Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target
Qinming Zhou1, Lu He1, Jin Hu2, Yining Gao1, Dingding Shen1,3, You Ni1, Yuening Qin4, Huafeng Liang5, Jun Liu1(), Weidong Le6(), Sheng Chen1,3()
1. Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 2. Department of Neurology, the First Hospital of Jiaxing & the Affiliated Hospital of Jiaxing University, Jiaxing 314000, China; 3. Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226007, China; 4. Department of Dermatology, The People’s Hospital of Rushan, Weihai 264500, China; 5. Department of Neurology, Xinrui Hospital, Wuxi 214000, China; 6. Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu 610072, China
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.
Corresponding Author(s):
Jun Liu,Weidong Le,Sheng Chen
引用本文:
. [J]. Frontiers of Medicine, 2022, 16(5): 723-735.
Qinming Zhou, Lu He, Jin Hu, Yining Gao, Dingding Shen, You Ni, Yuening Qin, Huafeng Liang, Jun Liu, Weidong Le, Sheng Chen. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front. Med., 2022, 16(5): 723-735.
MA van Es, O Hardiman, A Chio, A Al-Chalabi, RJ Pasterkamp, JH Veldink, LH van den Berg. Amyotrophic lateral sclerosis. Lancet 2017; 390( 10107): 2084– 2098 https://doi.org/10.1016/S0140-6736(17)31287-4
2
T Fang, A Al Khleifat, JH Meurgey, A Jones, PN Leigh, G Bensimon, A Al-Chalabi. Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging study. Lancet Neurol 2018; 17( 5): 416– 422 https://doi.org/10.1016/S1474-4422(18)30054-1
3
MK Jaiswal. Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 2019; 39( 2): 733– 748 https://doi.org/10.1002/med.21528
4
J Zhang, Y Liu, X Liu, S Li, C Cheng, S Chen, W Le. Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model. Transl Neurodegener 2018; 7( 1): 35 https://doi.org/10.1186/s40035-018-0138-4
R Mejzini LL Flynn IL Pitout S Fletcher SD Wilton PA Akkari. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 2019; 13: 1310
7
O Hardiman, LH van den Berg, MC Kiernan. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 7( 11): 639– 649 https://doi.org/10.1038/nrneurol.2011.153
G Ferrari, H Langen, M Naito, J Pieters. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97( 4): 435– 447 https://doi.org/10.1016/S0092-8674(00)80754-0
L Li, X Zhang, W Le. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008; 4( 3): 290– 293 https://doi.org/10.4161/auto.5524
12
BR Brooks, RG Miller, M Swash, TL; World Federation of Neurology Research Group on Motor Neuron Diseases Munsat. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1( 5): 293– 299 https://doi.org/10.1080/146608200300079536
13
Cui L, Pu C, Fan D. Chinese guidelines for diagnosis and treatment of amyotrophic lateral sclerosis. Chin J Neurol (Zhonghua Shen Jing Ke Za Zhi) 2012; 45(7): 531−533 (in Chinese)
14
M Kraemer, M Buerger, P Berlit. Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2010; 112( 2): 103– 105 https://doi.org/10.1016/j.clineuro.2009.10.014
15
X Xu D Shen Y Gao Q Zhou Y Ni H Meng H Shi W Le S Chen S Chen. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10( 1): 29
pmid: 34372914" target="_blank">34372914
16
N Hensel P Claus. The actin cytoskeleton in SMA and ALS: how does it contribute to motoneuron degeneration? Neuroscientist 2018; 24( 1): 54− 72
17
M Oberstadt, J Claßen, T Arendt, M Holzer. TDP-43 and cytoskeletal proteins in ALS. Mol Neurobiol 2018; 55( 4): 3143– 3151 https://doi.org/10.1007/s12035-017-0543-1
18
X Zhang, S Chen, L Song, Y Tang, Y Shen, L Jia, W Le. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 2014; 10( 4): 588– 602 https://doi.org/10.4161/auto.27710
19
QM Zhou, JJ Zhang, S Li, S Chen, WD Le. n-butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD1G93A mouse model of amyotrophic lateral sclerosis. CNS Neurosci Ther 2017; 23( 5): 375– 385 https://doi.org/10.1111/cns.12681
20
JJ Zhang, QM Zhou, S Chen, WD Le. Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model. CNS Neurosci Ther 2018; 24( 12): 1163– 1174 https://doi.org/10.1111/cns.12855
21
M Martorella, K Barford, B Winkler, CD Deppmann. Emergent role of coronin-1a in neuronal signaling. Vitam Horm 2017; 104 : 113– 131 https://doi.org/10.1016/bs.vh.2016.10.002
22
D Suo, J Park, AW Harrington, LS Zweifel, S Mihalas, CD Deppmann. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci 2014; 17( 1): 36– 45 https://doi.org/10.1038/nn.3593
23
S BoseDasgupta, J Pieters. Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 2014; 588( 21): 3898– 3905 https://doi.org/10.1016/j.febslet.2014.08.036
24
S Seto, K Tsujimura, Y Koide. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell Microbiol 2012; 14( 5): 710– 727 https://doi.org/10.1111/j.1462-5822.2012.01754.x
25
R Jayachandran, J Pieters. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28( 2): 825– 828 https://doi.org/10.1016/j.intimp.2015.03.045
26
R Jayachandran, V Sundaramurthy, B Combaluzier, P Mueller, H Korf, K Huygen, T Miyazaki, I Albrecht, J Massner, J Pieters. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 2007; 130( 1): 37– 50 https://doi.org/10.1016/j.cell.2007.04.043
27
Y Tong, F Song. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation. Autophagy 2015; 11( 7): 1192– 1195 https://doi.org/10.1080/15548627.2015.1054594
28
YX Hu XS Han Q Jing. Ca(2+) ion and autophagy. In: Qin ZH. Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Singapore: Springer, 2019: 151− 166