Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (4): 540-550   https://doi.org/10.1007/s11684-022-0940-3
  本期目录
Plasma transthyretin is a nutritional biomarker in human morbidities
Yves Ingenbleek()
Faculty of Pharmacy, Laboratory of Nutrition, University of Strasbourg, Route du Rhin, Illkirch–Graffenstaden F-67401 (Strasbourg), France
 全文: PDF(910 KB)   HTML
Abstract

Transthyretin (TTR) is a small liver-secreted plasma protein that shows close correlations with changes in lean body mass (LBM) during the entire human lifespan and agglomerates the bulk of nitrogen (N)-containing substrates, hence constituting the cornerstone of body building. Amino acids (AAs) dietary restriction causes inhibition of TTR production and impairs the accretion of LBM reserves. Inflammatory disorders result in cytokine-induced abrogation of TTR synthesis and urinary leakage of nitrogenous catabolites. Taken together, the data indicate that malnutrition and inflammation may similarly suppress the production of TTR through distinct and unrelated pathophysiological mechanisms while operating in concert to downsize LBM stores. The hepatic synthesis of TTR integrates both machineries, acting as a marker of reduced LBM resources still available for defense and repair processes. TTR operates as a universal surrogate analyte that allows for the grading of residual LBM capacity to reflect disease burden. Measurement of TTR is a simple, rapid, and inexpensive micro-method that may be reproduced on a daily basis, hence ideally suited for the follow-up of the most intricated clinical situations and as a reliable predictor of any morbidity outcome.

Key wordslean body mass    nutritional status    transthyretin    malnutrition    inflammation    amyloidosis
收稿日期: 2022-02-03      出版日期: 2022-09-02
Corresponding Author(s): Yves Ingenbleek   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(4): 540-550.
Yves Ingenbleek. Plasma transthyretin is a nutritional biomarker in human morbidities. Front. Med., 2022, 16(4): 540-550.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0940-3
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I4/540
Fig.1  
Fig.2  
CONUT: prognostic COntrolling NUTritional status
FNA: Full Nutritional Assessment
GNRI: Geriatric Nutrition Risk Index
MI: Maastricht Index
MNA: Mini Nutritional Assessment
MST: Malnutrition Screening Tool
MUST: Malnutrition Universal Screening Tool
NRI: Nutritional Risk Index
NRS: Nutritional Risk Screening
NUTRIC: NUTrition RIsk in the Critically ill
PNI: Prognostic Nutritional Index
PNRS: Pediatric Nutritional Risk Score
PNST: Pediatric Nutrition Score Tool
SGA: Subjective Global Assessment
SNAQ: Short Nutrition Assessment Questionnaire
Tab.1  
Fig.3  
1 A Quetelet. Issue on Man and Development of his Faculties. Essay on Social Biometry. Bachelier: Paris, 1835
2 CD Williams. A nutritional disease of childhood associated with a maize diet. Arch Dis Child 1933; 8( 48): 423– 433
https://doi.org/10.1136/adc.8.48.423 pmid: 21031941
3 JF Brock, M Autret. Kwashiorkor in Africa. Bull World Health Organ 1952; 5( 1): 1– 71
pmid: 14925815
4 CG Anderson, A Altmann. The electrophoretic serum-protein pattern in malignant malnutrition. Lancet 1951; 257( 6648): 203– 204
https://doi.org/10.1016/S0140-6736(51)93357-0 pmid: 14795820
5 HP Chase, V Kumar, RT Caldwell, D O’Brien. Kwashiorkor in the United States. Pediatrics 1980; 66( 6): 972– 976
https://doi.org/10.1542/peds.66.6.972 pmid: 7454490
6 BJ Akombi, KE Agho, JJ Hall, N Wali, AMN Renzaho, D Merom. Stunting, wasting and underweight in sub-saharian Africa: a systematic review. Int J Environ Res Public Health 2017; 14( 8): 863– 880
https://doi.org/10.3390/ijerph14080863 pmid: 28788108
7 BR Bistrian, GL Blackburn, J Vitale, D Cochran, J Naylor. Prevalence of malnutrition in general medical patients. JAMA 1976; 235( 15): 1567– 1570
https://doi.org/10.1001/jama.1976.03260410023017 pmid: 814258
8 GL Hill, RL Blackett, I Pickford, L Burkinshaw, GA Young, JV Warren, CJ Schorah, DB Morgan. Malnutrition in surgical patients. An unrecognised problem. Lancet 1977; 309( 8013): 689– 692
https://doi.org/10.1016/S0140-6736(77)92127-4 pmid: 66485
9 Y Ingenbleek, P De Nayer, M De Visscher. Thyroxine-binding globulin in infant protein-calorie malnutrition. J Clin Endocrinol Metab 1974; 39( 1): 178– 180
https://doi.org/10.1210/jcem-39-1-178 pmid: 4209688
10 Y Ingenbleek, M De Visscher, P De Nayer. Measurement of prealbumin as index of protein-calorie malnutrition. Lancet 1972; 300( 7768): 106– 109
https://doi.org/10.1016/S0140-6736(72)91596-6 pmid: 4113892
11 Y Ingenbleek. Protein-calorie malnutrition in the child of lower age. Repercussions on thyroid function and serum carrier proteins. Ph. Thesis. Catholic University of Louvain, Belgium, 1977
12 GB Forbes. Human Body Composition. Growth, Aging, Nutrition, and Activity. Berlin: Springer-Verlag, 1987
13 SH Cohn, D Vartsky, S Yasumura, AN Vaswani, KJ Ellis. Indexes of body cell mass: nitrogen versus potassium. Am J Physiol 1983; 244( 3): E305– E310
pmid: 6829756
14 J Brožek, F Grande. Body composition and basal metabolism in man: correlation analysis versus physiological approach. Hum Biol 1955; 27( 1): 22– 31
pmid: 14353507
15 I Janssen, SB Heymsfield, ZM Wang, R Ross. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 2000; 89( 1): 81– 88
https://doi.org/10.1152/jappl.2000.89.1.81 pmid: 10904038
16 SB Heymsfield, MJ Müller, A Bosy-Westphal, D Thomas, W Shen. Human brain mass: similar body composition associations as observed across mammals. Am J Hum Biol 2012; 24( 4): 479– 485
https://doi.org/10.1002/ajhb.22249 pmid: 22362729
17 IM Nakshabendi, R McKee, S Downie, RI Russell, MJ Rennie. Rates of small intestinal mucosal protein synthesis in human jejunum and ileum. Am J Physiol 1999; 277( 6): E1028– 1031
18 MA McNurlan, A Sandgren, K Hunter, P Essén, PJ Garlick, J Wernerman. Protein synthesis rates of skeletal muscle, lymphocytes, and albumin with stress hormone infusion in healthy man. Metabolism 1996; 45( 11): 1388– 1394
https://doi.org/10.1016/S0026-0495(96)90120-1 pmid: 8931644
19 SB Heymsfield, CM Peterson, B Bourgeois, DM Thomas, D Gallagher, B Strauss, MJ Müller, A Bosy-Westphal. Human energy expenditure: advances in organ-tissue prediction models. Obes Rev 2018; 19( 9): 1177– 1188
https://doi.org/10.1111/obr.12718 pmid: 30035381
20 M Elia. Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN. Energy Metabolism: Tissue Determinants and Cellular Corollaries. New York: Raven Press, 1992: 61– 79
21 DM Power, NP Elias, SJ Richardson, J Mendes, CM Soares, CR Santos. Evolution of the thyroid hormone-binding protein, transthyretin. Gen Comp Endocrinol 2000; 119( 3): 241– 255
https://doi.org/10.1006/gcen.2000.7520 pmid: 11017772
22 MR Wallace, SL Naylor, B Kluve-Beckerman, GL Long, L McDonald, TB Shows, MD Benson. Localization of the human prealbumin gene to chromosome 18. Biochem Biophys Res Commun 1985; 129( 3): 753– 758
https://doi.org/10.1016/0006-291X(85)91956-4 pmid: 2990465
23 Y Kanda, DS Goodman, RE Canfield, FJ Morgan. The amino acid sequence of human plasma prealbumin. J Biol Chem 1974; 249( 21): 6796– 6805
https://doi.org/10.1016/S0021-9258(19)42128-5 pmid: 4607556
24 M Kanai, A Raz, DS Goodman. Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 1968; 47( 9): 2025– 2044
https://doi.org/10.1172/JCI105889 pmid: 5675424
25 HL Monaco. The transthyretin-retinol binding protein complex. In: Richardson SJ, Cody V. Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Berlin: Springer-Verlag, 2009: 123– 143
26 EL Socolow, KA Woeber, RH Purdy, MT Holloway, SH Ingbar. Preparation of I-131-labeled human serum prealbumin and its metabolism in normal and sick patients. J Clin Invest 1965; 44( 10): 1600– 1609
https://doi.org/10.1172/JCI105266 pmid: 5840530
27 PA Peterson, SF Nilsson, L Ostberg, L Rask, A Vahlquist. Aspects of the metabolism of retinol-binding protein and retinol. Vitam Horm 1975; 32 : 181– 214
https://doi.org/10.1016/S0083-6729(08)60012-6 pmid: 4617399
28 Y Ingenbleek, HG Van Den Schrieck, P De Nayer, M De Visscher. The role of retinol-binding protein in protein-calorie malnutrition. Metabolism 1975; 24( 5): 633– 641
https://doi.org/10.1016/0026-0495(75)90143-2 pmid: 805336
29 EA Kabat, DH Moore, H Landow. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to serum proteins. J Clin Invest 1942; 21( 5): 571– 577
https://doi.org/10.1172/JCI101335 pmid: 16694947
30 M Schönenberger HE Schultze G Schwick. A prealbumin of human serum. Biochem Z 1956; 328(4): 267–284 (in German)
pmid: 13373835
31 M Andreoli, J Robbins. Serum proteins and thyroxineprotein interaction in early human fetuses. J Clin Invest 1962; 41( 5): 1070– 1077
https://doi.org/10.1172/JCI104557 pmid: 13861452
32 A Vahlquist, L Rask, PA Peterson, T Berg. The concentrations of retinol-binding protein, prealbumin, and transferrin in the sera of newly delivered mothers and children of various ages. Scand J Clin Lab Invest 1975; 35( 6): 569– 575
https://doi.org/10.3109/00365517509095782 pmid: 1239075
33 JDL Veldhuis, JN Roemmich, EJ Richmond, AD Rogol, JC Lovejoy, M Sheffield-Moore, N Mauras, CY Bowers. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 2005; 26( 1): 114– 146
https://doi.org/10.1210/er.2003-0038 pmid: 15689575
34 J Bienvenu JO Jeppson Y Ingenbleek. Transthyretin & retinol-binding protein. In: Ritchie RF, Navolotskaia O. Serum Proteins in Clinical Medicine. Foundation for Blood Research, Scarborough, Maine, 1996: 9. 011– 9.018
35 VR Young YM Yu NK Fugakawa. Energy and protein turnover. In: Kinney JM, Tucker HN. Energy, Metabolism, Tissue Determinants and Cellular Corollaries. New York: Raven Press, 1992: 439– 466
36 PB Pencharz. Protein and energy requirements for “optimal” catch-up growth. Eur J Clin Nutr 2010; 64( Suppl.1): S5– 7
37 FA de Jong, G Schreiber. Messenger RNA levels of plasma proteins in rat liver during protein depletion and refeeding. J Nutr 1987; 117( 10): 1795– 1800
https://doi.org/10.1093/jn/117.10.1795 pmid: 3668695
38 DS Straus, NW Marten, JM Hayden, EJ Burke. Protein restriction specifically decreases the abundance of serum albumin and transthyretin nuclear transcripts in rat liver. J Nutr 1994; 124( 7): 1041– 1051
https://doi.org/10.1093/jn/124.7.1041 pmid: 8027854
39 Y Ingenbleek, V Young. Transthyretin (prealbumin) in health and disease: nutritional implications. Annu Rev Nutr 1994; 14( 1): 495– 533
https://doi.org/10.1146/annurev.nu.14.070194.002431 pmid: 7946531
40 SR Moskowitz, G Pereira, A Spitzer, L Heaf, J Amsel, JB Watkins. Prealbumin as a biochemical marker of nutritional adequacy in premature infants. J Pediatr 1983; 102( 5): 749– 753
https://doi.org/10.1016/S0022-3476(83)80251-0 pmid: 6405024
41 MR Thomas, M Massoudi, J Byrne, MA Mitchell, LD Eggert, GM Chan. Evaluation of transthyretin as a monitor of protein-energy intake in preterm and sick neonatal infants. J Parenter Enteral Nutr 1988; 12( 2): 162– 166
https://doi.org/10.1177/0148607188012002162 pmid: 3129592
42 SO Ogunshina, MA Hussain. Plasma thyroxine binding prealbumin as an index of mild protein-energy malnutrition in Nigerian children. Am J Clin Nutr 1980; 33( 4): 794– 800
https://doi.org/10.1093/ajcn/33.4.794 pmid: 6767389
43 G Devoto, F Gallo, C Marchello, O Racchi, R Garbarini, S Bonassi, G Albalustri, E Haupt. Prealbumin serum concentrations as a useful tool in the assessment of malnutrition in hospitalized patients. Clin Chem 2006; 52( 12): 2281– 2285
https://doi.org/10.1373/clinchem.2006.080366 pmid: 17068165
44 R Mühlethaler, AE Stuck, CE Minder, BM Frey. The prognostic significance of protein-energy malnutrition in geriatric patients. Age Ageing 1995; 24( 3): 193– 197
https://doi.org/10.1093/ageing/24.3.193 pmid: 7645437
45 JC Waterlow. Amount and rate of disappearance of liver fat in malnourished infants in Jamaica. Am J Clin Nutr 1975; 28( 11): 1330– 1336
https://doi.org/10.1093/ajcn/28.11.1330 pmid: 1190111
46 GO Barbezat, MD Bowie, RO Kaschula, JD Hansen. Studies on the small intestinal mucosa of children with protein-calorie malnutrition. S Afr Med J 1967; 41( 41): 1031– 1036
pmid: 6061166
47 M Reid, A Badaloo, T Forrester, JF Morlese, WC Heird, F Jahoor. The acute-phase protein response to infection in edematous and nonedematous protein-energy malnutrition. Am J Clin Nutr 2002; 76( 6): 1409– 1415
https://doi.org/10.1093/ajcn/76.6.1409 pmid: 12450910
48 MM Meguid, SO Fetissov, M Varma, T Sato, L Zhang, A Laviano, F Rossi-Fanelli. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 2000; 16( 10): 843– 857
https://doi.org/10.1016/S0899-9007(00)00449-4 pmid: 11054589
49 SA McMillan, W Dickey, JP Douglas, DF Hughes. Transthyretin values correlate with mucosal recovery in patients with coeliac disease taking a gluten free diet. J Clin Pathol 2001; 54( 10): 783– 786
https://doi.org/10.1136/jcp.54.10.783 pmid: 11577127
50 F Watson, M Dick. Distribution and inheritance of low serum thyroxine-binding globulin levels in Australian Aborigines: a new genetic variation. Med J Aust 1980; 2( 7): 385– 387
https://doi.org/10.5694/j.1326-5377.1980.tb131879.x pmid: 6779098
51 J Bienvenu, G Monneret, N Fabien, JP Revillard. The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med 2000; 38( 4): 267– 285
https://doi.org/10.1515/CCLM.2000.040 pmid: 10928646
52 Y Ingenbleek, L Bernstein. The stressful condition as a nutritionally dependent adaptive dichotomy. Nutrition 1999; 15( 4): 305– 320
https://doi.org/10.1016/S0899-9007(99)00009-X pmid: 10319365
53 C Gabay, I Kushner. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340( 6): 448– 454
https://doi.org/10.1056/NEJM199902113400607 pmid: 9971870
54 J Arnold, IT Campbell, TA Samuels, JC Devlin, CJ Green, LJ Hipkin, IA MacDonald, CM Scrimgeour, K Smith, MJ Rennie. Increased whole body protein breakdown predominates over increased whole body protein synthesis in multiple organ failure. Clin Sci (Lond) 1993; 84( 6): 655– 661
https://doi.org/10.1042/cs0840655 pmid: 8334812
55 T Murakami, S Ohnishi, S Nishiguchi, S Maeda, S Araki, K Shimada. Acute-phase response of mRNAs for serum amyloid P component, C-reactive protein and prealbumin (transthyretin) in mouse liver. Biochem Biophys Res Commun 1988; 155( 2): 554– 560
https://doi.org/10.1016/S0006-291X(88)80530-8 pmid: 3048257
56 RE Banks, MA Forbes, M Storr, J Higginson, D Thompson, J Raynes, JM Illingworth, TJ Perren, PJ Selby, JT Whicher. The acute phase protein response in patients receiving subcutaneous IL-6. Clin Exp Immunol 1995; 102( 1): 217– 223
https://doi.org/10.1111/j.1365-2249.1995.tb06659.x pmid: 7554393
57 Johnson A Myron, G Merlini, J Sheldon, K; Scientific Division Committee on Plasma Proteins (C-PP) Ichihara, Federation of Clinical Chemistry International, Medicine (IFCC) Laboratory. Clinical indications for plasma protein assays: transthyretin (prealbumin) in inflammation and malnutrition. Clin Chem Lab Med 2007; 45( 3): 419– 426
https://doi.org/10.1515/CCLM.2007.051 pmid: 17378745
58 T Cederholm, R Barazzoni, P Austin, P Ballmer, G Biolo, SC Bischoff, C Compher, I Correia, T Higashiguchi, M Holst, GL Jensen, A Malone, M Muscaritoli, I Nyulasi, M Pirlich, E Rothenberg, K Schindler, SM Schneider, MA de van der Schueren, C Sieber, L Valentini, JC Yu, A Van Gossum, P Singer. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 2017; 36( 1): 49– 64
https://doi.org/10.1016/j.clnu.2016.09.004 pmid: 27642056
59 DC Evans, MR Corkins, A Malone, S Miller, KM Mogensen, P Guenter, GL; ASPEN Malnutrition Committee Jensen. The use of visceral proteins as nutrition markers: An ASPEN position paper. Nutr Clin Pract 2021; 36( 1): 22– 28
https://doi.org/10.1002/ncp.10588 pmid: 33125793
60 Y Ingenbleek. Plasma transthyretin reflects the fluctuations of lean body mass. In: Richardson SJ, Cody V. Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Berlin: Springer-Verlag, 2009: 329– 357
61 G Sergi, A Coin, G Enzi, S Volpato, EM Inelmen, M Buttarello, M Peloso, S Mulone, S Marin, P Bonometto. Role of visceral proteins in detecting malnutrition in the elderly. Eur J Clin Nutr 2006; 60( 2): 203– 209
https://doi.org/10.1038/sj.ejcn.1602289 pmid: 16234837
62 GL Blackburn, BR Bistrian, BS Maini, HT Schlamm, MF Smith. Nutritional and metabolic assessment of the hospitalized patient. J Parenter Enteral Nutr 1977; 1( 1): 11– 22
https://doi.org/10.1177/014860717700100101 pmid: 98649
63 U Keller. Nutritional laboratory markers in malnutrition. J Clin Med 2019; 8( 6): 775– 785
https://doi.org/10.3390/jcm8060775 pmid: 31159248
64 KA Poulia, M Yannakoulia, D Karageorgou, M Gamaletsou, DB Panagiotakos, NV Sipsas, A Zampelas. Evaluation of the efficacy of six nutritional screening tools to predict malnutrition in the elderly. Clin Nutr 2012; 31( 3): 378– 385
https://doi.org/10.1016/j.clnu.2011.11.017 pmid: 22182948
65 T Cederholm, GL Jensen, MITD Correia, MC Gonzalez, R Fukushima, T Higashigushi, G Baptista, R Barazzoni, R Blaauw, A Coats, A Crivelli, DC Evans, L Gramlich, V Fuchs-Tarlovsky, H Keller, L Llido, A Malone, KM Mogensen, JE Morley, M Muscaritoli, I Nyalusi, M Dirlich, V Pisprasert, van der Schueren MAE de, S Siltharm, P Singer, K Tappenden, N Velasco, D Waitzberg, P Yamwong, J Yu, Gossum A Van, C; GLIM Core Leadership Committee; GLIM Working Group Compher. GLIM criteria for the diagnosis of malnutrition. A consensus report from the global clinical nutrition community. Clin Nutr 2019; 38( 1): 1– 9
https://doi.org/10.1016/j.clnu.2018.08.002 pmid: 30181091
66 E Chiquete, JL Ruiz-Sandoval, A Ochoa-Guzmán, LV Sánchez-Orozco, EB Lara-Zaragoza, N Basaldúa, B Ruiz-Madrigal, E Martínez-López, S Román, SA Godínez-Gutiérrez, A Panduro. The Quételet index revisited in children and adults. Endocrinol Nutr 2014; 61( 2): 87– 92
https://doi.org/10.1016/j.endonu.2013.06.001 pmid: 24388416
67 NN Gavriilidou, M Pihlsgård, S Elmståhl. High degree of BMI misclassification of malnutrition among Swedish elderly population: age-adjusted height estimation using knee height and demispan. Eur J Clin Nutr 2015; 69( 5): 565– 571
https://doi.org/10.1038/ejcn.2014.183 pmid: 25205322
68 AJ Tomiyama, JM Hunger, J Nguyen-Cuu, C Wells. Misclassification of cardiometabolic health when using body mass index categories in NHANES 2005–2012. Int J Obes 2016; 40( 5): 883– 886
https://doi.org/10.1038/ijo.2016.17 pmid: 26841729
69 AM Sedlmeier, SE Baumeister, A Weber, B Fischer, B Thorand, T Ittermann, M Dörr, SB Felix, H Völzke, A Peters, MF Leitzmann. Relation of body fat mass and fat-free mass to total mortality: results from 7 prospective cohort studies. Am J Clin Nutr 2021; 113( 3): 639– 646
https://doi.org/10.1093/ajcn/nqaa339 pmid: 33437985
70 MC Gonzalez, MITD Correia, SB Heymsfield. A requiem for BMI in the clinical setting. Curr Opin Clin Nutr Metab Care 2017; 20( 5): 314– 321
https://doi.org/10.1097/MCO.0000000000000395 pmid: 28768291
71 A Devakonda, L George, S Raoof, A Esan, A Saleh, LH Bernstein. Transthyretin as a marker to predict outcome in critically ill patients. Clin Biochem 2008; 41( 14–15): 1126– 1130
https://doi.org/10.1016/j.clinbiochem.2008.06.016 pmid: 18655780
72 JD Li, XF Xu, J Han, H Wu, H Xing, C Li, JJ Yu, YH Zhou, WM Gu, H Wang, TH Chen, YY Zeng, WY Lau, MC Wu, F Shen, T Yang. Preoperative prealbumin level as an independent predictor of long-term prognosis after liver resection for hepatocellular carcinoma: a multi-institutional study. HPB (Oxford) 2019; 21( 2): 157– 166
https://doi.org/10.1016/j.hpb.2018.06.1803 pmid: 30082212
73 WX Han, ZM Chen, ZJ Wei, AM Xu. Preoperative pre-albumin predicts prognosis of patients after gastrectomy for adenocarcinoma of esophagogastric junction. World J Surg Oncol 2016; 14( 1): 279– 285
https://doi.org/10.1186/s12957-016-1035-x pmid: 27809860
74 SY Ho, HR Guo, HH Chen, CJ Peng. Nutritional predictors of survival in terminally ill cancer patients. J Formos Med Assoc 2003; 102( 8): 544– 550
pmid: 14569319
75 N Isono, Y Imamura, K Ohmura, N Ueda, S Kawabata, M Furuse, T Kuroiwa. Transthyretin concentrations in acute stroke patients predict convalescent rehabilitation. J Stroke Cerebrovasc Dis 2017; 26( 6): 1375– 1382
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.02.020 pmid: 28314625
76 S Dellière, L Pouga, N Neveux, A Hernvann, Bandt JP De, L Cynober. Assessment of transthyretin cut-off values for a better screening of malnutrition: retrospective determination and prospective validation. Clin Nutr 2021; 40( 3): 907– 911
https://doi.org/10.1016/j.clnu.2020.06.017 pmid: 32665102
77 M Dramaix, D Brasseur, P Donnen, P Bawhere, D Porignon, R Tonglet, P Hennart. Prognostic indices for mortality of hospitalized children in central Africa. Am J Epidemiol 1996; 143( 12): 1235– 1243
https://doi.org/10.1093/oxfordjournals.aje.a008711 pmid: 8651222
78 Y Ingenbleek. Plasma transthyretin as a biomarker of sarcopenia in elderly subjects. Nutrients 2019; 11( 4): 895– 912
https://doi.org/10.3390/nu11040895 pmid: 31010086
79 P Liu, Q Hao, S Hai, H Wang, L Cao, B Dong. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: a systematic review and meta-analysis. Maturitas 2017; 103( 9): 16– 22
https://doi.org/10.1016/j.maturitas.2017.04.007 pmid: 28778327
80 GM Chertow, DJ Goldstein-Fuchs, JM Lazarus, GA Kaysen. Prealbumin, mortality, and cause-specific hospitalization in hemodialysis patients. Kidney Int 2005; 68( 6): 2794– 2800
https://doi.org/10.1111/j.1523-1755.2005.00751.x pmid: 16316355
81 LH Bernstein, Y Ingenbleek. Transthyretin: its response to malnutrition and stress injury. clinical usefulness and economic implications. Clin Chem Lab Med 2002; 40( 12): 1344– 1348
https://doi.org/10.1515/CCLM.2002.232 pmid: 12553442
82 H Koike, Y Iguchi, K Sahashi, M Katsuno. Significance of oligomeric and fibrillar species in amyloidosis: insights into pathophysiology and treatment. Molecules 2021; 26( 16): 5091– 5101
https://doi.org/10.3390/molecules26165091 pmid: 34443678
83 WD Lewis M Skinner RW Simms LA Jones AS Cohen RL Jenkins. Orthotopic liver transplantation for familial amyloidotic polyneuropathy. Clin Transplant 1994; 8(2 Pt 1): 107–110
pmid: 8019018
84 OB Suhr, IM Conceição, ON Karayal, FS Mandel, PE Huertas, BG Ericzon. Post hoc analysis of nutritional status in patients with transthyretin familial amyloid polyneuropathy: impact of tafamidis. Neurol Ther 2014; 3( 2): 101– 112
https://doi.org/10.1007/s40120-014-0023-8 pmid: 26000226
85 Y Sekijima, MA Dendle, JW Kelly. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006; 13( 4): 236– 249
https://doi.org/10.1080/13506120600960882 pmid: 17107884
86 T Coelho, D Adams, A Silva, P Lozeron, PN Hawkins, T Mant, J Perez, J Chiesa, S Warrington, E Tranter, M Munisamy, R Falzone, J Harrop, J Cehelsky, BR Bettencourt, M Geissler, JS Butler, A Sehgal, RE Meyers, Q Chen, T Borland, RM Hutabarat, VA Clausen, R Alvarez, K Fitzgerald, C Gamba-Vitalo, SV Nochur, AK Vaishnaw, DWY Sah, JA Gollob, OB Suhr. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013; 369( 9): 819– 829
https://doi.org/10.1056/NEJMoa1208760 pmid: 23984729
87 MD Benson, M Waddington-Cruz, JL Berk, M Polydefkis, PJ Dyck, AK Wang, V Planté-Bordeneuve, FA Barroso, G Merlini, L Obici, M Scheinberg, TH 3rd Brannagan, WJ Litchy, C Whelan, BM Drachman, D Adams, SB Heitner, I Conceição, HH Schmidt, G Vita, JM Campistol, J Gamez, PD Gorevic, E Gane, AM Shah, SD Solomon, BP Monia, SG Hughes, TJ Kwoh, BW McEvoy, SW Jung, BF Baker, EJ Ackermann, MA Gertz, T Coelho. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018; 379( 1): 22– 31
https://doi.org/10.1056/NEJMoa1716793 pmid: 29972757
88 F Magrinelli, GM Fabrizi, L Santoro, G Zanette, T Cavallaro, S Tamburin. Pharmacological treatment for familial amyloid polyneuropathy. Cochrane Database. Syst Rev 2020; 4 : 1– 72
89 R Tomson, I Fridolin, M Luman. Lean body mass assessment based on UV absorbance in spent dialysate and dual-energy X-ray absorptiometry. Int J Artif Organs 2015; 38( 6): 311– 315
https://doi.org/10.5301/ijao.5000415 pmid: 26109264
90 EL Player, P Morris, T Thomas, WY Chan, R Vyas, J Dutton, J Tang, L Alexandre, A Forbes. Bioelectrical impedance analysis (BIA)-derived phase angle (PA) is a practical aid to nutritional assessment in hospital in-patients. Clin Nutr 2019; 38( 4): 1700– 1706
https://doi.org/10.1016/j.clnu.2018.08.003 pmid: 30170780
91 N Cui, H Tong, Y Li, Y Ge, Y Shi, P Lv, X Zhao, J Zhang, G Fu, Y Zhou, K Jiang, N Lin, T Bai, R Jin, S Wei, X Yang, X Li. Role of prealbumin in predicting the prognosis of severely and critically ill Covid-19 patients. Am J Trop Med Hyg 2021; 105( 3): 718– 726
https://doi.org/10.4269/ajtmh.21-0234 pmid: 34242179
92 Y Luo, Y Xue, L Mao, X Yuan, Q Lin, G Tang, H Song, F Wang, Z Sun. Prealbumin as a predictor of prognosis in patients with coronavirus disease 2019. Front Med (Lausanne) 2020; 7( 6): 374– 382
https://doi.org/10.3389/fmed.2020.00374 pmid: 32671085
93 R Chen, L Li, C Li, Y Su, Y Zhang, X Pang, J Zheng, Z Zeng, MH Chen, S Zhang. Prealbumin and retinol-binding protein 4: The promising inflammatory biomarkers for identifying endoscopic remission in Crohn’s disease. J Inflamm Res 2021; 14 : 7371– 7379
https://doi.org/10.2147/JIR.S343125 pmid: 34992423
94 Y Fan, Y Sun, C Man, Y Lang. Perioperative serum prealbumin level and adverse prognosis in patients with hepatocellular carcinoma after hepatectomy: a meta-analysis. Front Oncol 2021; 11 : 775425
https://doi.org/10.3389/fonc.2021.775425
95 T Miura, K Amano, A Shirado, M Baba, T Ozawa, N Nakajima, A Suga, Y Matsumoto, M Shimizu, S Shimoyama, T Kuriyama, Y Matsuda, T Iwashita, I Mori, H Kinoshita. Low transthyretin levels predict poor prognosis in cancer patients in palliative care settings. Nutr Cancer 2018; 70( 8): 1283– 1289
https://doi.org/10.1080/01635581.2018.1557213 pmid: 30663397
96 T Shimura, M Shibata, T Inoue, Y Owada-Ozaki, T Yamaura, S Muto, T Hasegawa, Y Shio, H Suzuki. Prognostic impact of serum transthyretin in patients with non-small cell lung cancer. Mol Clin Oncol 2019; 10( 6): 597– 604
https://doi.org/10.3892/mco.2019.1837 pmid: 31031974
97 M Akashi, Y Minami, S Haruki, K Jujo, N Hagiwara. Prognostic implications of prealbumin level on admission in patients with acute heart failure referred to a cardiac intensive care unit. J Cardiol 2019; 73( 2): 114– 119
https://doi.org/10.1016/j.jjcc.2018.08.003 pmid: 30366636
98 S Sato, M Shiozawa, S Nukada, K Iguchi, K Kazama, Y Atsumi, M Numata, H Tamagawa, K Tanaka, T Oshima, Y Rino. Preoperatve pre-albumin concentration as a predictor of short-term outcomes in elderly patients with colorectal cancer. Anticancer Res 2021; 41( 10): 5195– 5202
https://doi.org/10.21873/anticanres.15338 pmid: 34593472
99 E Kumagai K Hosohata K Furumachi S Takai. Range of serum transthyretin levels in hemodialysis patients at a high risk of 1-year mortality: a retrospective cohort study. Ther Apher Dial 2021; [Epub ahead of print] doi:10.1111/1744-9987.13768
100 HT Yang, H Yim, YS Cho, D Kim, J Hur, JH Kim, BC Lee, DK Seo, HS Kim, W Chun. Prediction of clinical outcomes for massively-burned patients via serum transthyretin levels in the early postburn period. J Trauma Acute Care Surg 2012; 72( 4): 999– 1005
https://doi.org/10.1097/TA.0b013e3182413bd8 pmid: 22491617
101 KH Lee, JH Cho, O Kwon, SU Kim, RH Kim, YW Cho, HY Jung, JY Choi, CD Kim, YL Kim, SH Park. Low prealbumin levels are independently associated with higher mortality in patients on peritoneal dialysis. Kidney Res Clin Pract 2016; 35( 3): 169– 175
https://doi.org/10.1016/j.krcp.2016.06.002 pmid: 27668161
102 HJ Bae, HJ Lee, DS Han, YS Suh, YH Lee, HS Lee, JJ Cho, SH Kong, HK Yang. Prealbumin levels as a useful marker for predicting infectious complications after gastric surgery. J Gastrointest Surg 2011; 15( 12): 2136– 2144
https://doi.org/10.1007/s11605-011-1719-z pmid: 21989582
103 MR Akbar, R Pranata, A Wibowo, MA Lim, TA Sihite, JW Martha. The association between serum prealbumin and poor outcome in COVID-19—systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 2021; 25( 10): 3879– 3885
pmid: 34109596
104 M Seesen, W Sirikul, J Ruangsuriya, J Griffiths, P Siviroj. Cognitive frailty in Thai community-dwelling elderly: prevalence and its association with malnutrition. Nutrients 2021; 13( 12): 4239– 4256
https://doi.org/10.3390/nu13124239 pmid: 34959791
105 D Sugumar, J Arockiaraj, R Amritanand, KS David, V Krishnan. Role of biochemical nutritional parameters as predictors of postoperative morbidity in major spine surgeries. Asian Spine J 2021; 15( 4): 504– 511
https://doi.org/10.31616/asj.2020.0180 pmid: 33059432
106 M Shahriari, E Rezaei, LA Bakht, S Abbasi. Comparison of the effects of enteral feeding through the bolus and continuous methods on blood sugar and prealbumin levels in ICU inpatients. J Educ Health Promot 2015; 4( 4): 95– 99
pmid: 27462637
107 A Zinellu, AA Mangoni. Serum prealbumin concentrations, Covid-19 severity, and mortality: a systematic review and meta-analysis. Front Med (Lausanne) 2021; 8 : 638529
https://doi.org/10.3389/fmed.2021.638529 pmid: 33575267
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed