Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (5): 773-783   https://doi.org/10.1007/s11684-021-0902-1
  本期目录
Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors
Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, Chunmei Bai()
Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
 全文: PDF(2461 KB)   HTML
Abstract

The total number of cancer patients who are eligible for and will benefit from immune checkpoint inhibitors (ICIs) in China has not been quantified. This cross-sectional study was conducted to estimate the number of Chinese cancer patients with eligibility and response to ICIs based on the 2015 Chinese cancer statistics and the immune checkpoint inhibitor clinical practice guideline of the Chinese Society of Clinical Oncology. A total of 11 ICIs were recommended for 17 cancer types. The estimated number of eligible patients annually was 1 290 156 (55.18%), which included 888 738 males (60.05%) and 400 468 females (46.67%). The estimated number of responders annually was 448 972 (19.20%), which included 309 023 males (20.88%) and 139 764 females (16.29%). Gastric cancer (n=291 000, 12.45%), non-small-cell lung cancer (n=289 629, 12.39%), and hepatocellular carcinoma (n=277 100, 11.85%) were the top three cancer types with the highest number of eligible patients. Non-small-cell lung cancer (n=180 022, 7.70%), hepatocellular carcinoma (n=75 648, 3.24%), and small-cell lung cancer (n=64 362, 2.75%) were the top three cancer types with the highest number of responders. In conclusion, ICIs provide considerable benefit in Chinese cancer patients under optimal estimation.

Key wordsbenefit    China    eligibility    immune checkpoint inhibitor    public health
收稿日期: 2021-05-23      出版日期: 2022-11-18
Corresponding Author(s): Chunmei Bai   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(5): 773-783.
Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, Chunmei Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors. Front. Med., 2022, 16(5): 773-783.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0902-1
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I5/773
Total Grade 1 and 2 recommendations (eligible)
Total clinical trials, n (%) 79 (100) 52 (100)
Study design
Randomized controlled trial 35 (44.3) 29 (55.8)
Single-arm clinical trial 41 (51.9) 22 (42.3)
Other 3 (3.8) 1 (1.9)
Clinical trial phase
Phase 1 12 (15.2) 5 (9.6)
Phase 2 29 (36.7) 18 (34.6)
Phase 3 34 (43.0) 28 (53.8)
Not specified 4 (5.1) 1 (1.9)
Participants, median (IQR) 305 (91?763) 412 (99?827.5)
Female participants (%), median (IQR) 33.6 (22.8?40.9) 30.4 (22.8?41.2)
Chinese patient participationb
Major 17 (21.5) 11 (21.2)
Minor 25 (31.6) 19 (36.5)
None 37 (46.8) 22 (42.3)
Cancer typesc
HNSCC (except nasopharyngeal carcinoma) 3 (3.8) 3 (5.8)
Nasopharyngeal carcinoma 5 (6.3) 0
Esophageal squamous cell carcinoma 3 (3.8) 3 (5.8)
Non-small-cell lung cancer 10 (12.7) 10 (19.2)
Small-cell lung cancer 5 (6.3) 2 (3.8)
Breast cancer 1 (1.3) 0
Gastric cancer 3 (3.8) 2 (3.8)
Hepatocellular carcinoma 9 (11.4) 5 (9.6)
Colorectal cancer 2 (2.5) 2 (3.8)
Renal cell carcinoma 7 (8.9) 6 (11.5)
Urothelial carcinoma 8 (10.1) 1 (1.9)
Cervical cancer 2 (2.5) 2 (3.8)
Endometrial cancer 2 (2.5) 1 (1.9)
Ovary cancer 1 (1.3) 1 (1.9)
Melanoma 10 (12.7) 7 (13.5)
Skin cancer (except melanoma) 6 (7.6) 4 (7.7)
Hematological malignancy 7 (8.9) 6 (11.5)
ICI typec
CTLA-4 inhibitors 4 (5.1) 3 (5.8)
Ipilimumab 4 (5.1) 3 (5.8)
PD-1 inhibitors 64 (81.0) 44 (84.6)
Pembrolizumab 28 (35.4) 22 (42.3)
Nivolumab 21 (26.6) 13 (25.0)
Camrelizumab 9 (11.4) 4 (7.7)
Toripalimab 3 (3.8) 2 (3.8)
Sintilimab 1 (1.3) 1 (1.9)
Tislelizumab 1 (1.3) 1 (1.9)
Cemiplimab 1 (1.3) 1 (1.9)
PD-L1 inhibitors 15 (19.0) 8 (15.4)
Atezolizumab 10 (12.7) 6 (11.5)
Avelumab 3 (3.8) 1 (1.9)
Durvalumab 2 (2.5) 1 (1.9)
Treatment regimenc
ICI monotherapy 56 (70.9) 38 (73.1)
ICI + chemotherapy 11 (13.9) 7 (13.5)
ICI + targeted therapy 9 (11.4) 4 (7.7)
ICI + chemotherapy + targeted therapy 1 (1.3) 1 (1.9)
ICI + ICI 4 (5.1) 3 (5.8)
Biomarker requirementc
PD-L1 CPS ≥ 1 6 (7.6) 3 (5.8)
PD-L1 TPS ≥ 50% 1 (1.3) 1 (1.9)
PD-L1 TPS ≥ 1% 2 (2.5) 2 (3.8)
PD-L1 IPS ≥ 1% 2 (2.5) 1 (1.9)
MSI-H status 3 (3.8) 3 (5.8)
aPivotal clinical trials were defined as clinical trials that were described as pivotal for making recommendations in the CSCO guideline. bMajor participation was defined as the condition that participants of a clinical trial were exclusively Chinese; minor participation was defined as the presence of Chinese participants in a clinical trial; none participation was defined as the absence of Chinese participants in a clinical trial. cThe types of cancer, ICI, treatment regimen, and biomarker requirement were identified based on the recommendations in the CSCO guideline. Abbreviations: CPS, combined positive score; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; HNSCC, head and neck squamous cell carcinoma; ICI, immune checkpoint inhibitor; IPS, immune positive score; IQR, interquartile range; MSI-H, microsatellite instability-high; PD-1, programmed cell death-1; PD-L1, programmed cell death-ligand 1; TPS, tumor proportion score.
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Food US Administration Drug. Hematology/Oncology (Cancer) Approvals & Safety Notifications. (accessed April 1, 2021)
2 L Peng, BD Qin, K Xiao, S Xu, JS Yang, YS Zang, J Stebbing, LP Xie. A meta-analysis comparing responses of Asian versus non-Asian cancer patients to PD-1 and PD-L1 inhibitor-based therapy. OncoImmunology 2020; 9( 1): 1781333
https://doi.org/10.1080/2162402X.2020.1781333
3 H Zeng, W Chen, R Zheng, S Zhang, JS Ji, X Zou, C Xia, K Sun, Z Yang, H Li, N Wang, R Han, S Liu, H Li, H Mu, Y He, Y Xu, Z Fu, Y Zhou, J Jiang, Y Yang, J Chen, K Wei, D Fan, J Wang, F Fu, D Zhao, G Song, J Chen, C Jiang, X Zhou, X Gu, F Jin, Q Li, Y Li, T Wu, C Yan, J Dong, Z Hua, P Baade, F Bray, A Jemal, XQ Yu, J He. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health 2018; 6( 5): e555– e567
https://doi.org/10.1016/S2214-109X(18)30127-X
4 Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 2019; 39(1): 22
pmid: 31030667" target="_blank">31030667
5 JP Vandenbroucke, Elm E von, DG Altman, PC Gøtzsche, CD Mulrow, SJ Pocock, C Poole, JJ Schlesselman, M; STROBE Initiative Egger. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 2007; 4( 10): e297
https://doi.org/10.1371/journal.pmed.0040297
6 S Zhang, K Sun, R Zheng, H Zeng, S Wang, R Chen, W Wei, J He. Cancer incidence and mortality in China, 2015. J Natl Cancer Cent 2021; 1( 1): 2– 11
https://doi.org/10.1016/j.jncc.2020.12.001
7 Society of Clinical Oncology Chinese. Guidelines of Chinese Society of Clinical Oncology (CSCO): Immune Checkpoint Inhibitor Clinical Practice. Beijing: People’s Medical Publishing House, 2020
8 FH Wang, L Shen, J Li, ZW Zhou, H Liang, XT Zhang, L Tang, Y Xin, J Jin, YJ Zhang, XL Yuan, TS Liu, GX Li, Q Wu, HM Xu, JF Ji, YF Li, X Wang, S Yu, H Liu, WL Guan, RH Xu. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond) 2019; 39( 1): 10
https://doi.org/10.1186/s40880-019-0349-9
