Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (5): 784-798   https://doi.org/10.1007/s11684-021-0911-0
  本期目录
Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma
Yan Zhang1, Baoyuan Zhang1, Yongyun Li2, Yuting Dai1, Jiaoyang Li1, Donghe Li1, Zhizhou Xia1, Jianming Zhang1, Ping Liu1, Ming Chen1, Bo Jiao1(), Ruibao Ren1,3()
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
3. Department of Biology, Brandeis University, Waltham, MA 02454, USA
 全文: PDF(6791 KB)   HTML
Abstract

More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.

Key wordsuveal melanoma    mutant GNAQ/11    palmitoylation    BCL2    combination target therapy
收稿日期: 2021-06-01      出版日期: 2022-11-18
Corresponding Author(s): Bo Jiao,Ruibao Ren   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(5): 784-798.
Yan Zhang, Baoyuan Zhang, Yongyun Li, Yuting Dai, Jiaoyang Li, Donghe Li, Zhizhou Xia, Jianming Zhang, Ping Liu, Ming Chen, Bo Jiao, Ruibao Ren. Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma. Front. Med., 2022, 16(5): 784-798.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-021-0911-0
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I5/784
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 DK Simanshu, DV Nissley, F McCormick. RAS proteins and their regulators in human disease. Cell 2017; 170( 1): 17– 33
https://doi.org/10.1016/j.cell.2017.06.009 pmid: 28666118
2 RT Dorsam, JS Gutkind. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7( 2): 79– 94
https://doi.org/10.1038/nrc2069 pmid: 17251915
3 M O’Hayre, J Vázquez-Prado, I Kufareva, EW Stawiski, TM Handel, S Seshagiri, JS Gutkind. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 2013; 13( 6): 412– 424
https://doi.org/10.1038/nrc3521 pmid: 23640210
4 MJ Jager, CL Shields, CM Cebulla, MH Abdel-Rahman, HE Grossniklaus, MH Stern, RD Carvajal, RN Belfort, R Jia, JA Shields, BE Damato. Uveal melanoma. Nat Rev Dis Primers 2020; 6( 1): 24
https://doi.org/10.1038/s41572-020-0158-0 pmid: 32273508
5 P Jovanovic, M Mihajlovic, J Djordjevic-Jocic, S Vlajkovic, S Cekic, V Stefanovic. Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 2013; 6( 7): 1230– 1244
pmid: 23826405
6 R Seth, H Messersmith, V Kaur, JM Kirkwood, R Kudchadkar, JL McQuade, A Provenzano, U Swami, J Weber, KC Alluri, S Agarwala, PA Ascierto, MB Atkins, N Davis, MS Ernstoff, MB Faries, JS Gold, S Guild, DE Gyorki, NI Khushalani, MO Meyers, C Robert, M Santinami, A Sehdev, VK Sondak, G Spurrier, KK Tsai, A van Akkooi, P Funchain. Systemic therapy for melanoma: ASCO Guideline. J Clin Oncol 2020; 38( 33): 3947– 3970
https://doi.org/10.1200/JCO.20.00198 pmid: 32228358
7 Q Hu, KM Shokat. Disease-causing mutations in the G protein Gαs subvert the roles of GDP and GTP. Cell 2018; 173( 5): 1254– 1264.e11
https://doi.org/10.1016/j.cell.2018.03.018 pmid: 29628140
8 X Chen, Q Wu, P Depeille, P Chen, S Thornton, H Kalirai, SE Coupland, JP Roose, BC Bastian. RasGRP3 mediates MAPK pathway activation in GNAQ mutant uveal melanoma. Cancer Cell 2017; 31( 5): 685– 696.e6
https://doi.org/10.1016/j.ccell.2017.04.002 pmid: 28486107
9 Raamsdonk CD Van, KG Griewank, MB Crosby, MC Garrido, S Vemula, T Wiesner, AC Obenauf, W Wackernagel, G Green, N Bouvier, MM Sozen, G Baimukanova, R Roy, A Heguy, I Dolgalev, R Khanin, K Busam, MR Speicher, J O’Brien, BC Bastian. Mutations in GNA11 in uveal melanoma. N Engl J Med 2010; 363( 23): 2191– 2199
https://doi.org/10.1056/NEJMoa1000584 pmid: 21083380
10 X Feng, N Arang, DC Rigiracciolo, JS Lee, H Yeerna, Z Wang, S Lubrano, A Kishore, JA Pachter, GM König, M Maggiolini, E Kostenis, DD Schlaepfer, P Tamayo, Q Chen, E Ruppin, JS Gutkind. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the Hippo pathway through FAK. Cancer Cell 2019; 35( 3): 457– 472.e5
https://doi.org/10.1016/j.ccell.2019.01.009 pmid: 30773340
11 X Feng, MS Degese, R Iglesias-Bartolome, JP Vaque, AA Molinolo, M Rodrigues, MR Zaidi, BR Ksander, G Merlino, A Sodhi, Q Chen, JS Gutkind. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25( 6): 831– 845
https://doi.org/10.1016/j.ccr.2014.04.016 pmid: 24882515
12 FX Yu, J Luo, JS Mo, G Liu, YC Kim, Z Meng, L Zhao, G Peyman, H Ouyang, W Jiang, J Zhao, X Chen, L Zhang, CY Wang, BC Bastian, K Zhang, KL Guan. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25( 6): 822– 830
https://doi.org/10.1016/j.ccr.2014.04.017 pmid: 24882516
13 MJC Vader, MC Madigan, M Versluis, HM Suleiman, G Gezgin, NA Gruis, JJ Out-Luiting, W Bergman, RM Verdijk, MJ Jager, PA van der Velden. GNAQ and GNA11 mutations and downstream YAP activation in choroidal nevi. Br J Cancer 2017; 117( 6): 884– 887
https://doi.org/10.1038/bjc.2017.259 pmid: 28809862
14 V Chua, D Lapadula, C Randolph, JL Benovic, PB Wedegaertner, AE Aplin. Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol Cancer Res 2017; 15( 5): 501– 506
https://doi.org/10.1158/1541-7786.MCR-17-0007 pmid: 28223438
15 T Steeb, A Wessely, T Ruzicka, MV Heppt, C Berking. How to MEK the best of uveal melanoma: a systematic review on the efficacy and safety of MEK inhibitors in metastatic or unresectable uveal melanoma. Eur J Cancer 2018; 103 : 41– 51
https://doi.org/10.1016/j.ejca.2018.08.005 pmid: 30205280
16 S Annala, X Feng, N Shridhar, F Eryilmaz, J Patt, J Yang, EM Pfeil, RD Cervantes-Villagrana, A Inoue, F Häberlein, T Slodczyk, R Reher, S Kehraus, S Monteleone, R Schrage, N Heycke, U Rick, S Engel, A Pfeifer, P Kolb, G König, M Bünemann, T Tüting, J Vázquez-Prado, JS Gutkind, E Gaffal, E Kostenis. Direct targeting of Gαq and Gα11 oncoproteins in cancer cells. Sci Signal 2019; 12( 573): eaau5948
https://doi.org/10.1126/scisignal.aau5948 pmid: 30890659
17 AD Singh, ME Turell, AK Topham. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 2011; 118( 9): 1881– 1885
https://doi.org/10.1016/j.ophtha.2011.01.040 pmid: 21704381
18 JJ Arnold, KJ Blinder, NM Bressler, SB Bressler, A Burdan, L Haynes, JI Lim, JW Miller, MJ Potter, A Reaves, PJ Rosenfeld, M Sickenberg, JS Slakter, G Soubrane, HA Strong, M; Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study Group; Verteporfin in Photodynamic Therapy Study Group Stur. Acute severe visual acuity decrease after photodynamic therapy with verteporfin: case reports from randomized clinical trials—TAP and VIP report no. 3. Am J Ophthalmol 2004; 137( 4): 683– 696
https://doi.org/10.1016/j.ajo.2003.11.059 pmid: 15059708
19 JS Khalili, X Yu, J Wang, BC Hayes, MA Davies, G Lizee, B Esmaeli, SE Woodman. Combination small molecule MEK and PI3K inhibition enhances uveal melanoma cell death in a mutant GNAQ- and GNA11-dependent manner. Clin Cancer Res 2012; 18( 16): 4345– 4355
https://doi.org/10.1158/1078-0432.CCR-11-3227 pmid: 22733540
20 X Chen, Q Wu, L Tan, D Porter, MJ Jager, C Emery, BC Bastian. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 2014; 33( 39): 4724– 4734
https://doi.org/10.1038/onc.2013.418 pmid: 24141786
21 JS Paradis, M Acosta, R Saddawi-Konefka, A Kishore, F Gomes, N Arang, M Tiago, S Coma, S Lubrano, X Wu, K Ford, CP Day, G Merlino, P Mali, JA Pachter, T Sato, AE Aplin, JS Gutkind. Synthetic lethal screens reveal cotargeting FAK and MEK as a multimodal precision therapy for GNAQ-driven uveal melanoma. Clin Cancer Res 2021; 27( 11): 3190– 3200
https://doi.org/10.1158/1078-0432.CCR-20-3363 pmid: 33568347
22 MS Sagoo, JW Harbour, J Stebbing, AM Bowcock. Combined PKC and MEK inhibition for treating metastatic uveal melanoma. Oncogene 2014; 33( 39): 4722– 4723
https://doi.org/10.1038/onc.2013.555 pmid: 24413085
23 J Takasaki, T Saito, M Taniguchi, T Kawasaki, Y Moritani, K Hayashi, M Kobori. A novel Gαq/11-selective inhibitor. J Biol Chem 2004; 279( 46): 47438– 47445
https://doi.org/10.1074/jbc.M408846200 pmid: 15339913
24 A Nishimura, K Kitano, J Takasaki, M Taniguchi, N Mizuno, K Tago, T Hakoshima, H Itoh. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci USA 2010; 107( 31): 13666– 13671
https://doi.org/10.1073/pnas.1003553107 pmid: 20639466
25 K Zaima, J Deguchi, Y Matsuno, T Kaneda, Y Hirasawa, H Morita. Vasorelaxant effect of FR900359 from Ardisia crenata on rat aortic artery. J Nat Med 2013; 67( 1): 196– 201
https://doi.org/10.1007/s11418-012-0644-0 pmid: 22388972
26 R Schrage, AL Schmitz, E Gaffal, S Annala, S Kehraus, D Wenzel, KM Büllesbach, T Bald, A Inoue, Y Shinjo, S Galandrin, N Shridhar, M Hesse, M Grundmann, N Merten, TH Charpentier, M Martz, AJ Butcher, T Slodczyk, S Armando, M Effern, Y Namkung, L Jenkins, V Horn, A Stößel, H Dargatz, D Tietze, D Imhof, C Galés, C Drewke, CE Müller, M Hölzel, G Milligan, AB Tobin, J Gomeza, HG Dohlman, J Sondek, TK Harden, M Bouvier, SA Laporte, J Aoki, BK Fleischmann, K Mohr, GM König, T Tüting, E Kostenis. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 2015; 6( 1): 10156
https://doi.org/10.1038/ncomms10156 pmid: 26658454
27 IM Ahearn, K Haigis, D Bar-Sagi, MR Philips. Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 2012; 13 : 39– 51
https://doi.org/10.1038/nrm3255 pmid: 22189424
28 ME Linder, P Middleton, JR Hepler, R Taussig, AG Gilman, SM Mumby. Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci USA 1993; 90( 8): 3675– 3679
https://doi.org/10.1073/pnas.90.8.3675 pmid: 8475115
29 I De, S Sadhukhan. Emerging roles of DHHC-mediated protein S-palmitoylation in physiological and pathophysiological context. Eur J Cell Biol 2018; 97( 5): 319– 338
https://doi.org/10.1016/j.ejcb.2018.03.005 pmid: 29602512
30 J Greaves, LH Chamberlain. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem Sci 2011; 36( 5): 245– 253
https://doi.org/10.1016/j.tibs.2011.01.003 pmid: 21388813
31 B Cuiffo, R Ren. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood 2010; 115( 17): 3598– 3605
https://doi.org/10.1182/blood-2009-03-213876 pmid: 20200357
32 P Liu, B Jiao, R Zhang, H Zhao, C Zhang, M Wu, D Li, X Zhao, Q Qiu, J Li, R Ren. Palmitoylacyltransferase Zdhhc9 inactivation mitigates leukemogenic potential of oncogenic Nras. Leukemia 2016; 30( 5): 1225– 1228
https://doi.org/10.1038/leu.2015.293 pmid: 26493479
33 Z Xia, X Zhang, P Liu, R Zhang, Z Huang, D Li, X Xiao, M Wu, N Ning, Q Zhang, J Zhang, M Liu, B Jiao, R Ren. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death Dis 2021; 12( 1): 54
https://doi.org/10.1038/s41419-020-03311-1 pmid: 33423045
34 JA Duncan, AG Gilman. Autoacylation of G protein alpha subunits. J Biol Chem 1996; 271( 38): 23594– 23600
https://doi.org/10.1074/jbc.271.38.23594 pmid: 8798571
35 MA Grassie, JF McCallum, F Guzzi, AI Magee, G Milligan, M Parenti. The palmitoylation status of the G-protein G(o)1 alpha regulates its activity of interaction with the plasma membrane. Biochem J 1994; 302( 3): 913– 920
https://doi.org/10.1042/bj3020913 pmid: 7945220
36 AS Sikarwar, M Hinton, KT Santhosh, P Chelikani, S Dakshinamurti. Palmitoylation of Gαq determines its association with the thromboxane receptor in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 50( 1): 135– 143
pmid: 23962128
37 DS Evanko, MM Thiyagarajan, DP Siderovski, PB Wedegaertner. Gβγ isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Gαs and Gαq. J Biol Chem 2001; 276( 26): 23945– 23953
https://doi.org/10.1074/jbc.M101154200 pmid: 11294873
38 R Tsutsumi, Y Fukata, J Noritake, T Iwanaga, F Perez, M Fukata. Identification of G protein alpha subunit-palmitoylating enzyme. Mol Cell Biol 2009; 29( 2): 435– 447
https://doi.org/10.1128/MCB.01144-08 pmid: 19001095
39 M Wu, J Huang, J Zhang, C Benes, B Jiao, R Ren. N-Arachidonoyl dopamine inhibits NRAS neoplastic transformation by suppressing its plasma membrane translocation. Mol Cancer Ther 2017; 16( 1): 57– 67
https://doi.org/10.1158/1535-7163.MCT-16-0419 pmid: 27760835
40 N Ning, Y Yu, M Wu, R Zhang, T Zhang, C Zhu, L Huang, CH Yun, CH Benes, J Zhang, X Deng, Q Chen, R Ren. A novel microtubule inhibitor overcomes multidrug resistance in tumors. Cancer Res 2018; 78( 20): 5949– 5957
https://doi.org/10.1158/0008-5472.CAN-18-0455 pmid: 30135190
41 F He, J Yu, J Yang, S Wang, A Zhuang, H Shi, X Gu, X Xu, P Chai, R Jia. m6A RNA hypermethylation-induced BACE2 boosts intracellular calcium release and accelerates tumorigenesis of ocular melanoma. Mol Ther 2021; 29( 6): 2121– 2133
https://doi.org/10.1016/j.ymthe.2021.02.014 pmid: 33601055
42 K Slater, AB Heeran, S Garcia-Mulero, H Kalirai, R Sanz-Pamplona, A Rahman, N Al-Attar, M Helmi, F O’Connell, R Bosch, A Portela, A Villanueva, WM Gallagher, LD Jensen, JM Piulats, SE Coupland, J O’Sullivan, BN Kennedy. High cysteinyl leukotriene receptor 1 expression correlates with poor survival of uveal melanoma patients and cognate antagonist drugs modulate the growth, cancer secretome, and metabolism of uveal melanoma cells. Cancers (Basel) 2020; 12( 10): 2950
https://doi.org/10.3390/cancers12102950 pmid: 33066024
43 S Tan, H Yang, S Xue, J Qiao, M Salarian, K Hekmatyar, Y Meng, R Mukkavilli, F Pu, OY Odubade, W Harris, Y Hai, ML Yushak, VM Morales-Tirado, P Mittal, PZ Sun, D Lawson, HE Grossniklaus, JJ Yang. Chemokine receptor 4 targeted protein MRI contrast agent for early detection of liver metastases. Sci Adv 2020; 6( 6): eaav7504
https://doi.org/10.1126/sciadv.aav7504 pmid: 32083172
44 MJ Jager, JAB Magner, BR Ksander, SR Dubovy. Uveal melanoma cell lines: where do they come from? (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2016; 114 : T5
pmid: 28018010
45 X Yu, G Ambrosini, J Roszik, AK Eterovic, K Stempke-Hale, EA Seftor, C Chattopadhyay, E Grimm, RD Carvajal, MJ Hendrix, FS Hodi, GK Schwartz, SE Woodman. Genetic analysis of the ‘uveal melanoma’ C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line. Pigment Cell Melanoma Res 2015; 28( 3): 357– 359
https://doi.org/10.1111/pcmr.12345 pmid: 25515650
46 Y Li, J He, C Qiu, Q Shang, G Qian, X Fan, S Ge, R Jia. The oncolytic virus H101 combined with GNAQ siRNA-mediated knockdown reduces uveal melanoma cell viability. J Cell Biochem 2019; 120( 4): 5766– 5776
https://doi.org/10.1002/jcb.27863 pmid: 30320917
47 X Wu, M Zhu, JA Fletcher, A Giobbie-Hurder, FS Hodi. The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma. PLoS One 2012; 7( 1): e29622
https://doi.org/10.1371/journal.pone.0029622 pmid: 22253748
48 M O’Hayre, MS Degese, JS Gutkind. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 2014; 27 : 126– 135
https://doi.org/10.1016/j.ceb.2014.01.005 pmid: 24508914
49 Y Pylayeva-Gupta, E Grabocka, D Bar-Sagi. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11( 11): 761– 774
https://doi.org/10.1038/nrc3106 pmid: 21993244
50 M Wang, PJ Casey. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 2016; 17( 2): 110– 122
https://doi.org/10.1038/nrm.2015.11 pmid: 26790532
51 ME Linder, RJ Deschenes. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 2007; 8( 1): 74– 84
https://doi.org/10.1038/nrm2084 pmid: 17183362
52 JH Yoo, DS Shi, AH Grossmann, LK Sorensen, Z Tong, TM Mleynek, A Rogers, W Zhu, JR Richards, JM Winter, J Zhu, C Dunn, A Bajji, M Shenderovich, AL Mueller, SE Woodman, JW Harbour, KR Thomas, SJ Odelberg, K Ostanin, DY Li. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell 2016; 29( 6): 889– 904
https://doi.org/10.1016/j.ccell.2016.04.015 pmid: 27265506
53 FX Yu, K Zhang, KL Guan. YAP as oncotarget in uveal melanoma. Oncoscience 2014; 1( 7): 480– 481
https://doi.org/10.18632/oncoscience.57 pmid: 25594048
54 MD Onken, CM Makepeace, KM Kaltenbronn, SM Kanai, TD Todd, S Wang, TJ Broekelmann, PK Rao, JA Cooper, KJ Blumer. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci Signal 2018; 11( 546): eaao6852
https://doi.org/10.1126/scisignal.aao6852 pmid: 30181242
55 H Yao, J Lan, C Li, H Shi, JP Brosseau, H Wang, H Lu, C Fang, Y Zhang, L Liang, X Zhou, C Wang, Y Xue, Y Cui, J Xu. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 2019; 3( 4): 306– 317
https://doi.org/10.1038/s41551-019-0375-6 pmid: 30952982
56 Y Lu, JS Yan, L Xia, K Qin, QQ Yin, HT Xu, MQ Gao, XN Qu, YT Sun, GQ Chen. 2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia. Haematologica 2019; 104( 1): 102– 112
https://doi.org/10.3324/haematol.2018.191916 pmid: 30076181
57 F Némati, Montrion C de, G Lang, L Kraus-Berthier, G Carita, X Sastre-Garau, A Berniard, D Vallerand, O Geneste, Plater L de, A Pierré, B Lockhart, L Desjardins, S Piperno-Neumann, S Depil, D Decaudin. Targeting Bcl-2/Bcl-XL induces antitumor activity in uveal melanoma patient-derived xenografts. PLoS One 2014; 9( 1): e80836
https://doi.org/10.1371/journal.pone.0080836 pmid: 24454684
[1] FMD-21065-OF-RRB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed