PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China 3. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.
GXY Zheng, JM Terry, P Belgrader, P Ryvkin, ZW Bent, R Wilson, SB Ziraldo, TD Wheeler, GP McDermott, J Zhu, MT Gregory, J Shuga, L Montesclaros, JG Underwood, DA Masquelier, SY Nishimura, M Schnall-Levin, PW Wyatt, CM Hindson, R Bharadwaj, A Wong, KD Ness, LW Beppu, HJ Deeg, C McFarland, KR Loeb, WJ Valente, NG Ericson, EA Stevens, JP Radich, TS Mikkelsen, BJ Hindson, JH Bielas. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049 https://doi.org/10.1038/ncomms14049
pmid: 28091601
2
J Cao, JS Packer, V Ramani, DA Cusanovich, C Huynh, R Daza, X Qiu, C Lee, SN Furlan, FJ Steemers, A Adey, RH Waterston, C Trapnell, J Shendure. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357(6352): 661–667 https://doi.org/10.1126/science.aam8940
pmid: 28818938
3
S Aibar, CB González-Blas, T Moerman, VA Huynh-Thu, H Imrichova, G Hulselmans, F Rambow, JC Marine, P Geurts, J Aerts, J van den Oord, ZK Atak, J Wouters, S Aerts. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083–1086 https://doi.org/10.1038/nmeth.4463
pmid: 28991892
4
E Papalexi, R Satija. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2018; 18(1): 35–45 https://doi.org/10.1038/nri.2017.76
pmid: 28787399
5
Q Zhang, Y He, N Luo, SJ Patel, Y Han, R Gao, M Modak, S Carotta, C Haslinger, D Kind, GW Peet, G Zhong, S Lu, W Zhu, Y Mao, M Xiao, M Bergmann, X Hu, SP Kerkar, AB Vogt, S Pflanz, K Liu, J Peng, X Ren, Z Zhang. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179(4): 829–845.e20 https://doi.org/10.1016/j.cell.2019.10.003
pmid: 31675496
6
S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell−cell communication using CellChat. Nat Commun 2021; 12(1): 1088 https://doi.org/10.1038/s41467-021-21246-9
pmid: 33597522
P Bost, A Giladi, Y Liu, Y Bendjelal, G Xu, E David, R Blecher-Gonen, M Cohen, C Medaglia, H Li, A Deczkowska, S Zhang, B Schwikowski, Z Zhang, I Amit. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 2020; 181(7): 1475–1488.e12 https://doi.org/10.1016/j.cell.2020.05.006
pmid: 32479746
10
A Srivastava, L Malik, T Smith, I Sudbery, R Patro. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol 2019; 20(1): 65 https://doi.org/10.1186/s13059-019-1670-y
pmid: 30917859
11
T Smith, A Heger, I Sudbery. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017; 27(3): 491–499 https://doi.org/10.1101/gr.209601.116
pmid: 28100584
A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21 https://doi.org/10.1093/bioinformatics/bts635
pmid: 23104886
T Stuart, A Butler, P Hoffman, C Hafemeister, E Papalexi, WM Mauck 3rd, Y Hao, M Stoeckius, P Smibert, R Satija. Comprehensive integration of single-cell data. Cell 2019; 177(7): 1888–1902.e21 https://doi.org/10.1016/j.cell.2019.05.031
pmid: 31178118
16
I Korsunsky, N Millard, J Fan, K Slowikowski, F Zhang, K Wei, Y Baglaenko, M Brenner, PR Loh, S Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16(12): 1289–1296 https://doi.org/10.1038/s41592-019-0619-0
pmid: 31740819
17
HTN Tran, KS Ang, M Chevrier, X Zhang, NYS Lee, M Goh, J Chen. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 2020; 21(1): 12 https://doi.org/10.1186/s13059-019-1850-9
pmid: 31948481
18
A Alexa, J Rahnenführer. Gene set enrichment analysis with topGO. Bioconductor Improv 2009; 27: 1–26
19
A Liberzon, A Subramanian, R Pinchback, H Thorvaldsdóttir, P Tamayo, JP Mesirov. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27(12): 1739–1740 https://doi.org/10.1093/bioinformatics/btr260
pmid: 21546393
H Sarkar, A Srivastava, R Patro. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Bioinformatics 2019; 35(14): i136–i144 https://doi.org/10.1093/bioinformatics/btz351
pmid: 31510649
AC Frazee, AE Jaffe, B Langmead, JT Leek. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics 2015; 31(17): 2778–2784 https://doi.org/10.1093/bioinformatics/btv272
pmid: 25926345
27
B Hie, H Cho, B DeMeo, B Bryson, B Berger. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst 2019; 8(6): 483–493.e7 https://doi.org/10.1016/j.cels.2019.05.003
pmid: 31176620
28
M Liao, Y Liu, J Yuan, Y Wen, G Xu, J Zhao, L Cheng, J Li, X Wang, F Wang, L Liu, I Amit, S Zhang, Z Zhang. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020; 26(6): 842–844 https://doi.org/10.1038/s41591-020-0901-9
pmid: 32398875
29
AS Le Floch, N Cassir, S Hraiech, C Guervilly, L Papazian, JM Rolain. Haemophilus parahaemolyticus septic shock after aspiration pneumonia, France. Emerg Infect Dis 2013; 19(10): 1694–1695 https://doi.org/10.3201/eid1910.130608
pmid: 24050515
30
P Zhang, M Yang, Y Zhang, S Xiao, X Lai, A Tan, S Du, S Li. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep 2019; 27(6): 1934–1947.e5 https://doi.org/10.1016/j.celrep.2019.04.052
pmid: 31067475
31
C Wang, J Xie, L Zhao, X Fei, H Zhang, Y Tan, X Nie, L Zhou, Z Liu, Y Ren, L Yuan, Y Zhang, J Zhang, L Liang, X Chen, X Liu, P Wang, X Han, X Weng, Y Chen, T Yu, X Zhang, J Cai, R Chen, ZL Shi, XW Bian. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57: 102833 https://doi.org/10.1016/j.ebiom.2020.102833
pmid: 32574956
32
Y Tan, W Zhang, Z Zhu, N Qiao, Y Ling, M Guo, T Yin, H Fang, X Xu, G Lu, P Zhang, S Yang, Z Fu, D Liang, Y Xie, R Zhang, L Jiang, S Yu, J Lu, F Jiang, J Chen, C Xiao, S Wang, S Chen, XW Bian, H Lu, F Liu, S Chen. Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discov 2021; 7(1): 42 https://doi.org/10.1038/s41421-021-00274-1
pmid: 34103487
33
RM Rodriguez, BY Hernandez, M Menor, Y Deng, VS Khadka. The landscape of bacterial presence in tumor and adjacent normal tissue across 9 major cancer types using TCGA exome sequencing. Comput Struct Biotechnol J 2020; 18: 631–641 https://doi.org/10.1016/j.csbj.2020.03.003
pmid: 32257046
34
GD Poore, E Kopylova, Q Zhu, C Carpenter, S Fraraccio, S Wandro, T Kosciolek, S Janssen, J Metcalf, SJ Song, J Kanbar, S Miller-Montgomery, R Heaton, R Mckay, SP Patel, AD Swafford, R Knight. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579(7800): 567–574 https://doi.org/10.1038/s41586-020-2095-1
pmid: 32214244
35
D Nejman, I Livyatan, G Fuks, N Gavert, Y Zwang, LT Geller, A Rotter-Maskowitz, R Weiser, G Mallel, E Gigi, A Meltser, GM Douglas, I Kamer, V Gopalakrishnan, T Dadosh, S Levin-Zaidman, S Avnet, T Atlan, ZA Cooper, R Arora, AP Cogdill, MAW Khan, G Ologun, Y Bussi, A Weinberger, M Lotan-Pompan, O Golani, G Perry, M Rokah, K Bahar-Shany, EA Rozeman, CU Blank, A Ronai, R Shaoul, A Amit, T Dorfman, R Kremer, ZR Cohen, S Harnof, T Siegal, E Yehuda-Shnaidman, EN Gal-Yam, H Shapira, N Baldini, MGI Langille, A Ben-Nun, B Kaufman, A Nissan, T Golan, M Dadiani, K Levanon, J Bar, S Yust-Katz, I Barshack, DS Peeper, DJ Raz, E Segal, JA Wargo, J Sandbank, N Shental, R Straussman. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368(6494): 973–980 https://doi.org/10.1126/science.aay9189
pmid: 32467386
36
MG Gareau, PM Sherman, WA Walker. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2010; 7(9): 503–514 https://doi.org/10.1038/nrgastro.2010.117
pmid: 20664519
37
I Cho, MJ Blaser. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13(4): 260–270 https://doi.org/10.1038/nrg3182
pmid: 22411464
38
F Sommer, JM Anderson, R Bharti, J Raes, P Rosenstiel. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017; 15(10): 630–638 https://doi.org/10.1038/nrmicro.2017.58
pmid: 28626231
39
ME Sanders, DJ Merenstein, G Reid, GR Gibson, RA Rastall. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16(10): 605–616 https://doi.org/10.1038/s41575-019-0173-3
pmid: 31296969
JL Round, SK Mazmanian. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313–323 https://doi.org/10.1038/nri2515
pmid: 19343057