Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2
Mingyue Tan1,2, Qi Pan1, Qi Wu1,3, Jianfa Li1, Jun Wang1,2,3()
1. Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China 2. Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China 3. Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People’s Hospital of Lishui), Lishui 323000, China
Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
TJ Mitchell, S Turajlic, A Rowan, D Nicol, JHR Farmery, T O’Brien, I Martincorena, P Tarpey, N Angelopoulos, LR Yates, AP Butler, K Raine, GD Stewart, B Challacombe, A Fernando, JI Lopez, S Hazell, A Chandra, S Chowdhury, S Rudman, A Soultati, G Stamp, N Fotiadis, L Pickering, L Au, L Spain, J Lynch, M Stares, J Teague, F Maura, DC Wedge, S Horswell, T Chambers, K Litchfield, H Xu, A Stewart, R Elaidi, S Oudard, N McGranahan, I Csabai, M Gore, PA Futreal, J Larkin, AG Lynch, Z Szallasi, C Swanton, PJ Campbell, TRR Consortium. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 2018; 173(3): 611–623.e17 https://doi.org/10.1016/j.cell.2018.02.020
pmid: 29656891
3
J Schödel, S Grampp, ER Maher, H Moch, PJ Ratcliffe, P Russo, DR Mole. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol 2016; 69(4): 646–657 https://doi.org/10.1016/j.eururo.2015.08.007
pmid: 26298207
CS Zhang, SA Hawley, Y Zong, M Li, Z Wang, A Gray, T Ma, J Cui, JW Feng, M Zhu, YQ Wu, TY Li, Z Ye, SY Lin, H Yin, HL Piao, DG Hardie, SC Lin. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548(7665): 112–116 https://doi.org/10.1038/nature23275
pmid: 28723898
6
M Li, X He, W Guo, H Yu, S Zhang, N Wang, G Liu, R Sa, X Shen, Y Jiang, Y Tang, Y Zhuo, C Yin, Q Tu, N Li, X Nie, Y Li, Z Hu, H Zhu, J Ding, Z Li, T Liu, F Zhang, H Zhou, S Li, J Yue, Z Yan, S Cheng, Y Tao, H Yin. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Can 2020; 1(7): 735–747 https://doi.org/10.1038/s43018-020-0086-7
pmid: 35122041
7
J Huang, W Kong, J Zhang, Y Chen, W Xue, D Liu, Y Huang. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma. Int J Oncol 2016; 49(4): 1569–1575 https://doi.org/10.3892/ijo.2016.3622
pmid: 27431728
8
KD Courtney, D Bezwada, T Mashimo, K Pichumani, V Vemireddy, AM Funk, J Wimberly, SS McNeil, P Kapur, Y Lotan, V Margulis, JA Cadeddu, I Pedrosa, RJ DeBerardinis, CR Malloy, RM Bachoo, EA Maher. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 2018; 28(5): 793–800.e2 https://doi.org/10.1016/j.cmet.2018.07.020
pmid: 30146487
9
HI Wettersten, OA Aboud, PN Jr Lara, RH Weiss. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 2017; 13(7): 410–419 https://doi.org/10.1038/nrneph.2017.59
pmid: 28480903
Y Lu, Y Li, Q Liu, N Tian, P Du, F Zhu, Y Han, X Liu, X Liu, X Peng, X Wang, Y Wu, L Tong, Y Li, Y Zhu, L Wu, P Zhang, Y Xu, H Chen, B Li, X Tong. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology 2021; 161(2): 575–591.e16 https://doi.org/10.1053/j.gastro.2021.04.041
pmid: 33901495
12
P Martinelli, Santa Pau E Carrillo-de, T Cox, B Jr Sainz, N Dusetti, W Greenhalf, L Rinaldi, E Costello, P Ghaneh, N Malats, M Büchler, M Pajic, AV Biankin, J Iovanna, J Neoptolemos, FX Real. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017; 66(9): 1665–1676 https://doi.org/10.1136/gutjnl-2015-311256
pmid: 27325420
13
AA Ganaie, FH Beigh, M Astone, MG Ferrari, R Maqbool, S Umbreen, AS Parray, HR Siddique, T Hussain, P Murugan, C Morrissey, S Koochekpour, Y Deng, BR Konety, LH Hoeppner, M Saleem. BMI1 drives metastasis of prostate cancer in Caucasian and African-American men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin Cancer Res 2018; 24(24): 6421–6432 https://doi.org/10.1158/1078-0432.CCR-18-1394
pmid: 30087142
14
EN Kouwenhoven, Heeringen SJ van, JJ Tena, M Oti, BE Dutilh, ME Alonso, la Calle-Mustienes E de, L Smeenk, T Rinne, L Parsaulian, E Bolat, R Jurgelenaite, MA Huynen, A Hoischen, JA Veltman, HG Brunner, T Roscioli, E Oates, M Wilson, M Manzanares, JL Gómez-Skarmeta, HG Stunnenberg, M Lohrum, Bokhoven H van, H Zhou. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6(8): e1001065 https://doi.org/10.1371/journal.pgen.1001065
pmid: 20808887
15
C Lu, D Yang, ME Sabbatini, AH Colby, MW Grinstaff, NH Oberlies, C Pearce, K Liu. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 2018; 18(1): 149 https://doi.org/10.1186/s12885-018-4061-y
pmid: 29409480
16
X Hu, C Feng, Y Zhou, A Harrison, M Chen. DeepTrio: a ternary prediction system for protein-protein interaction using mask multiple parallel convolutional neural networks. Bioinformatics 2021; 38(3): 694–702 https://doi.org/10.1093/bioinformatics/btab737
pmid: 34694333
17
T Sakamoto, J S Weng, T Hara, S Yoshino, H Kozuka-Hata, M Oyama, M Seiki. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol. 2014; 34(1): 30–42 https://doi.org/10.1128/MCB.01169-13
pmid: 24164895
18
X Li, A Eberhardt, JN Hansen, D Bohmann, H Li, NF Schor. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31(6): 2327–2339 https://doi.org/10.1096/fj.201601050RR
pmid: 28213359
19
R SantamariaG EspositoL VitaglianoV RaceI PaglionicoL ZancanA ZagariF Salvatore. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J 2000; 350 Pt 3(Pt 3): 823–828
20
Y Zhang, MH Heinsen, M Kostic, GM Pagani, TV Riera, I Perovic, L Hedstrom, BB Snider, TC Pochapsky. Analogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)pentane, an acyclic intermediate in the methionine salvage pathway: a new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca. Bioorg Med Chem 2004; 12(14): 3847–3855 https://doi.org/10.1016/j.bmc.2004.05.002
pmid: 15210152
21
AR Deshpande, K Wagenpfeil, TC Pochapsky, GA Petsko, D Ringe. Metal-dependent function of a mammalian acireductone dioxygenase. Biochemistry 2016; 55(9): 1398–1407 https://doi.org/10.1021/acs.biochem.5b01319
pmid: 26858196
22
J Wang, M Tan, J Ge, P Zhang, J Zhong, L Tao, Q Wang, X Tong, J Qiu. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif 2018; 51(4): e12452 https://doi.org/10.1111/cpr.12452
pmid: 29569766
23
BS AlexandrovFL IlievV Stanev V VesselinovLB Alexandrov. rNMF 1.0: Robust Nonnegative matrix factorization with kmeans clustering and signal shift. 2016
24
J Guinney, R Dienstmann, X Wang, Reyniès A de, A Schlicker, C Soneson, L Marisa, P Roepman, G Nyamundanda, P Angelino, BM Bot, JS Morris, IM Simon, S Gerster, E Fessler, Sousa E Melo F De, E Missiaglia, H Ramay, D Barras, K Homicsko, D Maru, GC Manyam, B Broom, V Boige, B Perez-Villamil, T Laderas, R Salazar, JW Gray, D Hanahan, J Tabernero, R Bernards, SH Friend, P Laurent-Puig, JP Medema, A Sadanandam, L Wessels, M Delorenzi, S Kopetz, L Vermeulen, S Tejpar, S Tejpar. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21(11): 1350–1356 https://doi.org/10.1038/nm.3967
pmid: 26457759
25
X He, M Li, H Yu, G Liu, N Wang, C Yin, Q Tu, G Narla, Y Tao, S Cheng, H Yin, H Yin. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol 2020; 18(12): e3000803 https://doi.org/10.1371/journal.pbio.3000803
pmid: 33275593
26
K Takayama, T Suzuki, T Fujimura, T Urano, S Takahashi, Y Homma, S Inoue. CtBP2 modulates the androgen receptor to promote prostate cancer progression. Cancer Res 2014; 74(22): 6542–6553 https://doi.org/10.1158/0008-5472.CAN-14-1030
pmid: 25228652
27
DP Wang, LL Gu, Q Xue, H Chen, GX Mao. CtBP2 promotes proliferation and reduces drug sensitivity in non-small cell lung cancer via the Wnt/β-catenin pathway. Neoplasma 2018; 65(6): 888–897 https://doi.org/10.4149/neo_2018_171220N828
pmid: 30334447
28
S Paliwal, N Ho, D Parker, SR Grossman. CtBP2 promotes human cancer cell migration by transcriptional activation of tiam1. Genes Cancer 2012; 3(7–8): 481–490 https://doi.org/10.1177/1947601912463695
pmid: 23264848
29
F Dai, Y Xuan, JJ Jin, S Yu, ZW Long, H Cai, XW Liu, Y Zhou, YN Wang, Z Chen, H Huang. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis. Oncotarget 2017; 8(17): 28736–28749 https://doi.org/10.18632/oncotarget.15661
pmid: 28404932
30
KGR Quinlan, A Verger, A Kwok, SHY Lee, J Perdomo, M Nardini, M Bolognesi, M Crossley. Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 2006; 26(21): 8202–8213 https://doi.org/10.1128/MCB.00445-06
pmid: 16940173
31
GM Riefler, BL Firestein. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276(51): 48262–48268 https://doi.org/10.1074/jbc.M106503200
pmid: 11590170
32
B Benziane, S Demaretz, N Defontaine, N Zaarour, L Cheval, S Bourgeois, C Klein, M Froissart, A Blanchard, M Paillard, G Gamba, P Houillier, K Laghmani. NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 2007; 282(46): 33817–33830 https://doi.org/10.1074/jbc.M700195200
pmid: 17848580
33
LJ Zhao, M Kuppuswamy, S Vijayalingam, G Chinnadurai. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 2009; 10(1): 89 https://doi.org/10.1186/1471-2199-10-89
pmid: 19754958
34
M Lu, D Ammar, H Ives, F Albrecht, SL Gluck. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 2007; 282(34): 24495–24503 https://doi.org/10.1074/jbc.M702598200
pmid: 17576770
35
S Lee, S Hong, S Kim, S Kang. Ataxin-1 occupies the promoter region of E-cadherin in vivo and activates CtBP2-repressed promoter. Biochim Biophys Acta 2011; 1813(5): 713–722 https://doi.org/10.1016/j.bbamcr.2011.01.035
pmid: 21315774
36
C Wan, B Borgeson, S Phanse, F Tu, K Drew, G Clark, X Xiong, O Kagan, J Kwan, A Bezginov, K Chessman, S Pal, G Cromar, O Papoulas, Z Ni, DR Boutz, S Stoilova, PC Havugimana, X Guo, RH Malty, M Sarov, J Greenblatt, M Babu, WB Derry, ER Tillier, JB Wallingford, J Parkinson, EM Marcotte, A Emili. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525(7569): 339–344 https://doi.org/10.1038/nature14877
pmid: 26344197
37
G Lucarelli, D Loizzo, R Franzin, S Battaglia, M Ferro, F Cantiello, G Castellano, C Bettocchi, P Ditonno, M Battaglia. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19(5): 397–407 https://doi.org/10.1080/14737159.2019.1607729
pmid: 30983433
38
R Ragone, F Sallustio, S Piccinonna, M Rutigliano, G Vanessa, S Palazzo, G Lucarelli, P Ditonno, M Battaglia, FP Fanizzi, FP Schena. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. Diseases 2016; 4(1): 7 https://doi.org/10.3390/diseases4010007
pmid: 28933387
39
C Bianchi, C Meregalli, S Bombelli, V Di Stefano, F Salerno, B Torsello, S De Marco, G Bovo, I Cifola, E Mangano, C Battaglia, G Strada, G Lucarelli, RH Weiss, RA Perego. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 2017; 8(69): 113502–113515 https://doi.org/10.18632/oncotarget.23056
pmid: 29371925
40
G Lucarelli, M Ferro, D Loizzo, C Bianchi, D Terracciano, F Cantiello, LN Bell, S Battaglia, C Porta, A Gernone, RA Perego, E Maiorano, O Cobelli, G Castellano, L Vincenti, P Ditonno, M Battaglia. Integration of lipidomics and transcriptomics reveals reprogramming of the lipid metabolism and composition in clear cell renal cell carcinoma. Metabolites 2020; 10(12): 509 https://doi.org/10.3390/metabo10120509
pmid: 33322148
41
S Bombelli, B Torsello, S De Marco, G Lucarelli, I Cifola, C Grasselli, G Strada, G Bovo, RA Perego, C Bianchi. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. Am J Pathol 2020; 190(11): 2317–2326 https://doi.org/10.1016/j.ajpath.2020.08.008
pmid: 32861643
42
G Lucarelli, M Rutigliano, F Sallustio, D Ribatti, A Giglio, M Lepore Signorile, V Grossi, P Sanese, A Napoli, E Maiorano, C Bianchi, RA Perego, M Ferro, E Ranieri, G Serino, LN Bell, P Ditonno, C Simone, M Battaglia. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging (Albany NY) 2018; 10(12): 3957–3985 https://doi.org/10.18632/aging.101685
pmid: 30538212
43
F Gatto, I Nookaew, J Nielsen. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA 2014; 111(9): E866–E875 https://doi.org/10.1073/pnas.1319196111
pmid: 24550497
44
B Li, B Qiu, DSM Lee, ZE Walton, JD Ochocki, LK Mathew, A Mancuso, TPF Gade, B Keith, I Nissim, MC Simon. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255 https://doi.org/10.1038/nature13557
pmid: 25043030
45
QF Tao, SX Yuan, F Yang, S Yang, Y Yang, JH Yuan, ZG Wang, QG Xu, KY Lin, J Cai, J Yu, WL Huang, XL Teng, CC Zhou, F Wang, SH Sun, WP Zhou. Aldolase B inhibits metastasis through ten-eleven translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma. Mol Cancer 2015; 14(1): 170 https://doi.org/10.1186/s12943-015-0437-7
pmid: 26376879
46
J Lian, L Xia, Y Chen, J Zheng, K Ma, L Luo, F Ye. Aldolase B impairs DNA mismatch repair and induces apoptosis in colon adenocarcinoma. Pathol Res Pract 2019; 215(11): 152597 https://doi.org/10.1016/j.prp.2019.152597
pmid: 31564566
47
P Bu, KY Chen, K Xiang, C Johnson, SB Crown, N Rakhilin, Y Ai, L Wang, R Xi, I Astapova, Y Han, J Li, BB Barth, M Lu, Z Gao, R Mines, L Zhang, M Herman, D Hsu, GF Zhang, X Shen. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab 2018; 27(6): 1249–1262.e4 https://doi.org/10.1016/j.cmet.2018.04.003
pmid: 29706565
48
M Li, CS Zhang, Y Zong, JW Feng, T Ma, M Hu, Z Lin, X Li, C Xie, Y Wu, D Jiang, Y Li, C Zhang, X Tian, W Wang, Y Yang, J Chen, J Cui, YQ Wu, X Chen, QF Liu, J Wu, SY Lin, Z Ye, Y Liu, HL Piao, L Yu, Z Zhou, XS Xie, DG Hardie, SC Lin. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab 2019; 30(3): 508–524.e12 https://doi.org/10.1016/j.cmet.2019.05.018
pmid: 31204282
49
G Liu, N Wang, C Zhang, M Li, X He, C Yin, Q Tu, X Shen, L Zhang, J Lv, Y Wang, H Jiang, S Chen, N Li, Y Tao, H Yin. Fructose-1,6-bisphosphate aldolase B depletion promotes hepatocellular carcinogenesis through activating insulin receptor signaling and lipogenesis. Hepatology 2021; 74(6): 3037–3055 https://doi.org/10.1002/hep.32064
pmid: 34292642
50
CB Chan, X Liu, SW Jang, SIH Hsu, I Williams, S Kang, J Chen, K Ye. NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association. Oncogene 2009; 28(43): 3825–3836 https://doi.org/10.1038/onc.2009.236
pmid: 19668232
51
L Barroilhet, J Yang, K Hasselblatt, RM Paranal, SK Ng, JA Rauh-Hain, WR Welch, JE Bradner, RS Berkowitz, SW Ng. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene 2013; 32(33): 3896–3903 https://doi.org/10.1038/onc.2012.380
pmid: 22945647
52
L Wang, H Zhou, Y Wang, G Cui, LJ Di. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis 2015; 6(1): e1620 https://doi.org/10.1038/cddis.2014.587
pmid: 25633289
53
CC Fjeld, WT Birdsong, RH Goodman. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100(16): 9202–9207 https://doi.org/10.1073/pnas.1633591100
pmid: 12872005