9 AB Benson, AP Venook, MM Al-Hawary, MA Arain, YJ Chen, KK Ciombor, S Cohen, HS Cooper, D Deming, L Farkas, I Garrido-Laguna, JL Grem, A Gunn, JR Hecht, S Hoffe, J Hubbard, S Hunt, KL Johung, N Kirilcuk, S Krishnamurthi, WA Messersmith, J Meyerhardt, ED Miller, MF Mulcahy, S Nurkin, MJ Overman, A Parikh, H Patel, K Pedersen, L Saltz, C Schneider, D Shibata, JM Skibber, CT Sofocleous, EM Stoffel, E Stotsky-Himelfarb, CG Willett, KM Gregory, LA Gurski. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19( 3): 329– 359
https://doi.org/10.6004/jnccn.2021.0012
10 MJ Overman F Bergamo RS McDermott M Aglietta F Chen F Gelsomino M Wong M Morse E Van Cutsem A Hendlisz B Neyns RA Moss H Zhao ZA Cao S Kamble S Kopetz T Andre. Nivolumab in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): long-term survival according to prior line of treatment from CheckMate-142. J Clin Oncol 2018. 36(4 suppl): 554
11 DT Le, JN Durham, KN Smith, H Wang, BR Bartlett, LK Aulakh, S Lu, H Kemberling, C Wilt, BS Luber, F Wong, NS Azad, AA Rucki, D Laheru, R Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, TF Greten, AG Duffy, KK Ciombor, AD Eyring, BH Lam, A Joe, SP Kang, M Holdhoff, L Danilova, L Cope, C Meyer, S Zhou, RM Goldberg, DK Armstrong, KM Bever, AN Fader, J Taube, F Housseau, D Spetzler, N Xiao, DM Pardoll, N Papadopoulos, KW Kinzler, JR Eshleman, B Vogelstein, RA Anders, LA Jr Diaz. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357( 6349): 409– 413
https://doi.org/10.1126/science.aan6733
12 A Haslam, V Prasad. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2019; 2( 5): e192535
https://doi.org/10.1001/jamanetworkopen.2019.2535
13 H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71( 3): 209– 249
https://doi.org/10.3322/caac.21660
14 L Fan, K Strasser-Weippl, JJ Li, J St Louis, DM Finkelstein, KD Yu, WQ Chen, ZM Shao, PE Goss. Breast cancer in China. Lancet Oncol 2014; 15( 7): e279– e289
https://doi.org/10.1016/S1470-2045(13)70567-9
15 P Schmid, S Adams, HS Rugo, A Schneeweiss, CH Barrios, H Iwata, V Diéras, R Hegg, SA Im, Wright G Shaw, V Henschel, L Molinero, SY Chui, R Funke, A Husain, EP Winer, S Loi, LA; IMpassion130 Trial Investigators Emens. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379( 22): 2108– 2121
https://doi.org/10.1056/NEJMoa1809615
16 ES Stovgaard, A Dyhl-Polk, A Roslind, E Balslev, D Nielsen. PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review. Breast Cancer Res Treat 2019; 174( 3): 571– 584
https://doi.org/10.1007/s10549-019-05130-1
17 WD Foulkes, IE Smith, JS Reis-Filho. Triple-negative breast cancer. N Engl J Med 2010; 363( 20): 1938– 1948
https://doi.org/10.1056/NEJMra1001389
18 X Jiang, H Tang, T Chen. Epidemiology of gynecologic cancers in China. J Gynecol Oncol 2018; 29( 1): e7
https://doi.org/10.3802/jgo.2018.29.e7
19 V Verma, T Sprave, W Haque, CB 2nd Simone, JY Chang, JW Welsh, CR Jr Thomas. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J Immunother Cancer 2018; 6( 1): 128
https://doi.org/10.1186/s40425-018-0442-7
20 S Iivanainen, JP Koivunen. Possibilities of improving the clinical value of immune checkpoint inhibitor therapies in cancer care by optimizing patient selection. Int J Mol Sci 2020; 21( 2): 556
https://doi.org/10.3390/ijms21020556
21 R Bai, Z Lv, D Xu, J Cui. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2020; 8( 1): 34
https://doi.org/10.1186/s40364-020-00209-0
22 BY Nabet, MS Esfahani, EJ Moding, EG Hamilton, JJ Chabon, H Rizvi, CB Steen, AA Chaudhuri, CL Liu, AB Hui, D Almanza, H Stehr, L Gojenola, RF Bonilla, MC Jin, YJ Jeon, D Tseng, C Liu, T Merghoub, JW Neal, HA Wakelee, SK Padda, KJ Ramchandran, M Das, AJ Plodkowski, C Yoo, EL Chen, RB Ko, AM Newman, MD Hellmann, AA Alizadeh, M Diehn. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell 2020; 183( 2): 363– 376.e13
https://doi.org/10.1016/j.cell.2020.09.001
23 P Jiang, S Gu, D Pan, J Fu, A Sahu, X Hu, Z Li, N Traugh, X Bu, B Li, J Liu, GJ Freeman, MA Brown, KW Wucherpfennig, XS Liu. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 2018; 24( 10): 1550– 1558
https://doi.org/10.1038/s41591-018-0136-1
24 V Anagnostou, N Niknafs, K Marrone, DC Bruhm, JR White, J Naidoo, K Hummelink, K Monkhorst, F Lalezari, M Lanis, S Rosner, JE Reuss, KN Smith, V Adleff, K Rodgers, Z Belcaid, L Rhymee, B Levy, J Feliciano, CL Hann, DS Ettinger, C Georgiades, F Verde, P Illei, QK Li, AS Baras, E Gabrielson, MV Brock, R Karchin, DM Pardoll, SB Baylin, JR Brahmer, RB Scharpf, PM Forde, VE Velculescu. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat Can 2020; 1( 1): 99– 111
https://doi.org/10.1038/s43018-019-0008-8
25 JD Twomey, B Zhang. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J 2021; 23( 2): 39
https://doi.org/10.1208/s12248-021-00574-0
26 C Xie, AG Duffy, G Brar, S Fioravanti, D Mabry-Hrones, M Walker, CM Bonilla, BJ Wood, DE Citrin, EM Gil Ramirez, FE Escorcia, B Redd, JM Hernandez, JL Davis, B Gasmi, D Kleiner, SM Steinberg, JC Jones, TF Greten. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin Cancer Res 2020; 26( 10): 2318– 2326
https://doi.org/10.1158/1078-0432.CCR-19-3624
27 M Ueno, M Ikeda, C Morizane, S Kobayashi, I Ohno, S Kondo, N Okano, K Kimura, S Asada, Y Namba, T Okusaka, J Furuse. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol 2019; 4( 8): 611– 621
https://doi.org/10.1016/S2468-1253(19)30086-X
28 RV Lukas, J Rodon, K Becker, ET Wong, K Shih, M Touat, M Fassò, S Osborne, L Molinero, C O’Hear, W Grossman, J Baehring. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol 2018; 140( 2): 317– 328
https://doi.org/10.1007/s11060-018-2955-9
29 DA Reardon, AA Brandes, A Omuro, P Mulholland, M Lim, A Wick, J Baehring, MS Ahluwalia, P Roth, O Bähr, S Phuphanich, JM Sepulveda, Souza P De, S Sahebjam, M Carleton, K Tatsuoka, C Taitt, R Zwirtes, J Sampson, M Weller. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020; 6( 7): 1003– 1010
https://doi.org/10.1001/jamaoncol.2020.1024
30 CRP da Veiga, CP da Veiga, AP Drummond-Lage. Concern over cost of and access to cancer treatments: a meta-narrative review of nivolumab and pembrolizumab studies. Crit Rev Oncol Hematol 2018; 129 : 133– 145
https://doi.org/10.1016/j.critrevonc.2018.07.002
31 M de Miguel, E Calvo. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020; 38( 3): 326– 333
https://doi.org/10.1016/j.ccell.2020.07.004
32 SL Mushti, F Mulkey, R Sridhara. Evaluation of overall response rate and progression-free survival as potential surrogate endpoints for overall survival in immunotherapy trials. Clin Cancer Res 2018; 24( 10): 2268– 2275
https://doi.org/10.1158/1078-0432.CCR-17-1902
33 T André, KK Shiu, TW Kim, BV Jensen, LH Jensen, C Punt, D Smith, R Garcia-Carbonero, M Benavides, P Gibbs, la Fouchardiere C de, F Rivera, E Elez, J Bendell, DT Le, T Yoshino, Cutsem E Van, P Yang, MZH Farooqui, P Marinello, LA Jr; KEYNOTE-177 Investigators Diaz. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 2020; 383( 23): 2207– 2218
https://doi.org/10.1056/NEJMoa2017699
[1] FMD-21056-OF-BCM_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed