Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (4): 685-698   https://doi.org/10.1007/s11684-022-0942-1
  本期目录
ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification
Wenle Ye1,2, Jinghan Wang1,2, Jiansong Huang1,2, Xiao He3, Zhixin Ma4, Xia Li1,2, Xin Huang1,2, Fenglin Li1,2, Shujuan Huang1,2, Jiajia Pan1,2, Jingrui Jin1,2, Qing Ling1,2, Yungui Wang1,2, Yongping Yu5, Jie Sun1,2(), Jie Jin1,2,6()
1. Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
2. Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou 310009, China
3. Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2L 4M1, Canada
4. Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
5. Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
6. Cancer Center, Zhejiang University, Hangzhou 310058, China
 全文: PDF(5457 KB)   HTML
Abstract

Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.

Key wordsacute myeloid leukemia    acyl-CoA synthetase long chain family member 5    Wnt3a    palmitoylation    ABT-199
收稿日期: 2021-08-23      出版日期: 2023-10-12
Corresponding Author(s): Jie Sun,Jie Jin   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(4): 685-698.
Wenle Ye, Jinghan Wang, Jiansong Huang, Xiao He, Zhixin Ma, Xia Li, Xin Huang, Fenglin Li, Shujuan Huang, Jiajia Pan, Jingrui Jin, Qing Ling, Yungui Wang, Yongping Yu, Jie Sun, Jie Jin. ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification. Front. Med., 2023, 17(4): 685-698.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0942-1
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I4/685
Fig.1  
Variables Low expression High expression P value
Number (%) 156 (50.00) 156 (50.00)
ACSL5 expression 0.42 (0.27, 0.64) 1.22 (1.09, 1.64) < 0.0001
Age, median (range), year 51.00 (41.00, 61.00) 58.00 (37.00, 66.00) 0.1577
Male, n (%) 104 (66.67) 93 (59.62) 0.6812
aWBC, median (bIQR), ×109/L 10.65 (2.30, 56.30) 13.10 (2.80, 54.00) 0.5373
cHB, median (IQR), ×109/L 88.00 (69.00, 105.00) 84.00 (67.00, 102.00) 0.1241
dPLT, median (IQR), ×109/L 52.00 (26.75, 90.75) 50.00 (27.75, 90.00) 0.9750
Blast, median (IQR), ×109/L 65.00 (40.00,82.00) 69.00 (48.00,81.00) 0.2390
eFAB classification, n (%) 0.2934
M0 17 (10.90) 20 (12.82)
M1 12 (7.69) 15 (9.62)
M2 78 (50.00) 73 (46.79)
M3 0 0
M4 10 (6.41) 3 (1.92)
M5 34 (21.79) 43 (27.56)
M6 5 (3.21) 2 (1.28)
Genes mutations, n (%)
FLT3-ITD 26 (16.67) 35 (22.44) 0.6936
NPM1 41 (26.28) 42 (26.92) 0.3136
DNMT3A 16 (10.26) 20 (12.82) 0.6940
f CEBPADM 23 (14.74) 24 (15.38) 0.4400
IDH1 32 (20.51) 24 (15.38) 0.8987
IDH2 15 (9.62) 26 (16.67) 0.6859
gTreatment (%) 0.4445
DA 39 (25.00) 36 (23.08)
HAA 34 (21.79) 17 (18.90)
IA 83 (53.20) 103 (66.03)
CR (%) 98 (62.82) 82 (52.56) 0.5097
Tab.1  
Variables Overall survival Event free survival
HR (95% CI) P HR (95% CI) P
ACSL5 expression (high vs. low) 1.932 (1.253, 2.979) 0.003 1.544 (1.040, 2.293) 0.031
Age (> 60) 2.191 (1.407, 3.413) < 0.001 2.194 (1.455, 3.308) < 0.001
WBC (> 10) 1.283 (0.836, 1.968) 0.254 1.487 (0.994, 2.224) 0.053
FLT3-ITD 2.332 (1.454, 3.740) < 0.001 1.933 (1.240, 3.014) 0.004
NPM1 0.726 (0.447, 1.179) 0.196 0.838 (0.536, 1.309) 0.437
DNMT3a 1.839 (1.086, 3.115) 0.023 1.693 (1.030, 2.785) 0.038
CEBPA 0.286 (0.122, 0.670) 0.004 0.271 (0.123, 0.596) 0.001
IDH1 1.420 (0.827, 2.439) 0.204 1.631 (0.991, 2.685) 0.054
IDH2 1.160 (0.604, 2.226) 0.656 1.089 (0.594, 1.995) 0.078
Treatment protocols 1.098 (0.776, 1.553) 0.596 0.957 (0.688, 1.330) 0.792
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 P Yan, D Frankhouser, M Murphy, HH Tam, B Rodriguez, J Curfman, M Trimarchi, S Geyer, YZ Wu, SP Whitman, K Metzeler, A Walker, R Klisovic, S Jacob, MR Grever, JC Byrd, CD Bloomfield, R Garzon, W Blum, MA Caligiuri, R Bundschuh, G Marcucci. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood 2012; 120(12): 2466–2474
https://doi.org/10.1182/blood-2012-05-429175 pmid: 22786882
2 GJ Roboz. Current treatment of acute myeloid leukemia. Curr Opin Oncol 2012; 24(6): 711–719
https://doi.org/10.1097/CCO.0b013e328358f62d pmid: 23014187
3 PA Watkins, D Maiguel, Z Jia, J Pevsner. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 2007; 48(12): 2736–2750
https://doi.org/10.1194/jlr.M700378-JLR200 pmid: 17762044
4 JM Ellis, JL Frahm, LO Li, RA Coleman. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol 2010; 21(3): 212–217
https://doi.org/10.1097/MOL.0b013e32833884bb pmid: 20480548
5 EL Klett, S Chen, A Yechoor, FB Lih, RA Coleman. Long-chain acyl-CoA synthetase isoforms differ in preferences for eicosanoid species and long-chain fatty acids. J Lipid Res 2017; 58(5): 884–894
https://doi.org/10.1194/jlr.M072512 pmid: 28209804
6 N Meller, ME Morgan, WP Wong, JB Altemus, E Sehayek. Targeting of acyl-CoA synthetase 5 decreases jejunal fatty acid activation with no effect on dietary long-chain fatty acid absorption. Lipids Health Dis 2013; 12(1): 88
https://doi.org/10.1186/1476-511X-12-88 pmid: 23767941
7 C Klaus, U Schneider, C Hedberg, AK Schütz, J Bernhagen, H Waldmann, N Gassler, E Kaemmerer. Modulating effects of acyl-CoA synthetase 5-derived mitochondrial Wnt2B palmitoylation on intestinal Wnt activity. World J Gastroenterol 2014; 20(40): 14855–14864
https://doi.org/10.3748/wjg.v20.i40.14855 pmid: 25356045
8 T Mashima, S Sato, Y Sugimoto, T Tsuruo, H Seimiya. Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions. Oncogene 2009; 28(1): 9–19
https://doi.org/10.1038/onc.2008.355 pmid: 18806831
9 T Mashima, S Sato, S Okabe, S Miyata, M Matsuura, Y Sugimoto, T Tsuruo, H Seimiya. Acyl-CoA synthetase as a cancer survival factor: its inhibition enhances the efficacy of etoposide. Cancer Sci 2009; 100(8): 1556–1562
https://doi.org/10.1111/j.1349-7006.2009.01203.x pmid: 19459852
10 F Hartmann, D Sparla, E Tute, M Tamm, U Schneider, MK Jeon, R Kasperk, N Gassler, E Kaemmerer. Low acyl-CoA synthetase 5 expression in colorectal carcinomas is prognostic for early tumour recurrence. Pathol Res Pract 2017; 213(3): 261–266
https://doi.org/10.1016/j.prp.2016.09.002 pmid: 28153554
11 CY Logan, R Nusse. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20(1): 781–810
https://doi.org/10.1146/annurev.cellbio.20.010403.113126 pmid: 15473860
12 Y Yang. Wnt signaling in development and disease. Cell Biosci 2012; 2(1): 14
https://doi.org/10.1186/2045-3701-2-14 pmid: 22520685
13 R Nusse, H Clevers. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017; 169(6): 985–999
https://doi.org/10.1016/j.cell.2017.05.016 pmid: 28575679
14 J Roth, C Zuber, S Park, I Jang, Y Lee, KG Kysela, V Le Fourn, R Santimaria, B Guhl, JW Cho. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 2010; 30(6): 497–506
https://doi.org/10.1007/s10059-010-0159-z pmid: 21340671
15 K Willert, R Nusse. Wnt proteins. Cold Spring Harb Perspect Biol 2012; 4(9): a007864
https://doi.org/10.1101/cshperspect.a007864 pmid: 22952392
16 R Takada, Y Satomi, T Kurata, N Ueno, S Norioka, H Kondoh, T Takao, S Takada. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 2006; 11(6): 791–801
https://doi.org/10.1016/j.devcel.2006.10.003 pmid: 17141155
17 G Hausmann, C Bänziger, K Basler. Helping Wingless take flight: how WNT proteins are secreted. Nat Rev Mol Cell Biol 2007; 8(4): 331–336
https://doi.org/10.1038/nrm2141 pmid: 17342185
18 E Kaemmerer, A Peuscher, A Reinartz, C Liedtke, R Weiskirchen, J Kopitz, N Gassler. Human intestinal acyl-CoA synthetase 5 is sensitive to the inhibitor triacsin C. World J Gastroenterol 2011; 17(44): 4883–4889
https://doi.org/10.3748/wjg.v17.i44.4883 pmid: 22171129
19 T Mashima, T Oh-hara, S Sato, M Mochizuki, Y Sugimoto, K Yamazaki, J Hamada, M Tada, T Moriuchi, Y Ishikawa, Y Kato, H Tomoda, T Yamori, T Tsuruo. p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer Inst 2005; 97(10): 765–777
https://doi.org/10.1093/jnci/dji133 pmid: 15900046
20 MP Marino, MJ Luce, J Reiser. Small- to large-scale production of lentivirus vectors. Methods Mol Biol 2003; 229: 43–55
https://doi.org/10.1385/1-59259-393-3:43 pmid: 12824620
21 GY Di Veroli, C Fornari, D Wang, S Mollard, JL Bramhall, FM Richards, DI Jodrell. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016; 32(18): 2866–2868
https://doi.org/10.1093/bioinformatics/btw230 pmid: 27153664
22 Z Tang, C Li, B Kang, G Gao, C Li, Z Zhang. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98–W102
https://doi.org/10.1093/nar/gkx247 pmid: 28407145
23 C Chopard, PBV Tong, P Tóth, M Schatz, H Yezid, S Debaisieux, C Mettling, A Gross, M Pugnière, A Tu, JM Strub, JM Mesnard, N Vitale, B Beaumelle. Cyclophilin A enables specific HIV-1 Tat palmitoylation and accumulation in uninfected cells. Nat Commun 2018; 9(1): 2251
https://doi.org/10.1038/s41467-018-04674-y pmid: 29884859
24 C Klaus, E Kaemmerer, A Reinartz, U Schneider, P Plum, MK Jeon, J Hose, F Hartmann, M Schnölzer, N Wagner, J Kopitz, N Gassler. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res 2014; 357(1): 267–278
https://doi.org/10.1007/s00441-014-1826-8 pmid: 24770931
25 PJ Ko, SJ Dixon. Protein palmitoylation and cancer. EMBO Rep 2018; 19(10): e46666
https://doi.org/10.15252/embr.201846666 pmid: 30232163
26 CW Fhu, A Ali. Protein lipidation by palmitoylation and myristoylation in cancer. Front Cell Dev Biol 2021; 9: 673647
https://doi.org/10.3389/fcell.2021.673647 pmid: 34095144
27 BT MacDonald, K Tamai, X He. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17(1): 9–26
https://doi.org/10.1016/j.devcel.2009.06.016 pmid: 19619488
28 T Zhan, N Rindtorff, M Boutros. Wnt signaling in cancer. Oncogene 2017; 36(11): 1461–1473
https://doi.org/10.1038/onc.2016.304 pmid: 27617575
29 AM Gruszka, D Valli, M Alcalay. Wnt signalling in acute myeloid leukaemia. Cells 2019; 8(11): 1403
https://doi.org/10.3390/cells8111403 pmid: 31703382
30 Y Wang, AV Krivtsov, AU Sinha, TE North, W Goessling, Z Feng, LI Zon, SA Armstrong. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327(5973): 1650–1653
https://doi.org/10.1126/science.1186624 pmid: 20339075
31 K Willert, JD Brown, E Danenberg, AW Duncan, IL Weissman, T Reya, JR 3rd Yates, R Nusse. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423(6938): 448–452
https://doi.org/10.1038/nature01611 pmid: 12717451
32 X Gao, RN Hannoush. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol 2014; 10(1): 61–68
https://doi.org/10.1038/nchembio.1392 pmid: 24292069
33 AH Nile, RN Hannoush. Fatty acylation of Wnt proteins. Nat Chem Biol 2016; 12(2): 60–69
https://doi.org/10.1038/nchembio.2005 pmid: 26784846
34 M Miranda, LM Galli, M Enriquez, LA Szabo, X Gao, RN Hannoush, LW Burrus. Identification of the WNT1 residues required for palmitoylation by Porcupine. FEBS Lett 2014; 588(24): 4815–4824
https://doi.org/10.1016/j.febslet.2014.11.016 pmid: 25451226
35 E Gharib, P Nasrinasrabadi, MR Zali. Development and validation of a lipogenic genes panel for diagnosis and recurrence of colorectal cancer. PLoS One 2020; 15(3): e0229864
https://doi.org/10.1371/journal.pone.0229864 pmid: 32155177
36 E GharibP Nasri NasrabadiM Reza Zali. miR-497-5p mediates starvation-induced death in colon cancer cells by targeting acyl-CoA synthetase-5 and modulation of lipid metabolism. J Cell Physiol 2020; 235(7–8): 5570–5589 doi:10.1002/jcp.29488
pmid: 32012265
37 L Zhang, J Lv, C Chen, X Wang. Roles of acyl-CoA synthetase long-chain family member 5 and colony stimulating factor 2 in inhibition of palmitic or stearic acids in lung cancer cell proliferation and metabolism. Cell Biol Toxicol 2021; 37(1): 15–34
https://doi.org/10.1007/s10565-020-09520-w pmid: 32347412
38 H Tomoda, K Igarashi, JC Cyong, S Omura. Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation. Inhibition of long chain acyl-CoA synthetase by triacsins caused inhibition of Raji cell proliferation. J Biol Chem 1991; 266(7): 4214–4219
https://doi.org/10.1016/S0021-9258(20)64309-5 pmid: 1999415
39 T Mashima, S Sato, S Okabe, S Miyata, M Matsuura, Y Sugimoto, T Tsuruo, H Seimiya. Acyl-CoA synthetase as a cancer survival factor: its inhibition enhances the efficacy of etoposide. Cancer Sci 2009; 100(8): 1556–1562
https://doi.org/10.1111/j.1349-7006.2009.01203.x pmid: 19459852
40 F Liu, HA Kalpage, D Wang, H Edwards, M Hüttemann, J Ma, Y Su, J Carter, X Li, L Polin, J Kushner, SH Dzinic, K White, G Wang, JW Taub, Y Ge. Cotargeting of mitochondrial complex I and Bcl-2 shows antileukemic activity against acute myeloid leukemia cells reliant on oxidative phosphorylation. Cancers (Basel) 2020; 12(9): 2400
https://doi.org/10.3390/cancers12092400 pmid: 32847115
41 R Valentin, S Grabow, MS Davids. The rise of apoptosis: targeting apoptosis in hematologic malignancies. Blood 2018; 132(12): 1248–1264
https://doi.org/10.1182/blood-2018-02-791350 pmid: 30012635
[1] FMD-22019-OF-JJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed