Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (3): 339-357   https://doi.org/10.1007/s11684-022-0926-1
  本期目录
Fine-tuning cell organelle dynamics during mitosis by small GTPases
Zijian Zhang1, Wei Zhang2, Quentin Liu1,3()
1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
2. Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
3. Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
 全文: PDF(2154 KB)   HTML
Abstract

During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer’s disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.

Key wordssmall GTPase    cell organelle    mitosis
收稿日期: 2021-10-26      出版日期: 2022-07-18
Corresponding Author(s): Quentin Liu   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(3): 339-357.
Zijian Zhang, Wei Zhang, Quentin Liu. Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front. Med., 2022, 16(3): 339-357.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0926-1
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I3/339
Organelle Small GTPase Proposed function References
Spindle apparatus Ran RanGTP recruits essential centrosome and kinetochore components and releases and activates spindle assembly factors to nucleate, bind, and organize nascent spindle microtubules [13,3641]
Cdc42 Bi-orientation and stabilization of spindle microtubule attachment to kinetochores, spindle assembly, and spindle orientation [42,43]
RhoA Maintenance of spindle orientation [42]
Rab5 Regulation of the astral microtubule size and spindle alignment [45]
Rab11 Bringing microtubule-nucleating factors and spindle pole proteins to spindle poles [44,46,47]
Arl8A, Arl8B Centrosome maturation and chromosome segregation [48,49]
RalA Regulation of the kinetochore–microtubule interaction in early mitosis [50]
Plasma membrane Rap1 Focal adhesion assembly–disassembly [25,71,72]
RhoA Actomyosin cortex organization beneath the plasma membrane during mitosis [73,76,77]
Ran Polar cortex relaxation and ingression furrow position
Rac1 Repolarization of the actomyosin cortex [69,80]
ER & nuclear envelope Rab5 ER membrane remodeling and NEBD. Rab5 depletion inhibits nuclear envelope disassembly [108]
Ran Ran activities regulate microtubule dynamics and the mechanical rupture of nuclear envelope during NEBD. After division, Ran promotes the assembly of NPCs and vesicle fusion [114,118123]
Cd42 Nuclear envelope sealing and ER remodeling [126]
Golgi apparatus Arf1 Participation in the Golgi cycle through the regulation of vesicle transportation [96,133,134]
Sar1 Participation in the Golgi cycle through the regulation of vesicle transportation [135139]
Rab1 Reassembly of the Golgi complex after mitosis [142]
Rab6A′ Retrograde trafficking. Depletion causes metaphase blockage [145]
Mitochondria RalA Promotion of mitochondrial fission during mitotic entry [21]
Arf1 Recruitment of PI(4)P-containing vesicles at ER-mitochondria contact site and promotion of mitochondrial fission [152]
Miro Miro1 and Miro2 bind CENP-F and associate with microtubule-growing tips. Miro loss decreases the spreading of the mitochondrial network and causes cytokinesis-specific defects [154]
Midbody RhoA Position of ingression furrow and membrane ingression and abscission [161,169172,175,176]
Rac1 Membrane ingression. The overexpression of constitutively active Rac1 causes multinucleation and cytokinesis failure [42,187,192]
Rab1 Rab1 facilitates new membrane supplementation along the ingressing cleavage furrow [191]
Rab11 Through en dosome transport to facilitate furrow ingression and F-actin elimination for final abscission [192,194,198,200,201]
Rab35 Through endosome transport to facilitate F-actin elimination for final abscission [194,200202]
Arf1 Golgi organization and Golgi output for ingression furrow function [193]
Arf6 Bridge stability and abscission [65,204]
RalA & RalB RalA and RalB control the exocyst localization at the furrow and midbody, respectively. Their collaboration is required for abscission completion [205,206]
Autophagosome Rabs & Sec4 Autophagosome formation. Role in mitosis is unknown [212215]
Rab7, Rab8B & Rab24 Autophagosome maturation. Role in mitosis is unknown [213,214,216219]
Arfs & Sar1 Autophagosome biogenesis and cellular localization. Role in mitosis is unknown [213,220]
Peroxisomes Rho, Rab, Arf & Miro In the interphase, small GTPases regulate peroxisome distribution and biogenesis. The disruption of spindle pole localization of peroxisomes impairs spindle orientation. The direct role in mitosis is unclear [17,239242]
Tab.1  
Fig.1  
Fig.2  
1 L Champion, MI Linder, U Kutay. Cellular reorganization during mitotic entry. Trends Cell Biol 2017; 27( 1): 26– 41
https://doi.org/10.1016/j.tcb.2016.07.004
2 JG Carlton, H Jones, US Eggert. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21( 3): 151– 166
https://doi.org/10.1038/s41580-019-0208-1
3 MLM Jongsma, I Berlin, J Neefjes. On the move: organelle dynamics during mitosis. Trends Cell Biol 2015; 25( 3): 112– 124
https://doi.org/10.1016/j.tcb.2014.10.005
4 S Song, W Cong, S Zhou, Y Shi, W Dai, H Zhang, X Wang, B He, Q Zhang. Small GTPases: structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci 2019; 14( 1): 30– 39
https://doi.org/10.1016/j.ajps.2018.06.004
5 IR Vetter. The structure of the G domain of the Ras superfamily. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna, 2014: 25- 50 doi:10.1007/978-3-7091-1806-1_2
6 K Wennerberg, KL Rossman, CJ Der. The Ras superfamily at a glance. J Cell Sci 2005; 118( 5): 843– 846
https://doi.org/10.1242/jcs.01660
7 Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol 2020; 55(4): 386–407
pmid: 32838579" target="_blank">32838579
8 AM Rojas, G Fuentes, A Rausell, A Valencia. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012; 196 : 189– 201
https://doi.org/10.1083/jcb.201103008
9 J Cherfils, M Zeghouf. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93( 1): 269– 309
https://doi.org/10.1152/physrev.00003.2012
10 J Bos H Rehmann A Wittinghofer. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129(5): 865–877 Erratum in: Cell 2007; 130(2): 385
pmid: 17540168
11 J Cherfils. GEFs and GAPs: mechanisms and structures. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna; 2014: 51- 63
12 AK Mishra, DG Lambright. Small GTPases and their GAPs. Biopolymers 2016; 105( 8): 431– 448
https://doi.org/10.1002/bip.22833
13 PR Clarke, C Zhang. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 2008; 9( 6): 464– 477
https://doi.org/10.1038/nrm2410
14 CL Jackson, S Bouvet. Arfs at a glance. J Cell Sci 2014; 127( 19): 4103– 4109
15 SL Schwartz, C Cao, O Pylypenko, A Rak, A Wandinger-Ness. Rab GTPases at a glance. J Cell Sci 2007; 120( 22): 3905– 3910
https://doi.org/10.1242/jcs.015909
16 C D’Souza-Schorey, P Chavrier. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006; 7( 5): 347– 358
https://doi.org/10.1038/nrm1910
17 I Kjos, K Vestre, NA Guadagno, M Borg Distefano, C Progida. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim Biophys Acta Mol Cell Res 2018; 1865( 10): 1397– 1409
https://doi.org/10.1016/j.bbamcr.2018.07.009
18 SI Bannykh, H Plutner, J Matteson, WE Balch. The role of ARF1 and rab GTPases in polarization of the Golgi stack. Traffic 2005; 6( 9): 803– 819
https://doi.org/10.1111/j.1600-0854.2005.00319.x
19 N Yahara, T Ueda, K Sato, A Nakano. Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell 2001; 12( 1): 221– 238
https://doi.org/10.1091/mbc.12.1.221
20 JG Donaldson, A Honda, R Weigert. Multiple activities for Arf1 at the Golgi complex. Biochim Biophys Acta 2005; 1744( 3): 364– 373
https://doi.org/10.1016/j.bbamcr.2005.03.001
21 DF Kashatus, KH Lim, DC Brady, NLKK Pershing, AD Cox, CM Counter. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13( 9): 1108– 1115
https://doi.org/10.1038/ncb2310
22 SR Shinde, S Maddika. Post translational modifications of Rab GTPases. Small GTPases 2018; 9( 1-2): 49– 56
https://doi.org/10.1080/21541248.2017.1299270
23 RG Hodge, AJ Ridley. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 2016; 17( 8): 496– 510
https://doi.org/10.1038/nrm.2016.67
24 EA Nigg. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2( 1): 21– 32
https://doi.org/10.1038/35048096
25 VT Dao, AG Dupuy, O Gavet, E Caron, J de Gunzburg. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J Cell Sci 2009; 122( 16): 2996– 3004
https://doi.org/10.1242/jcs.041301
26 M Glotzer, AW Murray, MW Kirschner. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349( 6305): 132– 138
https://doi.org/10.1038/349132a0
27 Z Lei, J Wang, L Zhang, CH Liu. Ubiquitination-dependent regulation of small GTPases in membrane trafficking: from cell biology to human diseases. Front Cell Dev Biol 2021; 9 : 688352
https://doi.org/10.3389/fcell.2021.688352
28 M de la Vega, JF Burrows, JA Johnston. Ubiquitination: added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2( 4): 192– 201
https://doi.org/10.4161/sgtp.2.4.16707
29 F Ding, Z Yin, HR Wang. Ubiquitination in Rho signaling. Curr Top Med Chem 2011; 11( 23): 2879– 2887
https://doi.org/10.2174/156802611798281357
30 P Song, K Trajkovic, T Tsunemi, D Krainc. Parkin modulates endosomal organization and function of the endo-lysosomal pathway. J Neurosci 2016; 36( 8): 2425– 2437
https://doi.org/10.1523/JNEUROSCI.2569-15.2016
31 H-R Wang, Y Zhang, B Ozdamar, AA Ogunjimi, E Alexandrova, GH Thomsen, JL Wrana. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302( 5651): 1775– 1779
https://doi.org/10.1126/science.1090772
32 MC Seabra, JL Goldstein, TC Südhof, MS Brown. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 1992; 267( 20): 14497– 14503
https://doi.org/10.1016/S0021-9258(19)49740-8
33 KF Leung, R Baron, BR Ali, AI Magee, MC Seabra. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 2007; 282( 2): 1487– 1497
https://doi.org/10.1074/jbc.M605557200
34 R Heald, A Khodjakov. Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 2015; 211( 6): 1103– 1111
https://doi.org/10.1083/jcb.201510015
35 CB O’Connell, AL Khodjakov. Cooperative mechanisms of mitotic spindle formation. J Cell Sci 2007; 120( 10): 1717– 1722
https://doi.org/10.1242/jcs.03442
36 P Lavia. The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Res 2016; 24( 1): 53– 65
https://doi.org/10.1007/s10577-015-9514-4
37 Y Feng, JH Yuan, SC Maloid, R Fisher, TD Copeland, DL Longo, TP Conrads, TD Veenstra, A Ferris, S Hughes, DS Dimitrov, DK Ferris. Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 2006; 349( 1): 144– 152
https://doi.org/10.1016/j.bbrc.2006.08.028
38 G Bompard, G Rabeharivelo, M Frank, J Cau, C Delsert, N Morin. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 2010; 190( 5): 807– 822
https://doi.org/10.1083/jcb.200912056
39 A Tedeschi, M Ciciarello, R Mangiacasale, E Roscioli, WM Rensen, P Lavia. RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 2007; 120( 21): 3748– 3761
https://doi.org/10.1242/jcs.009308
40 ST Sit, E Manser. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124( 5): 679– 683
https://doi.org/10.1242/jcs.064964
41 PM Müller, J Rademacher, RD Bagshaw, C Wortmann, C Barth, Unen J van, KM Alp, G Giudice, RL Eccles, LE Heinrich, P Pascual-Vargas, M Sanchez-Castro, L Brandenburg, G Mbamalu, M Tucholska, L Spatt, MT Czajkowski, RW Welke, S Zhang, V Nguyen, T Rrustemi, P Trnka, K Freitag, B Larsen, O Popp, P Mertins, AC Gingras, FP Roth, K Colwill, C Bakal, O Pertz, T Pawson, E Petsalaki, O Rocks. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol 2020; 22( 4): 498– 511
https://doi.org/10.1038/s41556-020-0488-x
42 M Chircop. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5( 2): e29770
https://doi.org/10.4161/sgtp.29770
43 S Yasuda, H Taniguchi, F Oceguera-Yanez, Y Ando, S Watanabe, J Monypenny, S Narumiya. An essential role of Cdc42-like GTPases in mitosis of HeLa cells. FEBS Lett 2006; 580( 14): 3375– 3380
https://doi.org/10.1016/j.febslet.2006.05.009
44 S Miserey-Lenkei, MI Colombo. Small RAB GTPases regulate multiple steps of mitosis. Front Cell Dev Biol 2016; 4 : 2
https://doi.org/10.3389/fcell.2016.00002
45 L Lanzetti. A novel function of Rab5 in mitosis. Small GTPases 2012; 3( 3): 168– 172
https://doi.org/10.4161/sgtp.19987
46 H Hehnly, S Doxsey. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell 2014; 28( 5): 497– 507
https://doi.org/10.1016/j.devcel.2014.01.014
47 KC Hobdy-Henderson, CM Hales, LA Lapierre, RE Cheney, JR Goldenring. Dynamics of the apical plasma membrane recycling system during cell division. Traffic 2003; 4( 10): 681– 693
https://doi.org/10.1034/j.1600-0854.2003.00124.x
48 C Zhou, L Cunningham, AI Marcus, Y Li, RA Kahn. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17( 5): 2476– 2487
https://doi.org/10.1091/mbc.e05-10-0929
49 T Okai, Y Araki, M Tada, T Tateno, K Kontani, T Katada. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J Cell Sci 2004; 117( 20): 4705– 4715
https://doi.org/10.1242/jcs.01347
50 D Papini, L Langemeyer, MA Abad, A Kerr, I Samejima, PA Eyers, AA Jeyaprakash, JMG Higgins, FA Barr, WC Earnshaw. TD-60 links RalA GTPase function to the CPC in mitosis. Nat Commun 2015; 6( 1): 7678
https://doi.org/10.1038/ncomms8678
51 S Boeynaems, S Alberti, NL Fawzi, T Mittag, M Polymenidou, F Rousseau, J Schymkowitz, J Shorter, B Wolozin, L Van Den Bosch, P Tompa, M Fuxreiter. Protein phase separation: a new phase in cell biology. Trends Cell Biol 2018; 28( 6): 420– 435
https://doi.org/10.1016/j.tcb.2018.02.004
52 C Zhang, C Rabouille. Membrane-bound meet membraneless in health and disease. Cells 2019; 8( 9): 1000
https://doi.org/10.3390/cells8091000
53 TJ Nott, E Petsalaki, P Farber, D Jervis, E Fussner, A Plochowietz, TD Craggs, DP Bazett-Jones, T Pawson, JD Forman-Kay, AJ Baldwin. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 2015; 57( 5): 936– 947
https://doi.org/10.1016/j.molcel.2015.01.013
54 E Gomes, J Shorter. The molecular language of membraneless organelles. J Biol Chem 2019; 294( 18): 7115– 7127
https://doi.org/10.1074/jbc.TM118.001192
55 AK Rai, JXX Chen, M Selbach, L Pelkmans. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 2018; 559( 7713): 211– 216
https://doi.org/10.1038/s41586-018-0279-8
56 H Jiang, S Wang, Y Huang, X He, H Cui, X Zhu, Y Zheng. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 2015; 163( 1): 108– 122
https://doi.org/10.1016/j.cell.2015.08.010
57 JB Woodruff, B Ferreira Gomes, PO Widlund, J Mahamid, A Honigmann, AA Hyman. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 2017; 169( 6): 1066– 1077.e10
https://doi.org/10.1016/j.cell.2017.05.028
58 G Keryer, O Witczak, A Delouvée, WA Kemmner, D Rouillard, K Taskén, M Bornens. Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 2003; 14( 6): 2436– 2446
https://doi.org/10.1091/mbc.e02-09-0614
59 G Keryer, Fiore B Di, C Celati, KF Lechtreck, M Mogensen, A Delouvée, P Lavia, M Bornens, AM Tassin. Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell 2003; 14( 10): 4260– 4271
https://doi.org/10.1091/mbc.e02-11-0773
60 G Bompard, G Rabeharivelo, J Cau, A Abrieu, C Delsert, N Morin. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 2013; 32( 7): 910– 919
https://doi.org/10.1038/onc.2012.98
61 C Kilchert, J Weidner, C Prescianotto-Baschong, A Spang. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010; 21( 15): 2624– 2638
https://doi.org/10.1091/mbc.e10-02-0099
62 G Serio, V Margaria, S Jensen, A Oldani, J Bartek, F Bussolino, L Lanzetti. Small GTPase Rab5 participates in chromosome congression and regulates localization of the centromere-associated protein CENP-F to kinetochores. Proc Natl Acad Sci USA 2011; 108( 42): 17337– 17342
https://doi.org/10.1073/pnas.1103516108
63 X Zhang, J Hagen, VP Muniz, T Smith, GS Coombs, CM Eischen, DI Mackie, DL Roman, R Van Rheeden, B Darbro, VS Tompkins, DE Quelle. RABL6A, a novel RAB-like protein, controls centrosome amplification and chromosome instability in primary fibroblasts. PLoS One 2013; 8( 11): e80228
https://doi.org/10.1371/journal.pone.0080228
64 H Hehnly, CTT Chen, CM Powers, HLL Liu, S Doxsey. The centrosome regulates the Rab11-dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 2012; 22( 20): 1944– 1950
https://doi.org/10.1016/j.cub.2012.08.022
65 S Takahashi, T Takei, H Koga, H Takatsu, HW Shin, K Nakayama. Distinct roles of Rab11 and Arf6 in the regulation of Rab11-FIP3/arfophilin-1 localization in mitotic cells. Genes Cells 2011; 16( 9): 938– 950
https://doi.org/10.1111/j.1365-2443.2011.01538.x
66 L Champion, MI Linder, U Kutay. Cellular reorganization during mitotic entry. Trends Cell Biol 2017; 27( 1): 26– 41
https://doi.org/10.1016/j.tcb.2016.07.004
67 N Ramkumar, B Baum. Coupling changes in cell shape to chromosome segregation. Nat Rev Mol Cell Biol 2016; 17( 8): 511– 521
https://doi.org/10.1038/nrm.2016.75
68 GE Atilla-Gokcumen, E Muro, J Relat-Goberna, S Sasse, A Bedigian, ML Coughlin, S Garcia-Manyes, US Eggert. Dividing cells regulate their lipid composition and localization. Cell 2014; 156( 3): 428– 439
https://doi.org/10.1016/j.cell.2013.12.015
69 EM Storck, C Özbalci, US Eggert. Lipid cell biology: a focus on lipids in cell division. Annu Rev Biochem 2018; 87( 1): 839– 869
https://doi.org/10.1146/annurev-biochem-062917-012448
70 M Théry, M Bornens. Get round and stiff for mitosis. HFSP J 2008; 2( 2): 65– 71
https://doi.org/10.2976/1.2895661
71 HS Lee, CJ Lim, W Puzon-McLaughlin, SJ Shattil, MH Ginsberg. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 2009; 284( 8): 5119– 5127
https://doi.org/10.1074/jbc.M807117200
72 EM Lafuente, AAFL van Puijenbroek, M Krause, CV Carman, GJ Freeman, A Berezovskaya, E Constantine, TA Springer, FB Gertler, VA Boussiotis. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 2004; 7( 4): 585– 595
https://doi.org/10.1016/j.devcel.2004.07.021
73 S Marchesi, F Montani, G Deflorian, R D’Antuono, A Cuomo, S Bologna, C Mazzoccoli, T Bonaldi, Fiore PP Di, F Nicassio. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev Cell 2014; 31( 4): 420– 433
https://doi.org/10.1016/j.devcel.2014.09.009
74 OM Lancaster, M Le Berre, A Dimitracopoulos, D Bonazzi, E Zlotek-Zlotkiewicz, R Picone, T Duke, M Piel, B Baum. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell 2013; 25( 3): 270– 283
https://doi.org/10.1016/j.devcel.2013.03.014
75 P Chugh, EK Paluch. The actin cortex at a glance. J Cell Sci 2018; 131( 14): jcs186254
https://doi.org/10.1242/jcs.186254
76 TR Arnold, RE Stephenson, AL Miller. Rho GTPases and actomyosin: partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358( 1): 20– 30
https://doi.org/10.1016/j.yexcr.2017.03.053
77 A Rosa, E Vlassaks, F Pichaud, B Baum. Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry. Dev Cell 2015; 32( 5): 604– 616
https://doi.org/10.1016/j.devcel.2015.01.012
78 B Mierzwa, DW Gerlich. Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 2014; 31( 5): 525– 538
https://doi.org/10.1016/j.devcel.2014.11.006
79 TD Pollard, B O’Shaughnessy. Molecular mechanism of cytokinesis. Annu Rev Biochem 2019; 88( 1): 661– 689
https://doi.org/10.1146/annurev-biochem-062917-012530
80 H Neto, LL Collins, GW Gould. Vesicle trafficking and membrane remodelling in cytokinesis. Biochem J 2011; 437( 1): 13– 24
https://doi.org/10.1042/BJ20110153
81 T Kiyomitsu, IM Cheeseman. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 2013; 154( 2): 391– 402
https://doi.org/10.1016/j.cell.2013.06.010
82 T Kiyomitsu, IM Cheeseman. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 2012; 14( 3): 311– 317
https://doi.org/10.1038/ncb2440
83 SL Bird, R Heald, K Weis. RanGTP and CLASP1 cooperate to position the mitotic spindle. Mol Biol Cell 2013; 24( 16): 2506– 2514
https://doi.org/10.1091/mbc.e13-03-0150
84 E Queralt, F Uhlmann. Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 2008; 20( 6): 661– 668
https://doi.org/10.1016/j.ceb.2008.09.003
85 O Baumann, B Walz. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 2001; 205 : 149– 214
https://doi.org/10.1016/s0074-7696(01)05004-5
86 JR Friedman, GK Voeltz. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol 2011; 21( 12): 709– 717
https://doi.org/10.1016/j.tcb.2011.07.004
87 LM Westrate, JE Lee, WA Prinz, GK Voeltz. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 2015; 84( 1): 791– 811
https://doi.org/10.1146/annurev-biochem-072711-163501
88 DS Schwarz, MD Blower. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73( 1): 79– 94
https://doi.org/10.1007/s00018-015-2052-6
89 AR English, GK Voeltz. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013; 5( 4): a013227
https://doi.org/10.1101/cshperspect.a013227
90 H Merta, Rodríguez JW Carrasquillo, MI Anjur-Dietrich, T Vitale, ME Granade, TE Harris, DJ Needleman, S Bahmanyar. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Dev Cell 2021; 56( 24): 3364– 3379.e10
https://doi.org/10.1016/j.devcel.2021.11.009
91 T Oertle, M Klinger, CAO Stuermer, ME Schwab. A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 2003; 17( 10): 1238– 1247
https://doi.org/10.1096/fj.02-1166hyp
92 F Di Sano, P Bernardoni, M Piacentini. The reticulons: guardians of the structure and function of the endoplasmic reticulum. Exp Cell Res 2012; 318( 11): 1201– 1207
https://doi.org/10.1016/j.yexcr.2012.03.002
93 GK Voeltz, WA Prinz, Y Shibata, JM Rist, TA Rapoport. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006; 124( 3): 573– 586
https://doi.org/10.1016/j.cell.2005.11.047
94 A Gerondopoulos, RN Bastos, S Yoshimura, R Anderson, S Carpanini, I Aligianis, MT Handley, FA Barr. Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 2014; 205( 5): 707– 720
https://doi.org/10.1083/jcb.201403026
95 AR English, GK Voeltz. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol 2013; 15( 2): 169– 178
https://doi.org/10.1038/ncb2647
96 Y Morohashi, Z Balklava, M Ball, H Hughes, M Lowe. Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochem J 2010; 427( 3): 401– 412
https://doi.org/10.1042/BJ20091681
97 D Kumar, B Golchoubian, I Belevich, E Jokitalo, ALL Schlaitz. REEP3 and REEP4 determine the tubular morphology of the endoplasmic reticulum during mitosis. Mol Biol Cell 2019; 30( 12): 1377– 1389
https://doi.org/10.1091/mbc.E18-11-0698
98 AL Schlaitz, J Thompson, CCLL Wong, JR 3rd Yates, R Heald. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell 2013; 26( 3): 315– 323
https://doi.org/10.1016/j.devcel.2013.06.016
99 JT Arnone, AD Walters, O Cohen-Fix. The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 2013; 4( 4): 261– 266
https://doi.org/10.4161/nucl.25341
100 D LaJoie, KS Ullman. Coordinated events of nuclear assembly. Curr Opin Cell Biol 2017; 46 : 39– 45
https://doi.org/10.1016/j.ceb.2016.12.008
101 M Vietri, H Stenmark, C Campsteijn. Closing a gap in the nuclear envelope. Curr Opin Cell Biol 2016; 40 : 90– 97
https://doi.org/10.1016/j.ceb.2016.03.001
102 MW Hetzer. The nuclear envelope. Cold Spring Harb Perspect Biol 2010; 2( 3): a000539
https://doi.org/10.1101/cshperspect.a000539
103 AJ Prunuske, KS Ullman. The nuclear envelope: form and reformation. Curr Opin Cell Biol 2006; 18( 1): 108– 116
https://doi.org/10.1016/j.ceb.2005.12.004
104 M Peter, J Nakagawa, M Dorée, JC Labbé, EA Nigg. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 1990; 60( 5): 791– 801
https://doi.org/10.1016/0092-8674(90)90093-T
105 R Heald, F McKeon. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 1990; 61( 4): 579– 589
https://doi.org/10.1016/0092-8674(90)90470-Y
106 E Torvaldson, V Kochin, JE Eriksson. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus 2015; 6( 3): 166– 171
https://doi.org/10.1080/19491034.2015.1017167
107 O Martinez de Ilarduya, J Vicente-Carbajosa, P Sanchez de la Hoz, P Carbonero. Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett 1993; 320( 2): 177– 181
https://doi.org/10.1016/0014-5793(93)80087-B
108 A Audhya, A Desai, K Oegema. A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol 2007; 178( 1): 43– 56
https://doi.org/10.1083/jcb.200701139
109 E Nielsen, F Severin, JM Backer, AA Hyman, M Zerial. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1999; 1( 6): 376– 382
https://doi.org/10.1038/14075
110 C Bucci, RG Parton, IH Mather, H Stunnenberg, K Simons, B Hoflack, M Zerial. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 1992; 70( 5): 715– 728
https://doi.org/10.1016/0092-8674(92)90306-W
111 T Cavazza, I Vernos. The RanGTP pathway: from nucleo-cytoplasmic transport to spindle assembly and beyond. Front Cell Dev Biol 2016; 3 : 82
https://doi.org/10.3389/fcell.2015.00082
112 N Wesolowska, I Avilov, P Machado, C Geiss, H Kondo, M Mori, P Lénárt. Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. eLife 2020; 9 : e49774
https://doi.org/10.7554/eLife.49774
113 L Penfield, B Wysolmerski, M Mauro, R Farhadifar, MA Martinez, R Biggs, HY Wu, C Broberg, D Needleman, S Bahmanyar. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol Biol Cell 2018; 29( 7): 852– 868
https://doi.org/10.1091/mbc.E17-06-0374
114 P Mühlhäusser, U Kutay. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J Cell Biol 2007; 178( 4): 595– 610
https://doi.org/10.1083/jcb.200703002
115 J Beaudouin, D Gerlich, N Daigle, R Eils, J Ellenberg. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 2002; 108( 1): 83– 96
https://doi.org/10.1016/S0092-8674(01)00627-4
116 D Salina, K Bodoor, DMM Eckley, TA Schroer, JBB Rattner, B Burke. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002; 108( 1): 97– 107
https://doi.org/10.1016/S0092-8674(01)00628-6
117 M Sullivan, DO Morgan. Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 2007; 8( 11): 894– 903
https://doi.org/10.1038/nrm2276
118 C Zhang, PR Clarke. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 2000; 288( 5470): 1429– 1432
https://doi.org/10.1126/science.288.5470.1429
119 M Hetzer, OJ Gruss, IW Mattaj. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002; 4( 7): E177– E184
https://doi.org/10.1038/ncb0702-e177
120 C Bamba, Y Bobinnec, M Fukuda, E Nishida. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 2002; 12( 6): 503– 507
https://doi.org/10.1016/S0960-9822(02)00741-8
121 M Hetzer, D Bilbao-Cortés, TC Walther, OJ Gruss, IW Mattaj. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5( 6): 1013– 1024
https://doi.org/10.1016/S1097-2765(00)80266-X
122 AK Schellhaus P De Magistris W Antonin. Nuclear reformation at the end of mitosis. J Mol Biol 2016; 428(10Pt A): 1962–1985 doi:10.1016/j.jmb.2015.09.016
pmid: 26423234
123 KB Matchett, S McFarlane, SE Hamilton, YSA Eltuhamy, MA Davidson, JT Murray, AM Faheem, M El-Tanani. Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis. Adv Exp Med Biol 2014; 773 : 323– 351
https://doi.org/10.1007/978-1-4899-8032-8_15
124 AK Townley, Y Feng, K Schmidt, DA Carter, R Porter, P Verkade, DJ Stephens. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 2008; 121( 18): 3025– 3034
https://doi.org/10.1242/jcs.031070
125 S Siniossoglou, M Lutzmann, H Santos-Rosa, K Leonard, S Mueller, U Aebi, E Hurt. Structure and assembly of the Nup84p complex. J Cell Biol 2000; 149( 1): 41– 54
https://doi.org/10.1083/jcb.149.1.41
126 MS Lu, DG Drubin. Cdc42 GTPase regulates ESCRTs in nuclear envelope sealing and ER remodeling. J Cell Biol 2020; 219( 8): e201910119
https://doi.org/10.1083/jcb.201910119
127 X Chen, ES Simon, Y Xiang, M Kachman, PC Andrews, Y Wang. Quantitative proteomics analysis of cell cycle-regulated Golgi disassembly and reassembly. J Biol Chem 2010; 285( 10): 7197– 7207
https://doi.org/10.1074/jbc.M109.047084
128 J Klumperman. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 2011; 3( 7): a005181
https://doi.org/10.1101/cshperspect.a005181
129 Y Xiang, Y Wang. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 2010; 188( 2): 237– 251
https://doi.org/10.1083/jcb.200907132
130 A Colanzi, D Corda. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol 2007; 19( 4): 386– 393
https://doi.org/10.1016/j.ceb.2007.06.002
131 D Tang, Y Wang. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 2013; 23( 6): 296– 304
https://doi.org/10.1016/j.tcb.2013.01.008
132 C Valente, A Colanzi. Mechanisms and regulation of the mitotic inheritance of the Golgi complex. Front Cell Dev Biol 2015; 3 : 79
https://doi.org/10.3389/fcell.2015.00079
133 L Mao N Li Y Guo X Xu L Gao Y Xu L Zhou W Liu. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci 2013; 126(Pt 6): 1498–1505 doi:10.1242/jcs.121954
pmid: 23418352
134 S Yadav, MA Puthenveedu, AD Linstedt. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 2012; 23( 1): 153– 165
https://doi.org/10.1016/j.devcel.2012.05.023
135 F Kano, AR Tanaka, S Yamauchi, H Kondo, M Murata. Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis. Mol Biol Cell 2004; 15( 9): 4289– 4298
https://doi.org/10.1091/mbc.e03-11-0822
136 AR Prescott, T Farmaki, C Thomson, J James, JP Paccaud, BL Tang, W Hong, M Quinn, S Ponnambalam, J Lucocq. Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates. Traffic 2001; 2( 5): 321– 335
https://doi.org/10.1034/j.1600-0854.2001.002005321.x
137 WJ Stroud, S Jiang, G Jack, B Storrie. Persistence of Golgi matrix distribution exhibits the same dependence on Sar1p activity as a Golgi glycosyltransferase. Traffic 2003; 4( 9): 631– 641
https://doi.org/10.1034/j.1600-0854.2003.00122.x
138 TH Ward, RS Polishchuk, S Caplan, K Hirschberg, J Lippincott-Schwartz. Maintenance of Golgi structure and function depends on the integrity of ER export. J Cell Biol 2001; 155( 4): 557– 570
https://doi.org/10.1083/jcb.200107045
139 S Miles, H McManus, KE Forsten, B Storrie. Evidence that the entire Golgi apparatus cycles in interphase HeLa cells: sensitivity of Golgi matrix proteins to an ER exit block. J Cell Biol 2001; 155( 4): 543– 556
https://doi.org/10.1083/jcb.200103104
140 D Corda, ML Barretta, RI Cervigni, A Colanzi. Golgi complex fragmentation in G2/M transition: an organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64( 8): 661– 670
https://doi.org/10.1002/iub.1054
141 A Persico, RI Cervigni, ML Barretta, D Corda, A Colanzi. Golgi partitioning controls mitotic entry through Aurora-A kinase. Mol Biol Cell 2010; 21( 21): 3708– 3721
https://doi.org/10.1091/mbc.e10-03-0243
142 N Altan-Bonnet, R Sougrat, J Lippincott-Schwartz. Molecular basis for Golgi maintenance and biogenesis. Curr Opin Cell Biol 2004; 16( 4): 364– 372
https://doi.org/10.1016/j.ceb.2004.06.011
143 N Altan-Bonnet, R Sougrat, W Liu, EL Snapp, T Ward, J Lippincott-Schwartz. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol Biol Cell 2006; 17( 2): 990– 1005
https://doi.org/10.1091/mbc.e05-02-0155
144 R Magliozzi, ZI Carrero, TY Low, L Yuniati, C Valdes-Quezada, F Kruiswijk, K van Wijk, AJR Heck, CL Jackson, D Guardavaccaro. Inheritance of the Golgi apparatus and cytokinesis are controlled by degradation of GBF1. Cell Rep 2018; 23( 11): 3381– 3391.e4
https://doi.org/10.1016/j.celrep.2018.05.031
145 S Miserey-Lenkei, A Couëdel-Courteille, Nery E Del, S Bardin, M Piel, V Racine, JB Sibarita, F Perez, M Bornens, B Goud. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J 2006; 25( 2): 278– 289
https://doi.org/10.1038/sj.emboj.7600929
146 P Mishra, DC Chan. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 2014; 15( 10): 634– 646
https://doi.org/10.1038/nrm3877
147 M Giacomello, A Pyakurel, C Glytsou, L Scorrano. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21( 4): 204– 224
https://doi.org/10.1038/s41580-020-0210-7
148 DF Kashatus, KH Lim, DC Brady, NLK Pershing, AD Cox, CM Counter. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13( 9): 1108– 1115
https://doi.org/10.1038/ncb2310
149 G Kanfer, B Kornmann. Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 2016; 44( 2): 510– 516
https://doi.org/10.1042/BST20150274
150 G Benard, N Bellance, D James, P Parrone, H Fernandez, T Letellier, R Rossignol. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007; 120( 5): 838– 848
https://doi.org/10.1242/jcs.03381
151 PA Parone, S Da Cruz, D Tondera, Y Mattenberger, DI James, P Maechler, F Barja, JC Martinou. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 2008; 3( 9): e3257
https://doi.org/10.1371/journal.pone.0003257
152 S Nagashima, LC Tábara, L Tilokani, V Paupe, H Anand, JH Pogson, R Zunino, HM McBride, J Prudent. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 2020; 367( 6484): 1366– 1371
https://doi.org/10.1126/science.aax6089
153 R Horbay, R Bilyy. Mitochondrial dynamics during cell cycling. Apoptosis 2016; 21( 12): 1327– 1335
https://doi.org/10.1007/s10495-016-1295-5
154 G Kanfer, T Courthéoux, M Peterka, S Meier, M Soste, A Melnik, K Reis, P Aspenström, M Peter, P Picotti, B Kornmann. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun 2015; 6( 1): 8015
https://doi.org/10.1038/ncomms9015
155 L Walch, E Pellier, W Leng, G Lakisic, A Gautreau, V Contremoulins, JM Verbavatz, CL Jackson. GBF1 and Arf1 interact with Miro and regulate mitochondrial positioning within cells. Sci Rep 2018; 8( 1): 17121
https://doi.org/10.1038/s41598-018-35190-0
156 RL Frederick, JM Shaw. Moving mitochondria: establishing distribution of an essential organelle. Traffic 2007; 8( 12): 1668– 1675
https://doi.org/10.1111/j.1600-0854.2007.00644.x
157 AN Kettenbach, DK Schweppe, BK Faherty, D Pechenick, AA Pletnev, SA Gerber. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 2011; 4( 179): rs5
https://doi.org/10.1126/scisignal.2001497
158 N Dephoure, C Zhou, J Villén, SA Beausoleil, CE Bakalarski, SJ Elledge, SP Gygi. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008; 105( 31): 10762– 10767
https://doi.org/10.1073/pnas.0805139105
159 R Malik, R Lenobel, A Santamaria, A Ries, EA Nigg, R Körner. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 2009; 8( 10): 4553– 4563
https://doi.org/10.1021/pr9003773
160 PP D’Avino, MG Giansanti, M Petronczki. Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 2015; 7( 4): a015834
https://doi.org/10.1101/cshperspect.a015834
161 A Kechad, S Jananji, Y Ruella, GRX Hickson. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr Biol 2012; 22( 3): 197– 203
https://doi.org/10.1016/j.cub.2011.11.062
162 P Steigemann, DW Gerlich. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19( 11): 606– 616
https://doi.org/10.1016/j.tcb.2009.07.008
163 CK Hu, M Coughlin, TJ Mitchison. Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 2012; 23( 6): 1024– 1034
https://doi.org/10.1091/mbc.e11-08-0721
164 P Wadsworth. Cytokinesis: Rho marks the spot. Curr Biol 2005; 15 : R871– R874
https://doi.org/10.1016/j.cub.2005.10.021
165 A Piekny, M Werner, M Glotzer. Cytokinesis: welcome to the Rho zone. Trends Cell Biol 2005; 15( 12): 651– 658
https://doi.org/10.1016/j.tcb.2005.10.006
166 SN Jordan, JC Canman. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 2012; 69( 11): 919– 930
https://doi.org/10.1002/cm.21071
167 S Narumiya, S Yasuda. Rho GTPases in animal cell mitosis. Curr Opin Cell Biol 2006; 18( 2): 199– 205
https://doi.org/10.1016/j.ceb.2006.02.002
168 R Fraschini. Cytokinesis in eukaryotic cells: the furrow complexity at a glance. Cells 2020; 9( 2): 271
https://doi.org/10.3390/cells9020271
169 WM Bement, HAHA Benink, G von Dassow. A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 2005; 170( 1): 91– 101
https://doi.org/10.1083/jcb.200501131
170 O Yüce, A Piekny, M Glotzer. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 2005; 170( 4): 571– 582
https://doi.org/10.1083/jcb.200501097
171 H Yoshizaki, Y Ohba, K Kurokawa, RE Itoh, T Nakamura, N Mochizuki, K Nagashima, M Matsuda. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 2003; 162( 2): 223– 232
https://doi.org/10.1083/jcb.200212049
172 K Kotýnková, KC Su, SC West, M Petronczki. Plasma membrane association but not midzone recruitment of RhoGEF ECT2 is essential for cytokinesis. Cell Rep 2016; 17( 10): 2672– 2686
https://doi.org/10.1016/j.celrep.2016.11.029
173 TE Schroeder. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat 1970; 109( 4): 431– 449
https://doi.org/10.1007/BF00343960
174 TE Schroeder. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci USA 1973; 70( 6): 1688– 1692
https://doi.org/10.1073/pnas.70.6.1688
175 T Otomo, C Otomo, DR Tomchick, M Machius, MK Rosen. Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 2005; 18( 3): 273– 281
https://doi.org/10.1016/j.molcel.2005.04.002
176 R Rose, M Weyand, M Lammers, T Ishizaki, MR Ahmadian, A Wittinghofer. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 2005; 435( 7041): 513– 518
https://doi.org/10.1038/nature03604
177 DH Castrillon, SA Wasserman. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 1994; 120( 12): 3367– 3377
https://doi.org/10.1242/dev.120.12.3367
178 M Evangelista, D Pruyne, DC Amberg, C Boone, A Bretscher. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 2002; 4( 3): 260– 269
https://doi.org/10.1038/ncb770
179 I Sagot, AA Rodal, J Moseley, BL Goode, D Pellman. An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 2002; 4( 8): 626– 631
https://doi.org/10.1038/ncb834
180 N Watanabe, P Madaule, T Reid, T Ishizaki, G Watanabe, A Kakizuka, Y Saito, K Nakao, BM Jockusch, S Narumiya. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 1997; 16( 11): 3044– 3056
https://doi.org/10.1093/emboj/16.11.3044
181 Y Kawano, Y Fukata, N Oshiro, M Amano, T Nakamura, M Ito, F Matsumura, M Inagaki, K Kaibuchi. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147( 5): 1023– 1038
https://doi.org/10.1083/jcb.147.5.1023
182 H Kosako, T Yoshida, F Matsumura, T Ishizaki, S Narumiya, M Inagaki. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 2000; 19( 52): 6059– 6064
https://doi.org/10.1038/sj.onc.1203987
183 T Yokoyama, H Goto, I Izawa, H Mizutani, M Inagaki. Aurora-B and Rho-kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin/moesin (ERM). Genes Cells 2005; 10( 2): 127– 137
https://doi.org/10.1111/j.1365-2443.2005.00824.x
184 M Khasnis, A Nakatomi, K Gumpper, M Eto. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 2014; 53( 16): 2701– 2709
https://doi.org/10.1021/bi5001728
185 M Gai, P Camera, A Dema, F Bianchi, G Berto, E Scarpa, G Germena, F Di Cunto. Citron kinase controls abscission through RhoA and anillin. Mol Biol Cell 2011; 22( 20): 3768– 3778
https://doi.org/10.1091/mbc.e10-12-0952
186 PP D’Avino. Citron kinase—renaissance of a neglected mitotic kinase. J Cell Sci 2017; 130( 10): 1701– 1708
https://doi.org/10.1242/jcs.200253
187 JC Canman, L Lewellyn, K Laband, SJ Smerdon, A Desai, B Bowerman, K Oegema. Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 2008; 322( 5907): 1543– 1546
https://doi.org/10.1126/science.1163086
188 E Boucrot, T Kirchhausen. Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci USA 2007; 104( 19): 7939– 7944
https://doi.org/10.1073/pnas.0702511104
189 E Ai, AR Skop. Endosomal recycling regulation during cytokinesis. Commun Integr Biol 2009; 2( 5): 444– 447
https://doi.org/10.4161/cib.2.5.8931
190 JA Schiel, R Prekeris. Membrane dynamics during cytokinesis. Curr Opin Cell Biol 2013; 25( 1): 92– 98
https://doi.org/10.1016/j.ceb.2012.10.012
191 S Sechi, A Frappaolo, R Fraschini, L Capalbo, M Gottardo, G Belloni, DM Glover, A Wainman, MG Giansanti. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster. Open Biol 2017; 7( 1): 160257
https://doi.org/10.1098/rsob.160257
192 J Cao, R Albertson, B Riggs, CM Field, W Sullivan. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J Cell Biol 2008; 182( 2): 301– 313
https://doi.org/10.1083/jcb.200712036
193 FF Rodrigues, W Shao, TJC Harris. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27( 20): 3143– 3155
https://doi.org/10.1091/mbc.e16-05-0272
194 S Frémont, A Echard. Membrane traffic in the late steps of cytokinesis. Curr Biol 2018; 28( 8): R458– R470
https://doi.org/10.1016/j.cub.2018.01.019
195 R Albertson, B Riggs, W Sullivan. Membrane traffic: a driving force in cytokinesis. Trends Cell Biol 2005; 15( 2): 92– 101
https://doi.org/10.1016/j.tcb.2004.12.008
196 G Montagnac, A Echard, P Chavrier. Endocytic traffic in animal cell cytokinesis. Curr Opin Cell Biol 2008; 20( 4): 454– 461
https://doi.org/10.1016/j.ceb.2008.03.011
197 JA Schiel, C Childs, R Prekeris. Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 2013; 23( 7): 319– 327
https://doi.org/10.1016/j.tcb.2013.02.003
198 JA Schiel, GC Simon, C Zaharris, J Weisz, D Castle, CC Wu, R Prekeris. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 2012; 14( 10): 1068– 1078
https://doi.org/10.1038/ncb2577
199 Y Minoshima, T Kawashima, K Hirose, Y Tonozuka, A Kawajiri, YC Bao, X Deng, M Tatsuka, S Narumiya, WS Jr May, T Nosaka, K Semba, T Inoue, T Satoh, M Inagaki, T Kitamura. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 2003; 4( 4): 549– 560
https://doi.org/10.1016/S1534-5807(03)00089-3
200 X Yu, R Prekeris, GW Gould. Role of endosomal Rab GTPases in cytokinesis. Eur J Cell Biol 2007; 86( 1): 25– 35
https://doi.org/10.1016/j.ejcb.2006.10.002
201 A Hanai, M Ohgi, C Yagi, T Ueda, HW Shin, K Nakayama. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J Biochem 2016; 159( 2): 201– 208
https://doi.org/10.1093/jb/mvv088
202 D Dambournet, M Machicoane, L Chesneau, M Sachse, M Rocancourt, A El Marjou, E Formstecher, R Salomon, B Goud, A Echard. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 2011; 13( 8): 981– 988
https://doi.org/10.1038/ncb2279
203 S Frémont, H Hammich, J Bai, H Wioland, K Klinkert, M Rocancourt, C Kikuti, D Stroebel, G Romet-Lemonne, O Pylypenko, A Houdusse, A Echard. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 2017; 8( 1): 14528
https://doi.org/10.1038/ncomms14528
204 G Montagnac, JB Sibarita, S Loubéry, L Daviet, M Romao, G Raposo, P Chavrier. ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol 2009; 19( 3): 184– 195
https://doi.org/10.1016/j.cub.2008.12.043
205 I Cascone, R Selimoglu, C Ozdemir, E Del Nery, C Yeaman, M White, J Camonis. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 2008; 27( 18): 2375– 2387
https://doi.org/10.1038/emboj.2008.166
206 XW Chen, M Inoue, SC Hsu, AR Saltiel. RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 2006; 281( 50): 38609– 38616
https://doi.org/10.1074/jbc.M512847200
207 B Neumann, T Walter, JKK Hériché, J Bulkescher, H Erfle, C Conrad, P Rogers, I Poser, M Held, U Liebel, C Cetin, F Sieckmann, G Pau, R Kabbe, A Wünsche, V Satagopam, MH Schmitz, C Chapuis, DW Gerlich, R Schneider, R Eils, W Huber, JM Peters, AA Hyman, R Durbin, R Pepperkok, J Ellenberg. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 2010; 464( 7289): 721– 727
https://doi.org/10.1038/nature08869
208 PL Yang, TH Hsu, CW Wang, RH Chen. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast. Mol Biol Cell 2016; 27( 15): 2368– 2380
https://doi.org/10.1091/mbc.e16-02-0106
209 JA Brill, R Wong, A Wilde. Phosphoinositide function in cytokinesis. Curr Biol 2011; 21( 22): R930– R934
https://doi.org/10.1016/j.cub.2011.10.001
210 El Kadhi K Ben, C Roubinet, S Solinet, G Emery, S Carréno. The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 2011; 21( 12): 1074– 1079
https://doi.org/10.1016/j.cub.2011.05.030
211 SJ Field, N Madson, ML Kerr, KAA Galbraith, CE Kennedy, M Tahiliani, A Wilkins, LC Cantley. PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr Biol 2005; 15( 15): 1407– 1412
https://doi.org/10.1016/j.cub.2005.06.059
212 FCM Zoppino, RD Militello, I Slavin, C Álvarez, MI Colombo. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11( 9): 1246– 1261
https://doi.org/10.1111/j.1600-0854.2010.01086.x
213 X Ao, L Zou, Y Wu. Regulation of autophagy by the Rab GTPase network. Cell Death Differ 2014; 21( 3): 348– 358
https://doi.org/10.1038/cdd.2013.187
214 CEL Chua, BQ Gan, BL Tang. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011; 68( 20): 3349– 3358
https://doi.org/10.1007/s00018-011-0748-9
215 AH Hutagalung, PJ Novick. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91( 1): 119– 149
https://doi.org/10.1152/physrev.00059.2009
216 IG Ganley, PM Wong, N Gammoh, X Jiang. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42( 6): 731– 743
https://doi.org/10.1016/j.molcel.2011.04.024
217 M Pilli, J Arko-Mensah, M Ponpuak, E Roberts, S Master, MA Mandell, N Dupont, W Ornatowski, S Jiang, SB Bradfute, JA Bruun, TE Hansen, T Johansen, V Deretic. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37( 2): 223– 234
https://doi.org/10.1016/j.immuni.2012.04.015
218 DB Munafó, MI Colombo. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3( 7): 472– 482
https://doi.org/10.1034/j.1600-0854.2002.30704.x
219 A Sakurai, F Maruyama, J Funao, T Nozawa, C Aikawa, N Okahashi, S Shintani, S Hamada, T Ooshima, I Nakagawa. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 2010; 285( 29): 22666– 22675
https://doi.org/10.1074/jbc.M109.100131
220 CF Bento, C Puri, K Moreau, DC Rubinsztein. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126( 5): 1059– 1069
https://doi.org/10.1242/jcs.123075
221 BO Bodemann, A Orvedahl, T Cheng, RR Ram, YH Ou, E Formstecher, M Maiti, CC Hazelett, EM Wauson, M Balakireva, JH Camonis, C Yeaman, B Levine, MA White. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011; 144( 2): 253– 267
https://doi.org/10.1016/j.cell.2010.12.018
222 N Nakashima, E Noguchi, T Nishimoto. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152( 3): 853– 867
https://doi.org/10.1093/genetics/152.3.853
223 T Sekiguchi, E Hirose, N Nakashima, M Ii, T Nishimoto. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001; 276( 10): 7246– 7257
https://doi.org/10.1074/jbc.M004389200
224 Y Sancak, L Bar-Peled, R Zoncu, AL Markhard, S Nada, DM Sabatini. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141( 2): 290– 303
https://doi.org/10.1016/j.cell.2010.02.024
225 Y Sancak, TR Peterson, YD Shaul, RA Lindquist, CC Thoreen, L Bar-Peled, DM Sabatini. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320( 5882): 1496– 1501
https://doi.org/10.1126/science.1157535
226 RI Odle, SA Walker, D Oxley, AM Kidger, K Balmanno, R Gilley, H Okkenhaug, O Florey, NT Ktistakis, SJ Cook. An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell 2020; 77( 2): 228– 240.e7
https://doi.org/10.1016/j.molcel.2019.10.016
227 AR Thiam, RV Jr Farese, TC Walther. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 2013; 14( 12): 775– 786
https://doi.org/10.1038/nrm3699
228 TC Walther, RV Jr Farese. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 2012; 81( 1): 687– 714
https://doi.org/10.1146/annurev-biochem-061009-102430
229 S Martin, RG Parton. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006; 7( 5): 373– 378
https://doi.org/10.1038/nrm1912
230 HF Hashemi, JM Goodman. The life cycle of lipid droplets. Curr Opin Cell Biol 2015; 33 : 119– 124
https://doi.org/10.1016/j.ceb.2015.02.002
231 ALS Cruz, N Carrossini, LK Teixeira, LF Ribeiro-Pinto, PT Bozza, JPB Viola. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets. Mol Cell Biol 2019; 39( 9): e00374– 18
https://doi.org/10.1128/MCB.00374-18
232 R Tan, W Wang, S Wang, Z Wang, L Sun, W He, R Fan, Y Zhou, X Xu, W Hong, T Wang. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets. PLoS One 2013; 8( 4): e63213
https://doi.org/10.1371/journal.pone.0063213
233 S Ozeki, J Cheng, K Tauchi-Sato, N Hatano, H Taniguchi, T Fujimoto. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 2005; 118( 12): 2601– 2611
https://doi.org/10.1242/jcs.02401
234 B Schroeder, RJ Schulze, SG Weller, AC Sletten, CA Casey, MA McNiven. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015; 61( 6): 1896– 1907
https://doi.org/10.1002/hep.27667
235 T Gabaldón. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365( 1541): 765– 773
https://doi.org/10.1098/rstb.2009.0240
236 B Knoblach, RA Rachubinski. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr Opin Cell Biol 2016; 41 : 73– 80
https://doi.org/10.1016/j.ceb.2016.04.004
237 T Nguyen, J Bjorkman, BC Paton, DI Crane. Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 2006; 119( 4): 636– 645
https://doi.org/10.1242/jcs.02776
238 A Asare, J Levorse, E Fuchs. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 2017; 355( 6342): eaah4701
https://doi.org/10.1126/science.aah4701
239 SJ Heasman, AJ Ridley. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9( 9): 690– 701
https://doi.org/10.1038/nrm2476
240 IG Castro, DM Richards, J Metz, JL Costello, JB Passmore, TA Schrader, A Gouveia, D Ribeiro, M Schrader. A role for mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 2018; 19( 3): 229– 242
https://doi.org/10.1111/tra.12549
241 L Schollenberger, T Gronemeyer, CM Huber, D Lay, S Wiese, HE Meyer, B Warscheid, R Saffrich, J Peränen, K Gorgas, WW Just. RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One 2010; 5( 11): e13886
https://doi.org/10.1371/journal.pone.0013886
242 WW Just, J Peränen. Small GTPases in peroxisome dynamics. Biochim Biophys Acta 2016; 1863( 5): 1006– 1013
https://doi.org/10.1016/j.bbamcr.2016.01.004
243 T Gronemeyer, S Wiese, S Grinhagens, L Schollenberger, A Satyagraha, LA Huber, HE Meyer, B Warscheid, WW Just. Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 2013; 587( 4): 328– 338
https://doi.org/10.1016/j.febslet.2012.12.025
244 M Zerial, H McBride. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2( 2): 107– 117
https://doi.org/10.1038/35052055
245 D Cussac, P Leblanc, A L’Heritier, J Bertoglio, P Lang, C Kordon, A Enjalbert, D Saltarelli. Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 1996; 119( 2): 195– 206
https://doi.org/10.1016/0303-7207(96)03814-2
246 P Croisé, C Estay-Ahumada, S Gasman, S Ory. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5( 2): e29469
https://doi.org/10.4161/sgtp.29469
247 A Wittinghofer. Ras Superfamily Small G Proteins: Biology and Mechanisms 1: general features, signaling. Springer Vienna, 2014
248 B Zhou AD Cox. Posttranslational modifications of small G proteins. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna, 2014: 99– 131
249 F Barr, DG Lambright. Rab GEFs and GAPs. Curr Opin Cell Biol 2010; 22( 4): 461– 470
https://doi.org/10.1016/j.ceb.2010.04.007
250 S Eathiraj, X Pan, C Ritacco, DG Lambright. Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 2005; 436( 7049): 415– 419
https://doi.org/10.1038/nature03798
251 A Spang, JH Saw, SL Jørgensen, K Zaremba-Niedzwiedzka, J Martijn, AE Lind, Eijk R van, C Schleper, L Guy, TJG Ettema. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521( 7551): 173– 179
https://doi.org/10.1038/nature14447
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed