Li, Y Zhang, G Liu, L Wei, Y Zhang. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res 2014; 356(2): 391–403
https://doi.org/10.1007/s00441-014-1801-4 pmid: 24705582
126 X Liu, L Zhou, X Chen, T Liu, G Pan, W Cui, M Li, ZP Luo, M Pei, H Yang, Y Gong, F He. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Mater Sci Eng C 2016; 61: 437–448
https://doi.org/10.1016/j.msec.2015.12.090 pmid: 26838870
127 L Zhou, X Chen, T Liu, C Zhu, M Si, J Jargstorf, M Li, G Pan, Y Gong, ZP Luo, H Yang, M Pei, F He. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12(2): e1008–e1021
https://doi.org/10.1002/term.2422 pmid: 28107614
128 F He, M Pei. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis. J Tissue Eng Regen Med 2013; 7(1): 73–84
https://doi.org/10.1002/term.505 pmid: 22095700
129 Y Wang, Y Fu, Z Yan, XB Zhang, M Pei. Impact of fibronectin knockout on proliferation and differentiation of human infrapatellar fat pad-derived stem cells. Front Bioeng Biotechnol 2019; 7: 321
https://doi.org/10.3389/fbioe.2019.00321 pmid: 31803729
130 Y Wang, G Hu, RC Hill, M Dzieciatkowska, KC Hansen, XB Zhang, Z Yan, M Pei. Matrix reverses immortalization-mediated stem cell fate determination. Biomaterials 2021; 265: 120387
https://doi.org/10.1016/j.biomaterials.2020.120387 pmid: 32987274
131 SK Goh, P Olsen, I Banerjee. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS One 2013; 8(4): e61856
https://doi.org/10.1371/journal.pone.0061856 pmid: 23637919
132 X Xiong, X Yang, H Dai, G Feng, Y Zhang, J Zhou, W Zhou. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res Ther 2019; 10(1): 396
https://doi.org/10.1186/s13287-019-1483-7 pmid: 31852539
133 T Hoshiba, Y Sugano, N Yokoyama. Murine neural stem cell (NSC) line, MEB5-derived decellularized matrix as an in vitro extracellular matrix model in NSC niche. Chem Lett 2018; 47(12): 1498–1501
https://doi.org/10.1246/cl.180788
134 M Pei, F He. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. J Cell Physiol 2012; 227(5): 2163–2174
https://doi.org/10.1002/jcp.22950 pmid: 21792932
135 J Yan, X Chen, C Pu, Y Zhao, X Liu, T Liu, G Pan, J Lin, M Pei, H Yang, F He. Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway. Mater Sci Eng C 2020; 106: 110286
https://doi.org/10.1016/j.msec.2019.110286 pmid: 31753397
136 F He, M Pei. Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine 2012; 37(6): 459–469
https://doi.org/10.1097/BRS.0b013e31821fcc64 pmid: 21540772
137 M Pei, M Shoukry, J Li, SD Daffner, JC France, SE Emery. Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine 2012; 37(18): 1538–1547
https://doi.org/10.1097/BRS.0b013e31825150bf pmid: 22391443
138 LK Kanninen, P Porola, J Niklander, MM Malinen, A Corlu, C Guguen-Guillouzo, A Urtti, ML Yliperttula, YR Lou. Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 2016; 341(2): 207–217
https://doi.org/10.1016/j.yexcr.2016.02.006 pmid: 26854693
139 M Pei, F He, J Li, JE Tidwell, AC Jones, EB McDonough. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A 2013; 19(9–10): 1144–1154
https://doi.org/10.1089/ten.tea.2012.0351 pmid: 23216161
140 J Li, KC Hansen, Y Zhang, C Dong, CZ Dinu, M Dzieciatkowska, M Pei. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35(2): 642–653
https://doi.org/10.1016/j.biomaterials.2013.09.099 pmid: 24148243
141 CP Ng, AR Sharif, DE Heath, JW Chow, CB Zhang, MB Chan-Park, PT Hammond, JK Chan, LG Griffith. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 2014; 35(13): 4046–4057
https://doi.org/10.1016/j.biomaterials.2014.01.081 pmid: 24560460
142 Y Xu, GY Xu, C Tang, B Wei, X Pei, JC Gui, BH Min, CZ Jin, LM Wang. Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103(3): 670–678
https://doi.org/10.1002/jbm.b.33231 pmid: 25045062
143 XD Chen, V Dusevich, JQ Feng, SC Manolagas, RL Jilka. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 2007; 22(12): 1943–1956
https://doi.org/10.1359/jbmr.070725 pmid: 17680726
144 Y Lai, Y Sun, CM Skinner, EL Son, Z Lu, RS Tuan, RL Jilka, J Ling, XD Chen. Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells Dev 2010; 19(7): 1095–1107
https://doi.org/10.1089/scd.2009.0217 pmid: 19737070
145 Y Gu, J Zhu, C Xue, Z Li, F Ding, Y Yang, X Gu. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014; 35(7): 2253–2263
https://doi.org/10.1016/j.biomaterials.2013.11.087 pmid: 24360577
146 SH Kwon, TJ Lee, J Park, JE Hwang, M Jin, HK Jang, NS Hwang, BS Kim. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Eng Part A 2013; 19(1–2): 49–58
https://doi.org/10.1089/ten.tea.2012.0245 pmid: 23088504
147 Y Zhang, Y He, S Bharadwaj, N Hammam, K Carnagey, R Myers, A Atala, M Van Dyke. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
https://doi.org/10.1016/j.biomaterials.2009.04.005 pmid: 19410290
148 RA Thibault, L Scott Baggett, AG Mikos, FK Kasper. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A 2010; 16(2): 431–440
https://doi.org/10.1089/ten.tea.2009.0583 pmid: 19863274
149 J De Waele, K Reekmans, J Daans, H Goossens, Z Berneman, P Ponsaerts. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 2015; 41: 122–131
https://doi.org/10.1016/j.biomaterials.2014.11.025 pmid: 25522971
150 V Navarro-Tableros, MB Herrera Sanchez, F Figliolini, R Romagnoli, C Tetta, G Camussi. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng Part A 2015; 21(11–12): 1929–1939
https://doi.org/10.1089/ten.tea.2014.0573 pmid: 25794768
151 Q Yao, YW Zheng, QH Lan, L Kou, HL Xu, YZ Zhao. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C 2019; 104: 109942
https://doi.org/10.1016/j.msec.2019.109942 pmid: 31499951
152 A Imle, P Kumberger, ND Schnellbächer, J Fehr, P Carrillo-Bustamante, J Ales, P Schmidt, C Ritter, WJ Godinez, B Müller, K Rohr, FA Hamprecht, US Schwarz, F Graw, OT Fackler. Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nat Commun 2019; 10(1): 2144
https://doi.org/10.1038/s41467-019-09879-3 pmid: 31086185
153 LT Saldin, MC Cramer, SS Velankar, LJ White, SF Badylak. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater 2017; 49: 1–15
https://doi.org/10.1016/j.actbio.2016.11.068 pmid: 27915024
154 EC González-Díaz, S Varghese. Hydrogels as extracellular matrix analogs. Gels 2016; 2(3): 20
https://doi.org/10.3390/gels2030020 pmid: 30674152
155 Y Zhang, Y He, S Bharadwaj, N Hammam, K Carnagey, R Myers, A Atala, M Van Dyke. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
https://doi.org/10.1016/j.biomaterials.2009.04.005 pmid: 19410290
156 H, S. F Yi, Y Zhang, A. Skardal Bio-functionalized alginate hydrogels for improved cell-matrix interactions and growth factor sequestration kinetics. Tissue Eng Part A 2015; 21(Suppl 1): S187
157 A Skardal, L Smith, S Bharadwaj, A Atala, S Soker, Y Zhang. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 2012; 33(18): 4565–4575
https://doi.org/10.1016/j.biomaterials.2012.03.034 pmid: 22475531
158 R Lang, MM Stern, L Smith, Y Liu, S Bharadwaj, G Liu, PM Baptista, CR Bergman, S Soker, JJ Yoo, A Atala, Y Zhang. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32(29): 7042–7052
https://doi.org/10.1016/j.biomaterials.2011.06.005 pmid: 21723601
159 G Xiong, W Tang, D Zhang, D He, G Wei, A Atala, XJ Liang, AJ Bleyer, ME Bleyer, J Yu, JA Aloi, JX Ma, CM Furdui, Y Zhang. Impaired regeneration potential in urinary stem cells diagnosed from the patients with diabetic nephropathy. Theranostics 2019; 9(14): 4221–4232
https://doi.org/10.7150/thno.34050 pmid: 31281543
160 GS Hussey, JL Dziki, SF Badylak. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018; 3(7): 159–173
https://doi.org/10.1038/s41578-018-0023-x
161 I Juhasz, B Kiss, L Lukacs, I Erdei, Z Peter, E Remenyik. Long-term followup of dermal substitution with acellular dermal implant in burns and postburn scar corrections. Dermatol Res Pract 2010; 2010(1): 210150
https://doi.org/10.1155/2010/210150 pmid: 21234359
162 AS Landsman, J Cook, E Cook, AR Landsman, P Garrett, J Yoon, A Kirkwood, E Desman. A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (TheraSkin®) on the treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec 2011; 4(1): 29–41
https://doi.org/10.1177/1938640010387417 pmid: 21135263
163 DJ Wainwright. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21(4): 243–248
https://doi.org/10.1016/0305-4179(95)93866-I pmid: 7662122
164 E Yoeruek, T Bayyoud, C Maurus, J Hofmann, MS Spitzer, KU Bartz-Schmidt, P Szurman. Reconstruction of corneal stroma with decellularized porcine xenografts in a rabbit model. Acta Ophthalmol 2012; 90(3): e206–e210
https://doi.org/10.1111/j.1755-3768.2011.02300.x pmid: 22136520
165 Y Hashimoto, S Hattori, S Sasaki, T Honda, T Kimura, S Funamoto, H Kobayashi, A Kishida. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep 2016; 6(1): 27734
https://doi.org/10.1038/srep27734 pmid: 27291975
166 Y Liu, W Ma, B Liu, Y Wang, J Chu, G Xiong, L Shen, C Long, T Lin, D He, D Butnaru, L Alexey, Y Zhang, D Zhang, G Wei. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther 2017; 8(1): 63
https://doi.org/10.1186/s13287-017-0500-y pmid: 28279224
167 Y Zhang, G Liu, BP Kropp. Re-epithelialization of demucosalized stomach patch with tissue-engineered urothelial mucosa combined with Botox A in bladder augmentation. BJU Int 2012; 110(2b): E106–E112
https://doi.org/10.1111/j.1464-410X.2011.10845.x pmid: 22288946
168 Y Zhang, HK Lin, D Frimberger, RB Epstein, BP Kropp. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int 2005; 96(7): 1120–1125
https://doi.org/10.1111/j.1464-410X.2005.05741.x pmid: 16225540
169 LM Nherera, M Romanelli, P Trueman, V Dini. An overview of clinical and health economic evidence regarding porcine small intestine submucosa extracellular matrix in the management of chronic wounds and burns. Ostomy Wound Manage 2017; 63(12): 38–47
pmid: 29324432
170 Y Hashimoto, S Funamoto, S Sasaki, T Honda, S Hattori, K Nam, T Kimura, M Mochizuki, T Fujisato, H Kobayashi, A Kishida. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010; 31(14): 3941–3948
https://doi.org/10.1016/j.biomaterials.2010.01.122 pmid: 20163852
171 T Matsumoto, RHO Holmes, CO Burdick, CA Heisterkamp 3rd, TJ O’Connell Jr. Replacement of large veins with free inverted segments of small bowel: autografts of submucosal membrane in dogs and clinical use. Ann Surg 1966; 164(5): 845–848
https://doi.org/10.1097/00000658-196611000-00009 pmid: 5923109
172 T Matsumoto, RH Holmes, CO Burdick, CA Heisterkamp 3rd, TJ O’Connell Jr. The fate of the inverted segment of small bowel used for the replacement of major veins. Surgery 1966; 60(3): 739–743
pmid: 5913805
173 T Matsumoto, RH Holmes, CO Burdick, JF Metzger, CA Heisterkamp 3rd, TJ O’Connell Jr. A study of inverted intestinal graft in the major veins. Angiology 1966; 17(11): 842–850
https://doi.org/10.1177/000331976601701106 pmid: 5925993
174 SF Badylak, GC Lantz, A Coffey, LA Geddes. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989; 47(1): 74–80
https://doi.org/10.1016/0022-4804(89)90050-4 pmid: 2739401
175 MC Hiles, SF Badylak, GC Lantz, K Kokini, LA Geddes, RJ Morff. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J Biomed Mater Res 1995; 29(7): 883–891
https://doi.org/10.1002/jbm.820290714 pmid: 7593028
176 A Bader, G Steinhoff, K Strobl, T Schilling, G Brandes, H Mertsching, D Tsikas, J Froelich, A Haverich. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 2000; 70(1): 7–14
pmid: 10919568
177 DA Taylor, LC Sampaio, Z Ferdous, AS Gobin, LJ Taite. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74: 74–89
https://doi.org/10.1016/j.actbio.2018.04.044 pmid: 29702289
178 M Kimicata, JD Allbritton-King, J Navarro, M Santoro, T Inoue, N Hibino, JP Fisher. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110: 68–81
https://doi.org/10.1016/j.actbio.2020.04.013 pmid: 32305447
179 S Badylak, S Meurling, M Chen, A Spievack, A Simmons-Byrd. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 2000; 35(7): 1097–1103
https://doi.org/10.1053/jpsu.2000.7834 pmid: 10917304
180 SF Badylak, T Hoppo, A Nieponice, TW Gilbert, JM Davison, BA Jobe. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 2011; 17(11–12): 1643–1650
https://doi.org/10.1089/ten.tea.2010.0739 pmid: 21306292
181 A Clough, J Ball, GS Smith, S Leibman. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg 2011; 91(2): e99–e100
https://doi.org/10.1016/j.athoracsur.2010.10.011 pmid: 21256256
182 O Syed, NJ Walters, RM Day, HW Kim, JC Knowles. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 2014; 10(12): 5043–5054
https://doi.org/10.1016/j.actbio.2014.08.024 pmid: 25173840
183 G Luc, G Charles, C Gronnier, M Cabau, C Kalisky, M Meulle, R Bareille, S Roques, L Couraud, J Rannou, L Bordenave, D Collet, M Durand. Decellularized and matured esophageal scaffold for circumferential esophagus replacement: proof of concept in a pig model. Biomaterials 2018; 175: 1–18
https://doi.org/10.1016/j.biomaterials.2018.05.023 pmid: 29793088
184 L Arakelian, C Caille, L Faivre, L Corté, P Bruneval, S Shamdani, C Flageollet, P Albanese, T Domet, M Jarraya, N Setterblad, S Kellouche, J Larghero, P Cattan, V Vanneaux. A clinical-grade acellular matrix for esophageal replacement. J Tissue Eng Regen Med 2019; 13(12): 2191–2203
https://doi.org/10.1002/term.2983 pmid: 31670903
185 Y Zhang, D Frimberger, EY Cheng, HK Lin, BP Kropp. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 2006; 98(5): 1100–1105
https://doi.org/10.1111/j.1464-410X.2006.06447.x pmid: 17034611
186 BP Kropp, BL Eppley, CD Prevel, MK Rippy, RC Harruff, SF Badylak, MC Adams, RC Rink, MA Keating. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 1995; 46(3): 396–400
https://doi.org/10.1016/S0090-4295(99)80227-1 pmid: 7660517
187 XZ Zhang, YL Jiang, JG Hu, LM Zhao, QZ Chen, Y Liang, Y Zhang, XX Lei, R Wang, Y Lei, QY Zhang, J Li-Ling, HQ Xie. Procyanidins-crosslinked small intestine submucosa: a bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6(6): 1827–1838
https://doi.org/10.1016/j.bioactmat.2020.11.023 pmid: 33336114
188 BP Kropp, JK Ludlow, D Spicer, MK Rippy, SF Badylak, MC Adams, MA Keating, RC Rink, R Birhle, KB Thor. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998; 52(1): 138–142
https://doi.org/10.1016/S0090-4295(98)00114-9 pmid: 9671888
189 NF Davis, A Callanan, BB McGuire, HD Flood, TM McGloughlin. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology 2011; 77(4): 1007.e1–1007.e7
https://doi.org/10.1016/j.urology.2010.11.036 pmid: 21256541
190 HP Janke, PKJD de Jonge, WFJ Feitz, E Oosterwijk. Reconstruction strategies of the ureter and urinary diversion using tissue engineering approaches. Tissue Eng Part B Rev 2019; 25(3): 237–248
https://doi.org/10.1089/ten.teb.2018.0345 pmid: 30794111
191 J Adamowicz, SV Van Breda, T Kloskowski, K Juszczak, M Pokrywczynska, T Drewa. Constructing artificial urinary conduits: current capabilities and future potential. Expert Rev Med Devices 2019; 16(2): 135–144
https://doi.org/10.1080/17434440.2019.1562901 pmid: 30588868
192 G Totonelli, P Maghsoudlou, M Garriboli, J Riegler, G Orlando, AJ Burns, NJ Sebire, VV Smith, JM Fishman, M Ghionzoli, M Turmaine, MA Birchall, A Atala, S Soker, MF Lythgoe, A Seifalian, A Pierro, S Eaton, P De Coppi. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 2012; 33(12): 3401–3410
https://doi.org/10.1016/j.biomaterials.2012.01.012 pmid: 22305104
193 AS Arunkalaivanan, JW Barrington. Randomized trial of porcine dermal sling (Pelvicol implant) vs. tension-free vaginal tape (TVT) in the surgical treatment of stress incontinence: a questionnaire-based study. Int Urogynecol J Pelvic Floor Dysfunct 2003; 14(1): 17–23
https://doi.org/10.1007/s00192-002-1000-9 pmid: 12601511
194 B Andrée, A Bär, A Haverich, A Hilfiker. Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng Part B Rev 2013; 19(4): 279–291
https://doi.org/10.1089/ten.teb.2012.0583 pmid: 23216258
195 RA Roeder, GC Lantz, LA Geddes. Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts—a preliminary report. Biomed Instrum Technol 2001; 35(2): 110–120
pmid: 11383308
196 HC Ott, TS Matthiesen, SK Goh, LD Black, SM Kren, TI Netoff, DA Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2): 213–221
https://doi.org/10.1038/nm1684 pmid: 18193059
197 RP Mecham. Overview of extracellular matrix. Current Protocols in Cell Biology 2012; Chapter 10: Unit 10.11
198 N Plunkett, FJ O'Brien. Bioreactors in tissue engineering. Technol Health Care 2011; 19(1): 55–69
https://doi.org/10.3233/THC-2011-0605 pmid: 21248413
199 ME Scarritt, NC Pashos, BA Bunnell. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 2015; 3: 43
https://doi.org/10.3389/fbioe.2015.00043 pmid: 25870857
200 GA Nari, C Mariana, C Romina, R Laura, J Gustavo, T Ricardo, NA Salvatierra. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers. Rev Esp Enferm Dig 2013; 105(3): 138–143
https://doi.org/10.4321/s1130-01082013000300004 pmid: 23735020
201 PM Baptista, MM Siddiqui, G Lozier, SR Rodriguez, A Atala, S Soker. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53(2): 604–617
https://doi.org/10.1002/hep.24067 pmid: 21274881
202 Y Wang, CB Cui, M Yamauchi, P Miguez, M Roach, R Malavarca, MJ Costello, V Cardinale, E Wauthier, C Barbier, DA Gerber, D Alvaro, LM Reid. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 2011; 53(1): 293–305
https://doi.org/10.1002/hep.24012 pmid: 21254177
203 A Soto-Gutierrez, L Zhang, C Medberry, K Fukumitsu, D Faulk, H Jiang, J Reing, R Gramignoli, J Komori, M Ross, M Nagaya, E Lagasse, D Stolz, SC Strom, IJ Fox, SF Badylak. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011; 17(6): 677–686
https://doi.org/10.1089/ten.tec.2010.0698 pmid: 21375407
204 G Mazza, K Rombouts, A Rennie Hall, L Urbani, T Vinh Luong, W Al-Akkad, L Longato, D Brown, P Maghsoudlou, AP Dhillon, B Fuller, B Davidson, K Moore, D Dhar, P De Coppi, M Malago, M Pinzani. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 2015; 5(1): 13079
https://doi.org/10.1038/srep13079 pmid: 26248878
205 MMA Verstegen, J Willemse, S van den Hoek, GJ Kremers, TM Luider, NA van Huizen, FEJA Willemssen, HJ Metselaar, JNM IJzermans, LJW van der Laan, J de Jonge. Decellularization of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds. Stem Cells Dev 2017; 26(18): 1304–1315
https://doi.org/10.1089/scd.2017.0095 pmid: 28665233
206 JJ Song, SS Kim, Z Liu, JC Madsen, DJ Mathisen, JP Vacanti, HC Ott. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg 2011; 92(3): 998–1006
https://doi.org/10.1016/j.athoracsur.2011.05.018 pmid: 21871290
207 TH Petersen, EA Calle, MB Colehour, LE Niklason. Bioreactor for the long-term culture of lung tissue. Cell Transplant 2011; 20(7): 1117–1126
https://doi.org/10.3727/096368910X544933 pmid: 21092411
208 H Zhou, K Kitano, X Ren, TK Rajab, M Wu, SE Gilpin, T Wu, L Baugh, LD Black, DJ Mathisen, HC Ott. Bioengineering human lung grafts on porcine matrix. Ann Surg 2018; 267(3): 590–598
https://doi.org/10.1097/SLA.0000000000002129 pmid: 28085694
209 JP Zambon, IK Ko, M Abolbashari, J Huling, C Clouse, TH Kim, C Smith, A Atala, JJ Yoo. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater 2018; 75: 226–234
https://doi.org/10.1016/j.actbio.2018.06.004 pmid: 29883813
210 JJ Song, JP Guyette, SE Gilpin, G Gonzalez, JP Vacanti, HC Ott. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 2013; 19(5): 646–651
https://doi.org/10.1038/nm.3154 pmid: 23584091
211 C Mandrycky, K Phong, Y Zheng. Tissue engineering toward organ-specific regeneration and disease modeling. MRS Commun 2017; 7(3): 332–347
https://doi.org/10.1557/mrc.2017.58 pmid: 29750131
212 K Tsuji, A Bandyopadhyay, BD Harfe, K Cox, S Kakar, L Gerstenfeld, T Einhorn, CJ Tabin, V Rosen. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006; 38(12): 1424–1429
https://doi.org/10.1038/ng1916 pmid: 17099713
213 K Tsuji, K Cox, A Bandyopadhyay, BD Harfe, CJ Tabin, V Rosen. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am 2008; 90(Suppl 1): 14–18
https://doi.org/10.2106/JBJS.G.01109 pmid: 18292351
214 K Tsuji, K Cox, L Gamer, D Graf, A Economides, V. RosenConditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res 2010; 28(3): 384–389
https://doi.org/10.1002/jor.20996 pmid: 19780203
215 S Minear, P Leucht, J Jiang, B Liu, A Zeng, C Fuerer, R Nusse, JA Helms. Wnt proteins promote bone regeneration. Sci Transl Med 2010; 2(29): 29ra30
https://doi.org/10.1126/scitranslmed.3000231 pmid: 20427820
216 S Kakar, TA Einhorn, S Vora, LJ Miara, G Hon, NA Wigner, D Toben, KA Jacobsen, MO Al-Sebaei, M Song, PC Trackman, EF Morgan, LC Gerstenfeld, GL Barnes. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 2007; 22(12): 1903–1912
https://doi.org/10.1359/jbmr.070724 pmid: 17680724
217 Z Saidak, C Le Henaff, S Azzi, C Marty, S Da Nascimento, P Sonnet, PJ Marie. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem 2015; 290(11): 6903–6912
https://doi.org/10.1074/jbc.M114.621219 pmid: 25631051
218 F Zhu, MT Sweetwyne, KD Hankenson. PKCδ is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells 2013; 31(6): 1181–1192
https://doi.org/10.1002/stem.1353 pmid: 23404789
219 MI Dishowitz, F Zhu, HG Sundararaghavan, JL Ifkovits, JA Burdick, KD Hankenson. Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 2014; 102(5): 1558–1567
https://doi.org/10.1002/jbm.a.34825 pmid: 23775982
220 Y Tian, Y Xu, T Xue, L Chen, B Shi, B Shu, C Xie, M Max Morandi, T Jaeblon, JV Marymont, Y Dong. Notch activation enhances mesenchymal stem cell sheet osteogenic potential by inhibition of cellular senescence. Cell Death Dis 2017; 8(2): e2595
https://doi.org/10.1038/cddis.2017.2 pmid: 28151468
221 TF Day, X Guo, L Garrett-Beal, Y Yang. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8(5): 739–750
https://doi.org/10.1016/j.devcel.2005.03.016 pmid: 15866164
222 JH Ryu, SJ Kim, SH Kim, CD Oh, SG Hwang, CH Chun, SH Oh, JK Seong, TL Huh, JS Chun. Regulation of the chondrocyte phenotype by beta-catenin. Development 2002; 129(23): 5541–5550
https://doi.org/10.1242/dev.00110 pmid: 12403723
223 Y Chaly, HC Blair, SM Smith, DS Bushnell, AD Marinov, BT Campfield, R Hirsch. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Ann Rheum Dis 2015; 74(7): 1467–1473
https://doi.org/10.1136/annrheumdis-2013-204822 pmid: 24641944
224 L Delhon, C Mahaut, N Goudin, E Gaudas, K Piquand, W Le Goff, V Cormier-Daire, C Le Goff. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency. FASEB J 2019; 33(2): 2707–2718
https://doi.org/10.1096/fj.201800753RR pmid: 30303737
225 J Fischer, N Knoch, T Sims, N Rosshirt, W Richter. Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis. J Cell Physiol 2018; 233(11): 8962–8970
https://doi.org/10.1002/jcp.26832 pmid: 29856487
226 MK Murphy, DJ Huey, JC Hu, KA Athanasiou. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 2015; 33(3): 762–773
https://doi.org/10.1002/stem.1890 pmid: 25377511
227 NJ Kovermann, V Basoli, E Della Bella, M Alini, C Lischer, H Schmal, EJ Kubosch, MJ Stoddart. BMP2 and TGF-β cooperate differently during synovial-derived stem-cell chondrogenesis in a dexamethasone-dependent manner. Cells 2019; 8(6): 636
https://doi.org/10.3390/cells8060636 pmid: 31242641
228 UI Chung, E Schipani, AP McMahon, HM Kronenberg. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001; 107(3): 295–304
https://doi.org/10.1172/JCI11706 pmid: 11160153
229 L Chen, G Liu, W Li, X Wu. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells following transfection with Indian hedgehog and sonic hedgehog using a rotary cell culture system. Cell Mol Biol Lett 2019; 24(1): 16
https://doi.org/10.1186/s11658-019-0144-2 pmid: 30858866
230 A Parisi, F Lacour, L Giordani, S Colnot, P Maire, F Le Grand. APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. J Cell Biol 2015; 210(5): 717–726
https://doi.org/10.1083/jcb.201501053 pmid: 26304725
231 K Zhang, Y Zhang, L Gu, M Lan, C Liu, M Wang, Y Su, M Ge, T Wang, Y Yu, C Liu, L Li, Q Li, Y Zhao, Z Yu, F Wang, N Li, Q Meng. Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nat Commun 2018; 9(1): 5129
https://doi.org/10.1038/s41467-018-07638-4 pmid: 30510196
232 A Rochat, A Fernandez, M Vandromme, JP Molès, T Bouschet, G Carnac, NJ Lamb. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 2004; 15(10): 4544–4555
https://doi.org/10.1091/mbc.e03-11-0816 pmid: 15282335
233 MB Baghdadi, D Castel, L Machado, SI Fukada, DE Birk, F Relaix, S Tajbakhsh, P Mourikis. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 2018; 557(7707): 714–718
https://doi.org/10.1038/s41586-018-0144-9 pmid: 29795344
234 A Pisconti, DD Cornelison, HC Olguín, TL Antwine, BB Olwin. Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 2010; 190(3): 427–441
https://doi.org/10.1083/jcb.201003081 pmid: 20696709
235 AA Pollen, A Bhaduri, MG Andrews, TJ Nowakowski, OS Meyerson, MA Mostajo-Radji, E Di Lullo, B Alvarado, M Bedolli, ML Dougherty, IT Fiddes, ZN Kronenberg, J Shuga, AA Leyrat, JA West, M Bershteyn, CB Lowe, BJ Pavlovic, SR Salama, D Haussler, EE Eichler, AR Kriegstein. Establishing cerebral organoids as models of human-specific brain evolution. Cell 2019; 176(4): 743–756.e17
https://doi.org/10.1016/j.cell.2019.01.017 pmid: 30735633
236 IT Fiddes, GA Lodewijk, M Mooring, CM Bosworth, AD Ewing, GL Mantalas, AM Novak, A van den Bout, A Bishara, JL Rosenkrantz, R Lorig-Roach, AR Field, M Haeussler, L Russo, A Bhaduri, TJ Nowakowski, AA Pollen, ML Dougherty, X Nuttle, MC Addor, S Zwolinski, S Katzman, A Kriegstein, EE Eichler, SR Salama, FMJ Jacobs, D Haussler. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 2018; 173(6): 1356–1369.e22
https://doi.org/10.1016/j.cell.2018.03.051 pmid: 29856954
237 J Andersen, O Revah, Y Miura, N Thom, ND Amin, KW Kelley, M Singh, X Chen, MV Thete, EM Walczak, H Vogel, HC Fan, SP Paşca. Generation of functional human 3D cortico-motor assembloids. Cell 2020;183(7):1913–1929.e1926
https://doi.org/DOI: 10.1016/j.cell.2020.11.017
238 M Gouti, A Tsakiridis, FJ Wymeersch, Y Huang, J Kleinjung, V Wilson, J Briscoe. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 2014; 12(8): e1001937
https://doi.org/10.1371/journal.pbio.1001937 pmid: 25157815
239 P Rivetti di Val Cervo, RA Romanov, G Spigolon, D Masini, E Martín-Montañez, EM Toledo, G La Manno, M Feyder, C Pifl, YH Ng, SP Sánchez, S Linnarsson, M Wernig, T Harkany, G Fisone, E Arenas. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol 2017; 35(5): 444–452
https://doi.org/10.1038/nbt.3835 pmid: 28398344
240 JJ Ma, X Ju, RJ Xu, WH Wang, ZP Luo, CM Liu, L Yang, B Li, JQ Chen, B Meng, HL Yang, FQ Zhou, . SaijilafuTelomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc. J Neurosci 2019; 39(46): 9107–9118
https://doi.org/10.1523/JNEUROSCI.0419-19.2019 pmid: 31597725
241 RJ Mills, DM Titmarsh, X Koenig, BL Parker, JG Ryall, GA Quaife-Ryan, HK Voges, MP Hodson, C Ferguson, L Drowley, AT Plowright, EJ Needham, QD Wang, P Gregorevic, M Xin, WG Thomas, RG Parton, LK Nielsen, BS Launikonis, DE James, DA Elliott, ER Porrello, JE Hudson. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA 2017; 114(40): E8372–E8381
https://doi.org/10.1073/pnas.1707316114 pmid: 28916735
242 DM Titmarsh, NR Glass, RJ Mills, A Hidalgo, EJ Wolvetang, ER Porrello, JE Hudson, JJ Cooper-White. Induction of human iPSC-derived cardiomyocyte proliferation revealed by combinatorial screening in high density microbioreactor arrays. Sci Rep 2016; 6(1): 24637
https://doi.org/10.1038/srep24637 pmid: 27097795
243 L Drakhlis, S Biswanath, CM Farr, V Lupanow, J Teske, K Ritzenhoff, A Franke, F Manstein, E Bolesani, H Kempf, S Liebscher, K Schenke-Layland, J Hegermann, L Nolte, H Meyer, J de la Roche, S Thiemann, C Wahl-Schott, U Martin, R Zweigerdt. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 2021; 39(6): 737–746
https://doi.org/10.1038/s41587-021-00815-9 pmid: 33558697
244 K Kodo, SG Ong, F Jahanbani, V Termglinchan, K Hirono, K InanlooRahatloo, AD Ebert, P Shukla, OJ Abilez, JM Churko, I Karakikes, G Jung, F Ichida, SM Wu, MP Snyder, D Bernstein, JC Wu. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016; 18(10): 1031–1042
https://doi.org/10.1038/ncb3411 pmid: 27642787
245 TMA Mohamed, YS Ang, E Radzinsky, P Zhou, Y Huang, A Elfenbein, A Foley, S Magnitsky, D Srivastava. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 2018; 173(1): 104–116.e12
https://doi.org/10.1016/j.cell.2018.02.014 pmid: 29502971
246 AA Mikryukov, A Mazine, B Wei, D Yang, Y Miao, M Gu, GM Keller. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell 2021; 28(1): 96–111.e7
https://doi.org/10.1016/j.stem.2020.10.003 pmid: 33142114
247 RA Wimmer, A Leopoldi, M Aichinger, N Wick, B Hantusch, M Novatchkova, J Taubenschmid, M Hämmerle, C Esk, JA Bagley, D Lindenhofer, G Chen, M Boehm, CA Agu, F Yang, B Fu, J Zuber, JA Knoblich, D Kerjaschki, JM Penninger. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019; 565(7740): 505–510
https://doi.org/10.1038/s41586-018-0858-8 pmid: 30651639
248 RA Wimmer, A Leopoldi, M Aichinger, D Kerjaschki, JM Penninger. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 2019; 14(11): 3082–3100
https://doi.org/10.1038/s41596-019-0213-z pmid: 31554955
249 N Barker, M Huch, P Kujala, M van de Wetering, HJ Snippert, JH van Es, T Sato, DE Stange, H Begthel, M van den Born, E Danenberg, S van den Brink, J Korving, A Abo, PJ Peters, N Wright, R Poulsom, H Clevers. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010; 6(1): 25–36
https://doi.org/10.1016/j.stem.2009.11.013 pmid: 20085740
250 M Sigal, CY Logan, M Kapalczynska, HJ Mollenkopf, H Berger, B Wiedenmann, R Nusse, MR Amieva, TF Meyer. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 2017; 548(7668): 451–455
https://doi.org/10.1038/nature23642 pmid: 28813421
251 KS Yan, CY Janda, J Chang, GXY Zheng, KA Larkin, VC Luca, LA Chia, AT Mah, A Han, JM Terry, A Ootani, K Roelf, M Lee, J Yuan, X Li, CR Bolen, J Wilhelmy, PS Davies, H Ueno, RJ von Furstenberg, P Belgrader, SB Ziraldo, H Ordonez, SJ Henning, MH Wong, MP Snyder, IL Weissman, AJ Hsueh, TS Mikkelsen, KC Garcia, CJ Kuo. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 2017; 545(7653): 238–242
https://doi.org/10.1038/nature22313 pmid: 28467820
252 KA Kim, M Kakitani, J Zhao, T Oshima, T Tang, M Binnerts, Y Liu, B Boyle, E Park, P Emtage, WD Funk, K Tomizuka. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 2005; 309(5738): 1256–1259
https://doi.org/10.1126/science.1112521 pmid: 16109882
253 J Schuijers, JP Junker, M Mokry, P Hatzis, BK Koo, V Sasselli, LG van der Flier, E Cuppen, A van Oudenaarden, H Clevers. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 2015; 16(2): 158–170
https://doi.org/10.1016/j.stem.2014.12.006 pmid: 25620640
254 X Yin, HF Farin, JH van Es, H Clevers, R Langer, JM Karp. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 2014; 11(1): 106–112
https://doi.org/10.1038/nmeth.2737 pmid: 24292484
255 D Serra, U Mayr, A Boni, I Lukonin, M Rempfler, L Challet Meylan, MB Stadler, P Strnad, P Papasaikas, D Vischi, A Waldt, G Roma, P Liberali. Self-organization and symmetry breaking in intestinal organoid development. Nature 2019; 569(7754): 66–72
https://doi.org/10.1038/s41586-019-1146-y pmid: 31019299
256 M Huch, C Dorrell, SF Boj, JH van Es, VS Li, M van de Wetering, T Sato, K Hamer, N Sasaki, MJ Finegold, A Haft, RG Vries, M Grompe, H Clevers. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013; 494(7436): 247–250
https://doi.org/10.1038/nature11826 pmid: 23354049
257 Y Lin, ZP Fang, HJ Liu, LJ Wang, Z Cheng, N Tang, T Li, T Liu, HX Han, G Cao, L Liang, YQ Ding, WJ Zhou. HGF/R-spondin1 rescues liver dysfunction through the induction of Lgr5+ liver stem cells. Nat Commun 2017; 8(1): 1175
https://doi.org/10.1038/s41467-017-01341-6 pmid: 29079780
258 B Ochoa, WK Syn, I Delgado, GF Karaca, Y Jung, J Wang, AM Zubiaga, O Fresnedo, A Omenetti, M Zdanowicz, SS Choi, AM Diehl. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 2010; 51(5): 1712–1723
https://doi.org/10.1002/hep.23525 pmid: 20432255
259 M Langiewicz, R Graf, B Humar, PA Clavien. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol 2018; 69(3): 666–675
https://doi.org/10.1016/j.jhep.2018.04.017 pmid: 29709677
260 N Barker, MB Rookmaaker, P Kujala, A Ng, M Leushacke, H Snippert, M van de Wetering, S Tan, JH Van Es, M Huch, R Poulsom, MC Verhaar, PJ Peters, H Clevers. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep 2012; 2(3): 540–552
https://doi.org/10.1016/j.celrep.2012.08.018 pmid: 22999937
261 JH Low, P Li, EGY Chew, B Zhou, K Suzuki, T Zhang, MM Lian, M Liu, E Aizawa, C Rodriguez Esteban, KSM Yong, Q Chen, JM Campistol, M Fang, CC Khor, JN Foo, JC Izpisua Belmonte, Y Xia. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 2019; 25(3): 373–387.e9
https://doi.org/10.1016/j.stem.2019.06.009 pmid: 31303547
262 H Wu, K Uchimura, EL Donnelly, Y Kirita, SA Morris, BD Humphreys. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 2018; 23(6): 869–881.e8
https://doi.org/10.1016/j.stem.2018.10.010 pmid: 30449713
263 TA Forbes, SE Howden, K Lawlor, B Phipson, J Maksimovic, L Hale, S Wilson, C Quinlan, G Ho, K Holman, B Bennetts, J Crawford, P Trnka, A Oshlack, C Patel, A Mallett, C Simons, MH Little. Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am J Hum Genet 2018; 102(5): 816–831
https://doi.org/10.1016/j.ajhg.2018.03.014 pmid: 29706353
264 K Shin, J Lee, N Guo, J Kim, A Lim, L Qu, IU Mysorekar, PA Beachy. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 2011; 472(7341): 110–114
https://doi.org/10.1038/nature09851 pmid: 21389986
265 E Kim, S Choi, B Kang, J Kong, Y Kim, WH Yoon, HR Lee, S Kim, HM Kim, H Lee, C Yang, YJ Lee, M Kang, TY Roh, S Jung, S Kim, JH Ku, K Shin. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 2020; 588(7839): 664–669
https://doi.org/10.1038/s41586-020-3034-x pmid: 33328632
266 CP Santos, E Lapi, J Martínez de Villarreal, L Álvaro-Espinosa, A Fernández-Barral, A Barbáchano, O Domínguez, AM Laughney, D Megías, A Muñoz, FX Real. Urothelial organoids originating from Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 2019; 10(1): 4407
https://doi.org/10.1038/s41467-019-12307-1 pmid: 31562298
267 M Kessler, K Hoffmann, V Brinkmann, O Thieck, S Jackisch, B Toelle, H Berger, HJ Mollenkopf, M Mangler, J Sehouli, C Fotopoulou, TF Meyer. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 2015; 6(1): 8989
https://doi.org/10.1038/ncomms9989 pmid: 26643275
268 Y Xie, ES Park, D Xiang, Z Li. Long-term organoid culture reveals enrichment of organoid-forming epithelial cells in the fimbrial portion of mouse fallopian tube. Stem Cell Res (Amst) 2018; 32: 51–60
https://doi.org/10.1016/j.scr.2018.08.021 pmid: 30176443
269 M Boretto, N Maenhoudt, X Luo, A Hennes, B Boeckx, B Bui, R Heremans, L Perneel, H Kobayashi, I Van Zundert, H Brems, B Cox, M Ferrante, H Uji-I, KP Koh, T D’Hooghe, A Vanhie, I Vergote, C Meuleman, C Tomassetti, D Lambrechts, J Vriens, D Timmerman, H Vankelecom. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 2019; 21(8): 1041–1051
https://doi.org/10.1038/s41556-019-0360-z pmid: 31371824
270 M Boretto, B Cox, M Noben, N Hendriks, A Fassbender, H Roose, F Amant, D Timmerman, C Tomassetti, A Vanhie, C Meuleman, M Ferrante, H Vankelecom. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144(10): 1775–1786
https://doi.org/10.1242/dev.148478 pmid: 28442471
271 A Ali, SM Syed, MFB Jamaluddin, Y Colino-Sanguino, D Gallego-Ortega, PS Tanwar. Cell lineage tracing identifies hormone-regulated and Wnt-responsive vaginal epithelial stem cells. Cell Rep 2020; 30(5): 1463–1477.e7
https://doi.org/10.1016/j.celrep.2020.01.003 pmid: 32023462
272 B Zhang, X Ci, R Tao, JJ Ni, X Xuan, JL King, S Xia, Y Li, HF Frierson, DK Lee, J Xu, AO Osunkoya, JT Dong. Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat Commun 2020; 11(1): 997
https://doi.org/10.1038/s41467-020-14737-8 pmid: 32081850
273 Y Wang, A Yu, FX Yu. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8(5): 349–359
https://doi.org/10.1007/s13238-017-0371-0 pmid: 28130761
274 IM Moya, G Halder. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20(4): 211–226
https://doi.org/10.1038/s41580-018-0086-y pmid: 30546055
275 I Lian, J Kim, H Okazawa, J Zhao, B Zhao, J Yu, A Chinnaiyan, MA Israel, LS Goldstein, R Abujarour, S Ding, KL Guan. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 2010; 24(11): 1106–1118
https://doi.org/10.1101/gad.1903310 pmid: 20516196
276 H Qin, K Blaschke, G Wei, Y Ohi, L Blouin, Z Qi, J Yu, RF Yeh, M Hebrok, M Ramalho-Santos. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 2012; 21(9): 2054–2067
https://doi.org/10.1093/hmg/dds023 pmid: 22286172
277 H Qin, M Hejna, Y Liu, M Percharde, M Wossidlo, L Blouin, J Durruthy-Durruthy, P Wong, Z Qi, J Yu, LS Qi, V Sebastiano, JS Song, M Ramalho-Santos. YAP induces human naive pluripotency. Cell Rep 2016; 14(10): 2301–2312
https://doi.org/10.1016/j.celrep.2016.02.036 pmid: 26947063
278 BC Heng, X Zhang, D Aubel, Y Bai, X Li, Y Wei, M Fussenegger, X Deng. Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front Cell Dev Biol 2020; 8: 735
https://doi.org/10.3389/fcell.2020.00735 pmid: 32850847
279 AW Hong, Z Meng, KL Guan. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol 2016; 13(6): 324–337
https://doi.org/10.1038/nrgastro.2016.59 pmid: 27147489
280 JH Driskill, D Pan. The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol 2021; 16(1): 299–322
https://doi.org/10.1146/annurev-pathol-030420-105050 pmid: 33234023
281 A Elbediwy, ZI Vincent-Mistiaen, B Spencer-Dene, RK Stone, S Boeing, SK Wculek, J Cordero, EH Tan, R Ridgway, VG Brunton, E Sahai, H Gerhardt, A Behrens, I Malanchi, OJ Sansom, BJ Thompson. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143(10): 1674–1687
pmid: 26989177
282 J Wang, S Liu, T Heallen, JF Martin. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 2018; 15(11): 672–684
https://doi.org/10.1038/s41569-018-0063-3 pmid: 30111784
283 X He, L Zhang, LF Queme, X Liu, A Lu, RR Waclaw, X Dong, W Zhou, G Kidd, SO Yoon, A Buonanno, JB Rubin, M Xin, KA Nave, BD Trapp, MP Jankowski, QR Lu. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 2018; 24(3): 338–351
https://doi.org/10.1038/nm.4483 pmid: 29431744
284 F Zanconato, M Cordenonsi, S Piccolo. YAP/TAZ at the roots of cancer. Cancer Cell 2016; 29(6): 783–803
https://doi.org/10.1016/j.ccell.2016.05.005 pmid: 27300434
285 JR Erickson, K Echeverri. Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev Biol 2018; 433(2): 144–154
https://doi.org/10.1016/j.ydbio.2017.09.025 pmid: 29179946
286 IN Taha, A Naba. Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63(3): 417–432
https://doi.org/10.1042/EBC20190001 pmid: 31462529
287 JJ Doyle, EE Gerber, HC Dietz. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 2012; 586(14): 2003–2015
https://doi.org/10.1016/j.febslet.2012.05.027 pmid: 22641039
288 AJ Argyropoulos, P Robichaud, RM Balimunkwe, GJ Fisher, C Hammerberg, Y Yan, T Quan. Alterations of dermal connective tissue collagen in diabetes: molecular basis of aged-appearing skin. PLoS One 2016; 11(4): e0153806
https://doi.org/10.1371/journal.pone.0153806 pmid: 27104752
289 S Vigneswari, JM Chai, KH Kamarudin, AA Amirul, ML Focarete, S Ramakrishna. Elucidating the surface functionality of biomimetic RGD peptides immobilized on nano-P(3HB-co-4HB) for H9c2 myoblast cell proliferation. Front Bioeng Biotechnol 2020; 8: 567693
https://doi.org/10.3389/fbioe.2020.567693 pmid: 33195129
290 E Masaeli, MH Nasr-Esfahani. An in vivo evaluation of induced chondrogenesis by decellularized extracellular matrix particles. J Biomed Mater Res A 2021; 109(5): 627–636
https://doi.org/10.1002/jbm.a.37047 pmid: 32608181
291 YH Yen, CM Pu, CW Liu, YC Chen, YC Chen, CJ Liang, JH Hsieh, HF Huang, YL Chen. Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J 2018; 15(4): 605–617
https://doi.org/10.1111/iwj.12904 pmid: 29659146
292 MB Fisher, R Liang, HJ Jung, KE Kim, G Zamarra, AJ Almarza, PJ McMahon, SL Woo. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc 2012; 20(7): 1357–1365
https://doi.org/10.1007/s00167-011-1800-x pmid: 22143425
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed