Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods
Kosar Babaei1, Mohsen Aziminezhad1,2, Seyedeh Elham Norollahi3, Sogand Vahidi4, Ali Akbar Samadani5()
1. Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran 2. UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France 3. Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran 4. Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran 5. Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
Infertility is experienced by 8%–12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
. [J]. Frontiers of Medicine, 2022, 16(6): 827-858.
Kosar Babaei, Mohsen Aziminezhad, Seyedeh Elham Norollahi, Sogand Vahidi, Ali Akbar Samadani. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front. Med., 2022, 16(6): 827-858.
A description of two subjects showed considerable progress in clinical characteristics associated with POI. The size and estrogen production increased in the MSC engrafted ovary
Man Clinic for Andrology and Male Infertility, Cairo, Egypt
NCT04676269
Recruiting
Amnion bilayer and stem cell combination treatment
Infertile patients with thin endometrium
None
Indonesia University
NCT01742533
Unknown
Biological: human umbilical cord MSCs and human cord blood mononuclear cellsDrug: hormone replacement treatment
Primary ovarian insufficiency
None
Shenzhen People’s Hospital, Shenzhen, Guangdong, China
NCT04706312
Not yet recruiting
Human amniotic epithelial cells (hAECs)
Diminished ovarian reserve (DOR)
None
Nanjing Medical University
NCT03166189
Completed
Biological: bone marrow–derived MSCs
Asherman syndrome
None
D.O. Ott Research Institute of Obstetrics, Gynecology, Russian Federation
NCT02151890
Completed
Biological: stem cell
Primary ovarian insufficiency
None
Al Azhar University, Cairo, Egypt
NCT02041910
Unknown
Derived stem cells
Azoospermia
None
Hesham Saeed Elshaer, El-Rayadh Fertility Centre
NCT02641769
Recruiting
Intratesticular transplantation of autologous stem cells
Non-obstructive azoospermia
None
Stem Cells of Arabia, Amman, Jordan
NCT03069209
Active
Biological: stem cell
Primary ovarian insufficiency
None
Stem Cells Arabia, Amman, Jordan
NCT02713854
Recruiting
Human embryonic stem cell-derived trophoblastic spheroids as a predictive instrument
Subfertility
None
The University of Hong Kong
NCT02062931
Unknown
Biological: stem cell
Primary ovarian insufficiency
None
Al-Azhar University hospitals, Egypt
NCT02414308
Unknown
Adipose tissue stem cells (ASCs) injection
Erectile dysfunction (ED)
None
Man Clinic for Andrology, Male Infertility, and Sexual Dysfunction
NCT02025270
Unknown
Azoospermic patients
Azoospermic patients
Bone marrow-derived MSCs
Al Azhar University, Egypt
Tab.1
Fig.2
Origin
Content
Role
Reference
Human UCMSC-EV
miR-21-5p, miR-146a-5p
Improved ovarian role in old mice
[257]
Human UCMSC-EV
miR-147
Repressed M1
[258]
Human ADSC-EV
miR-126, miR-146b, miR-199a, miR-223
Generated M2 polarization
[259]
Human UCMSC-EV
miR-17-5p
Enhanced ovarian role, reducing ROS level
[260]
Human ADSC-EV
miR-323-3p
Anti-apoptosis of CCs
[192]
Human WJMSC-EV
Catalase
Reduced ROS level
[261]
Human UCMSC-EV
TSG-6
Anti-inflammation
[262]
Human AMSC-EV
miR-320a
Reduced ROS level
[182]
Human AFMSC-EV
miR-146a-5p, miR-548e-5p
Anti-inflammation
[263]
Human UCMSC-EV
Let7b
Phenotypic transformation of M1 to M2 inhibited pro-fibrotic genes (TGF-b1/TGFbR1, collagen IVa1)
[264,265]
Human BMSC-EV
EGF, FGF, PDGF, NF?B signaling proteins
Generated angiogenesis
[266]
Human BMSC-EV
STAT3, Wnt3a
Migration, elevated angiogenesis and fibroblast proliferation
[266]
Human BMSC-EV
MFG-E8
Attenuated renal fibrosis partly by interfering with the RhoA/ROCK pathway
[257]
Human ADSC-EV
SCF, MFG-E8, c-kit, ANGPTL1, thrombopoietin
Promoted angiogenesis
[267]
Human BMSC-EV
miR-216a-5p
Promoted M2 polarization
[257]
Human BMSC-EV
IL-10
Anti-inflammation
[268]
Human dental pulp MSC-EVs
Jagged1
Induced angiogenesis
[269 ]
Human ADSC-EV
miR-30b, miR-125a
Elevated angiogenesis through suppressing DLL4-Notch signaling pathway
[270]
Human UCMSC-EV
Wnt4
Improved angiogenesis by elevating Wnt4/b-catenin signaling
[271]
Human BMSC-EV
KGF
Reduced inflammation and caused M2 polarization
[272]
Human ADSC-EVMice BMSC-EV
VEGF
Improved neovascularization through elevating VEGF/VEGFR signaling pathway
[268]
Rat BMSC-EV
miR-130a
Advanced angiogenesis
[276]
Rat BMSC-EV
miR-340
Attenuation endometrial fibrosis
[273]
Rat AFMSC-EV
miR-21
Enhanced ovarian role
[179]
Rat BMSC-EV
miR-144-5p
[257]
Mice AFMSC-EV
miR-10a
Enhanced ovarian role and anti-apoptosis of GCs
[176]
Mice BMSC-EV
miR-210
Enhanced angiogenesis, limited fibrosis in ischemic hearts
[270]
Mice BMSC-EV
HGF
Stabilized endothelial barrier role
[270]
Mice BMSC-EV
miR-644-5p
Anti-apoptosis of GCs
[274]
MSC-EVMice BMSC-EV
miR-210
Elevating angiogenesis via VEGF pathway, ameliorating inflammation through miR-210/serpine1 axis
[270]
Mouse BMSC-EV
miR-182
Generated M2 polarization through targeting TLR4
[275]
Pig ADSC-EV
Angptl4, Ephrin-B2, PDGFC, DOK2, Wnt7b
Elevated angiogenesis
[276]
Pig ADSC-EV
ACVR1, MMP19
Matrix remodeling
[276]
CMPC-MSC-Exo
EMMPRIN
Elevated angiogenesis
[277]
EndMSC-EV Dog WJMSC-EV
TGF-b
Matrix remodeling, prevented CD4+ T cells activation
[278]
MSC-EV
CXCL2, CXCL8, DEFA1, HERC5, IFITM2,CXCL16
Recruited immune cells to proximity of MSC-EVs
[279]
MSC-EV
miR-21, miR-132, miR-222, IL-8
Elevated angiogenesis
[280]
MSC-EV
miR-29
Attenuation renal fibrosis and EMT through targeting PI3K/AKT signaling pathway
[281]
MSC-EV
miR-145
Attenuated EMT by suppressing TGF-b/smad signaling or repressing ZEB2
[281]
Tab.2
Fig.3
MSC kinds
Model
Cause
Therapy
Results
Reference
MB-MSCs
Endometrial disorders
Human
Severe aortic stenosis (AS)
Provide via the cervix to the fundus of the uterus
↑ Endometrial thickness (EMT)
[282]
Rat
Intrauterine adhesion (IUA) is caused by mechanical injury
Local injection
↑ Pregnancy rate
[79]
Ovarian failure
Mice
Cisplatin-induced POF
Local injection
↑ Fibroblast growth factor 2↑ Ovarian role
[283]
Mice
CTX-induced POF
Local injection
↓Hormone secretion↑Ovarian weight
[102]
Bone marrow stromal cells
Endometrial disorders
Human
Refractory aortic stenosis (AS)
Uterine artery injection
Rebuild the endometrium
[113]
Mice
24-gauge needle-caused
Marked with SPIOs local/tail vein injection
↑Endometrial proliferation
[284]
Ovarian failure
Mice
CTX-induced ovarian disorders
Local injection
Repair ovarian hormone exposition
[285]
Rabbit
CTX-induced ovarian disorders
Intravenous injection
↑Ovarian role
[286]
UC-MSCs
Endometrial disorders
Human
Uterine niche
Local intramuscular injection
↑ Uterine scar rebuilds↓Uterine niche occurrence
[287]
Rat
95% ethanol-induced endometrial injury
Tail vein injection
↓ Endometrial fibrosis↑ Fertility and angiogenesis
[84]
Endometrial disorders
Rat
Perimenopausal ovary
Tail vein injection
↓ Follicle-exciting hormone↑ Estradiol and follicle number
[288]
Rat
Paclitaxel-induced POF
Local injection
↓ Follicle-exciting hormone↑ Estradiol and ovarian role
[81]
Mice
Busulfan CTX-induced primary ovarian failure
Local injection
↑ Ovarian role and fertility
[79]
Mice
CTX-induced POF
Tail vein injection
↑Estradiol, weight of the ovaries
[289]
Adipose-derived stem cells
Endometrial disorders
Rat
Trichloroacetic acid-induced aortic stenosis (AS)
Intraperitoneal injection
↑Endometrial proliferation↓Fibrosis
[290]
Ovarian failure
Rat
TG-induced ovarian injury
Collagen scaffold
↑Fertility
[291]
Mice
Cisplatin-cause ovarian disorder
Local injection
↑Ovarian role
[292]
Tab.3
Fig.4
Nature of cells
Immuno-rejection
Self-renewal capacity
Source of generation
Clinical applications
Ethical concerns
Mesenchymal stem cells
Multipotent
No
Mesodermal-derived tissue, like adipose tissue, muscle, cartilage, bone
Human somatic cells
Widely utilized
No ethical or moral concerns
Embryonic stem cells
Pluripotent
Yes
Differentiate into results of main germ layers
Inner cell mass cells of blastocysts
Limited
Ethical and moral concerns present
Spermatogonial stem cells
Pluripotent
Yes
Differentiate into the results of all primary germ layers
Testicular tissues
Widely utilized
No ethical or moral concerns
Induced pluripotent stem cells
Pluripotent
Yes
Differentiate into the results of all primary germ layers
Adipose tissue, bone marrow, cord blood
Widely utilized
No ethical or moral concerns
Tab.4
1
MG Hull, CM Glazener, NJ Kelly, DI Conway, PA Foster, RA Hinton, C Coulson, PA Lambert, EM Watt, KM Desai. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed) 1985; 291(6510): 1693–1697 https://doi.org/10.1136/bmj.291.6510.1693
pmid: 3935248
2
A Deroux, C Dumestre-Perard, C Dunand-Faure, L Bouillet, P Hoffmann. Female infertility and serum auto-antibodies: a systematic review. Clin Rev Allergy Immunol 2017; 53(1): 78–86 https://doi.org/10.1007/s12016-016-8586-z
pmid: 27628237
3
L Holmberg, OE Iversen, CM Rudenstam, M Hammar, E Kumpulainen, J Jaskiewicz, J Jassem, D Dobaczewska, HE Fjosne, O Peralta, R Arriagada, M Holmqvist, J; HABITS Study Group Maenpaa. Increased risk of recurrence after hormone replacement therapy in breast cancer survivors. J Natl Cancer Inst 2008; 100(7): 475–482 https://doi.org/10.1093/jnci/djn058
pmid: 18364505
4
RFM Vermeulen, CM Korse, GG Kenter, MMA Brood-van Zanten, MV Beurden. Safety of hormone replacement therapy following risk-reducing salpingo-oophorectomy: systematic review of literature and guidelines. Climacteric 2019; 22(4): 352–360 https://doi.org/10.1080/13697137.2019.1582622
pmid: 30905183
5
Committee of American Society for Reproductive Medicine Practice. Multiple gestation associated with infertility therapy: an American Society for Reproductive Medicine Practice Committee opinion. Fertil Steril 2012; 97(4): 825–834 https://doi.org/10.1016/j.fertnstert.2011.11.048
pmid: 22192352
M Dominici, Blanc K Le, I Mueller, I Slaper-Cortenbach, F Marini, D Krause, R Deans, A Keating, Dj Prockop, E Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317 https://doi.org/10.1080/14653240600855905
pmid: 16923606
8
HK Salem, C Thiemermann. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28(3): 585–596 https://doi.org/10.1002/stem.269
pmid: 19967788
9
M Körbling, P Anderlini. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?. Blood 2001; 98(10): 2900–2908 https://doi.org/10.1182/blood.V98.10.2900
pmid: 11698269
10
Anker PS In’t, SA Scherjon, der Keur C Kleijburg-van, Groot-Swings GM de, FH Claas, WE Fibbe, HH Kanhai. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22(7): 1338–1345 https://doi.org/10.1634/stemcells.2004-0058
pmid: 15579651
11
KR Hansen, AL He, AK Styer, RA Wild, S Butts, L Engmann, MP Diamond, RS Legro, C Coutifaris, R Alvero, RD Robinson, P Casson, GM Christman, H Huang, N Santoro, E Eisenberg, H; Eunice Kennedy Shriver National Institute of Child Health Zhang, Development Reproductive Medicine Network Human. Predictors of pregnancy and live-birth in couples with unexplained infertility after ovarian stimulation-intrauterine insemination. Fertil Steril 2016; 105(6): 1575–1583.e2 https://doi.org/10.1016/j.fertnstert.2016.02.020
pmid: 26949110
12
OA Asemota, P Klatsky. Access to infertility care in the developing world: the family promotion gap. Semin Reprod Med 2015; 33(1): 17–22 https://doi.org/10.1055/s-0034-1395274
pmid: 25565507
13
S Mourad, J Brown, C Farquhar. Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev 2017; 1(1): CD012103 https://doi.org/10.1002/14651858.CD012103.pub2
pmid: 28111738
14
M Kathrins, C Niederberger. Diagnosis and treatment of infertility-related male hormonal dysfunction. Nat Rev Urol 2016; 13(6): 309–323 https://doi.org/10.1038/nrurol.2016.62
pmid: 27091665
15
RP Smith, LI Lipshultz, JR Kovac. Stem cells, gene therapy, and advanced medical management hold promise in the treatment of male infertility. Asian J Androl 2016; 18(3): 364 https://doi.org/10.4103/1008-682X.179249
pmid: 27056350
V Volarevic, S Bojic, J Nurkovic, A Volarevic, B Ljujic, N Arsenijevic, M Lako, M Stojkovic. Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. Biomed Res Int 2014; 2014: 507234 https://doi.org/10.1155/2014/507234
pmid: 24826378
18
K Yoshinaga, S Nishikawa, M Ogawa, S Hayashi, T Kunisada, T Fujimoto, S Nishikawa. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 1991; 113(2): 689–699 https://doi.org/10.1242/dev.113.2.689
pmid: 1723681
19
K Kawamura, N Kawamura, AJ Hsueh. Activation of dormant follicles: a new treatment for premature ovarian failure?. Curr Opin Obstet Gynecol 2016; 28(3): 217–222 https://doi.org/10.1097/GCO.0000000000000268
pmid: 27022685
20
N Rozwadowska, D Fiszer, P Jedrzejczak, W Kosicki, M Kurpisz. Interleukin-1 superfamily genes expression in normal or impaired human spermatogenesis. Genes Immun 2007; 8(2): 100–107 https://doi.org/10.1038/sj.gene.6364356
pmid: 17215863
21
M Huleihel, E Lunenfeld. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl 2004; 6(3): 259–268
pmid: 15273877
22
CE Naylor, C Bagnéris, PG DeCaen, A Sula, A Scaglione, DE Clapham, BA Wallace. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 2016; 35(8): 820–830 https://doi.org/10.15252/embj.201593285
pmid: 26873592
23
F Fang, Z Li, Q Zhao, H Li, C Xiong. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod 2018; 33(2): 188–195 https://doi.org/10.1093/humrep/dex369
pmid: 29315416
24
J Hou, S Yang, H Yang, Y Liu, Y Liu, Y Hai, Z Chen, Y Guo, Y Gong, WQ Gao, Z Li, Z He. Generation of male differentiated germ cells from various types of stem cells. Reproduction 2014; 147(6): R179–R188 https://doi.org/10.1530/REP-13-0649
pmid: 24534952
25
C Eguizabal, N Montserrat, R Vassena, M Barragan, E Garreta, L Garcia-Quevedo, F Vidal, A Giorgetti, A Veiga, JC Izpisua Belmonte. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011; 29(8): 1186–1195 https://doi.org/10.1002/stem.672
pmid: 21681858
26
C Ramathal, J Durruthy-Durruthy, M Sukhwani, JE Arakaki, PJ Turek, KE Orwig, RA Reijo Pera. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014; 7(4): 1284–1297 https://doi.org/10.1016/j.celrep.2014.03.067
pmid: 24794432
27
N Irie, L Weinberger, WW Tang, T Kobayashi, S Viukov, YS Manor, S Dietmann, JH Hanna, MA Surani. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015; 160(1–2): 253–268 https://doi.org/10.1016/j.cell.2014.12.013
pmid: 25543152
28
K Sasaki, S Yokobayashi, T Nakamura, I Okamoto, Y Yabuta, K Kurimoto, H Ohta, Y Moritoki, C Iwatani, H Tsuchiya, S Nakamura, K Sekiguchi, T Sakuma, T Yamamoto, T Mori, K Woltjen, M Nakagawa, T Yamamoto, K Takahashi, S Yamanaka, M Saitou. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 2015; 17(2): 178–194 https://doi.org/10.1016/j.stem.2015.06.014
pmid: 26189426
29
CA 4th Easley, BT Phillips, MM McGuire, JM Barringer, H Valli, BP Hermann, CR Simerly, A Rajkovic, T Miki, KE Orwig, GP Schatten. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012; 2(3): 440–446 https://doi.org/10.1016/j.celrep.2012.07.015
pmid: 22921399
F Sugawa, MJ Araúzo-Bravo, J Yoon, KP Kim, S Aramaki, G Wu, M Stehling, OE Psathaki, K Hübner, HR Schöler. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 2015; 34(8): 1009–1024 https://doi.org/10.15252/embj.201488049
pmid: 25750208
32
HN Sallam, SS Sadek, AF Agameya. Assisted hatching—a meta-analysis of randomized controlled trials. J Assist Reprod Genet 2003; 20(8): 332–342 https://doi.org/10.1023/A:1024865725713
pmid: 12948097
33
D Bharti, SJ Jang, SY Lee, SL Lee, GJ Rho. In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells 2020; 9(3): 557 https://doi.org/10.3390/cells9030557
pmid: 32120836
34
P Wu, G Deng, X Sai, H Guo, H Huang, P Zhu. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41(6): BSR20200833 https://doi.org/10.1042/BSR20200833
pmid: 33057659
35
AS Lee, C Tang, MS Rao, IL Weissman, JC Wu. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998–1004 https://doi.org/10.1038/nm.3267
pmid: 23921754
36
S Fernandez Tde, C de Souza Fernandez, AL Mencalha. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. Biomed Res Int 2013; 2013: 430290 https://doi.org/10.1155/2013/430290
pmid: 24288679
37
AA Samadani, A Keymoradzdeh, S Shams, A Soleymanpour, A Rashidy-Pour, H Hashemian, S Vahidi, SE Norollahi. CAR T-cells profiling in carcinogenesis and tumorigenesis: an overview of CAR T-cells cancer therapy. Int Immunopharmacol 2021; 90: 107201 https://doi.org/10.1016/j.intimp.2020.107201
pmid: 33249047
38
A Naji, N Rouas-Freiss, A Durrbach, ED Carosella, L Sensébé, F Deschaseaux. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 2013; 31(11): 2296–2303 https://doi.org/10.1002/stem.1494
pmid: 23922260
N Desai, P Rambhia, A Gishto. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13(1): 9 https://doi.org/10.1186/s12958-015-0005-4
pmid: 25890180
41
J Kehler, K Hübner, S Garrett, HR Schöler. Generating oocytes and sperm from embryonic stem cells. Semin Reprod Med 2005; 23(3): 222–233 https://doi.org/10.1055/s-2005-872450
pmid: 16059828
42
Y Yuan, Q Zhou, H Wan, B Shen, X Wang, M Wang, C Feng, M Xie, T Gu, T Zhou, R Fu, X Huang, Q Zhou, J Sha, XY Zhao. Generation of fertile offspring from Kit(w)/Kit(wv) mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Res 2015; 25(7): 851–863 https://doi.org/10.1038/cr.2015.74
pmid: 26088417
K Kita, T Watanabe, K Ohsaka, H Hayashi, Y Kubota, Y Nagashima, I Aoki, H Taniguchi, T Noce, K Inoue, H Miki, N Ogonuki, H Tanaka, A Ogura, T Ogawa. Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol Reprod 2007; 76(2): 211–217 https://doi.org/10.1095/biolreprod.106.056895
pmid: 17065598
DM De Kretser, HW Baker. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab 1999; 84(10): 3443–3450
pmid: 10522977
47
M Kanatsu-Shinohara, J Lee, K Inoue, N Ogonuki, H Miki, S Toyokuni, M Ikawa, T Nakamura, A Ogura, T Shinohara. Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod 2008; 78(4): 681–687 https://doi.org/10.1095/biolreprod.107.066068
pmid: 18199882
K Guan, K Nayernia, LS Maier, S Wagner, R Dressel, JH Lee, J Nolte, F Wolf, M Li, W Engel, G Hasenfuss. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440(7088): 1199–1203 https://doi.org/10.1038/nature04697
pmid: 16565704
50
FK Hamra, N Schultz, KM Chapman, DM Grellhesl, JT Cronkhite, RE Hammer, DL Garbers. Defining the spermatogonial stem cell. Dev Biol 2004; 269(2): 393–410 https://doi.org/10.1016/j.ydbio.2004.01.027
pmid: 15110708
51
F Izadyar, J Wong, C Maki, J Pacchiarotti, T Ramos, K Howerton, C Yuen, S Greilach, HH Zhao, M Chow, YC Chow, J Rao, J Barritt, N Bar-Chama, A Copperman. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 2011; 26(6): 1296–1306 https://doi.org/10.1093/humrep/der026
pmid: 21349855
52
BP Hermann, M Sukhwani, F Winkler, JN Pascarella, KA Peters, Y Sheng, H Valli, M Rodriguez, M Ezzelarab, G Dargo, K Peterson, K Masterson, C Ramsey, T Ward, M Lienesch, A Volk, DK Cooper, AW Thomson, JE Kiss, MC Penedo, GP Schatten, S Mitalipov, KE Orwig. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 2012; 11(5): 715–726 https://doi.org/10.1016/j.stem.2012.07.017
pmid: 23122294
53
J Koubova, DB Menke, Q Zhou, B Capel, MD Griswold, DC Page. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 2006; 103(8): 2474–2479 https://doi.org/10.1073/pnas.0510813103
pmid: 16461896
AG Byskov, M Fenger, L Westergaard, CY Andersen. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells. Mol Reprod Dev 1993; 34(1): 47–52 https://doi.org/10.1002/mrd.1080340108
pmid: 8418816
56
Y Zhu, HL Hu, P Li, S Yang, W Zhang, H Ding, RH Tian, Y Ning, LL Zhang, XZ Guo, ZP Shi, Z Li, Z He. Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian J Androl 2012; 14(4): 574–579 https://doi.org/10.1038/aja.2012.3
pmid: 22504877
57
CA 4th Easley, CR Simerly, G Schatten. Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility?. Reprod Biomed Online 2013; 27(1): 75–80 https://doi.org/10.1016/j.rbmo.2013.03.003
pmid: 23664220
58
J Johnson, J Canning, T Kaneko, JK Pru, JL Tilly. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004; 428(6979): 145–150 https://doi.org/10.1038/nature02316
pmid: 15014492
59
YA White, DC Woods, Y Takai, O Ishihara, H Seki, JL Tilly. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012; 18(3): 413–421 https://doi.org/10.1038/nm.2669
pmid: 22366948
Y Niikura, T Niikura, JL Tilly. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany NY) 2009; 1(12): 971–978 https://doi.org/10.18632/aging.100105
pmid: 20157580
VA Prianishnikov. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception 1978; 18(3): 213–223 https://doi.org/10.1016/S0010-7824(78)80015-8
pmid: 569035
CE Gargett, KE Schwab, RM Zillwood, HP Nguyen, D Wu. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80(6): 1136–1145 https://doi.org/10.1095/biolreprod.108.075226
pmid: 19228591
67
Miguel-Gómez L de, S López-Martínez, E Francés-Herrero, A Rodríguez-Eguren, A Pellicer, I Cervelló. Stem cells and the endometrium: from the discovery of adult stem cells to pre-clinical models. Cells 2021; 10(3): 595 https://doi.org/10.3390/cells10030595
pmid: 33800355
68
A Akbar Samadani, A Keymoradzdeh, S Shams, A Soleymanpour, S Elham Norollahi, S Vahidi, A Rashidy-Pour, A Ashraf, E Mirzajani, K Khanaki, M Rahbar Taramsari, S Samimian, A Najafzadeh. Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510: 581–592 https://doi.org/10.1016/j.cca.2020.08.016
pmid: 32791136
69
S Rahimi, AM Roushandeh, A Ebrahimi, AA Samadani, Y Kuwahara, MH Roudkenar. CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sci 2019; 231: 116586 https://doi.org/10.1016/j.lfs.2019.116586
pmid: 31220528
70
T Lapidot, I Petit. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30(9): 973–981 https://doi.org/10.1016/S0301-472X(02)00883-4
pmid: 12225788
71
R Azizi, L Aghebati-Maleki, M Nouri, F Marofi, S Negargar, M Yousefi. Stem cell therapy in Asherman syndrome and thin endometrium: stem cell-based therapy. Biomed Pharmacother 2018; 102: 333–343 https://doi.org/10.1016/j.biopha.2018.03.091
pmid: 29571018
72
K Kato, M Yoshimoto, K Kato, S Adachi, A Yamayoshi, T Arima, K Asanoma, S Kyo, T Nakahata, N Wake. Characterization of side-population cells in human normal endometrium. Hum Reprod 2007; 22(5): 1214–1223 https://doi.org/10.1093/humrep/del514
pmid: 17283036
73
X Meng, TE Ichim, J Zhong, A Rogers, Z Yin, J Jackson, H Wang, W Ge, V Bogin, KW Chan, B Thébaud, NH Riordan. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5(1): 57 https://doi.org/10.1186/1479-5876-5-57
pmid: 18005405
A Numao, K Hosono, T Suzuki, I Hayashi, S Uematsu, S Akira, Y Ogino, H Kawauchi, N Unno, M Majima. The inducible prostaglandin E synthase mPGES-1 regulates growth of endometrial tissues and angiogenesis in a mouse implantation model. Biomed Pharmacother 2011; 65(1): 77–84 https://doi.org/10.1016/j.biopha.2010.12.008
pmid: 21247731
76
EF Wolff, L Mutlu, EE Massasa, JD Elsworth, Redmond D Jr Eugene, HS Taylor. Endometrial stem cell transplantation in MPTP-exposed primates: an alternative cell source for treatment of Parkinson’s disease. J Cell Mol Med 2015; 19(1): 249–256 https://doi.org/10.1111/jcmm.12433
pmid: 25283241
77
X Santamaria, EE Massasa, Y Feng, E Wolff, HS Taylor. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther 2011; 19(11): 2065–2071 https://doi.org/10.1038/mt.2011.173
pmid: 21878900
78
Q Xie, X Xiong, N Xiao, K He, M Chen, J Peng, X Su, H Mei, Y Dai, D Wei, G Lin, L Cheng. Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. Stem Cells Int 2019; 2019: 9782373 https://doi.org/10.1155/2019/9782373
pmid: 31611920
79
SA Mohamed, S Shalaby, S Brakta, L Elam, A Elsharoud, A Al-Hendy. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines 2019; 7(1): 7 https://doi.org/10.3390/biomedicines7010007
pmid: 30669278
80
D Song, Y Zhong, C Qian, Q Zou, J Ou, Y Shi, L Gao, G Wang, Z Liu, H Li, H Ding, H Wu, F Wang, J Wang, H Li. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. Biomed Res Int 2016; 2016: 2517514 https://doi.org/10.1155/2016/2517514
pmid: 27047962
81
AK Elfayomy, SM Almasry, SA El-Tarhouny, MA Eldomiaty. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell 2016; 48(4): 370–382 https://doi.org/10.1016/j.tice.2016.05.001
pmid: 27233913
Q Shi, J Gao, Y Jiang, B Sun, W Lu, M Su, Y Xu, X Yang, Y Zhang. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther 2017; 8(1): 246 https://doi.org/10.1186/s13287-017-0700-5
pmid: 29096715
84
L Zhang, Y Li, CY Guan, S Tian, XD Lv, JH Li, X Ma, HF Xia. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res Ther 2018; 9(1): 36 https://doi.org/10.1186/s13287-018-0777-5
pmid: 29433563
85
L Xu, L Ding, L Wang, Y Cao, H Zhu, J Lu, X Li, T Song, Y Hu, J Dai. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars. Stem Cell Res Ther 2017; 8(1): 84 https://doi.org/10.1186/s13287-017-0535-0
pmid: 28420433
86
L Ding, G Yan, B Wang, L Xu, Y Gu, T Ru, X Cui, L Lei, J Liu, X Sheng, B Wang, C Zhang, Y Yang, R Jiang, J Zhou, N Kong, F Lu, H Zhou, Y Zhao, B Chen, Y Hu, J Dai, H Sun. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci China Life Sci 2018; 61(12): 1554–1565 https://doi.org/10.1007/s11427-017-9272-2
pmid: 29546669
87
X Yang, M Zhang, Y Zhang, W Li, B Yang. Mesenchymal stem cells derived from Wharton jelly of the human umbilical cord ameliorate damage to human endometrial stromal cells. Fertil Steril 2011; 96(4): 1029–1036 https://doi.org/10.1016/j.fertnstert.2011.07.005
pmid: 21802667
88
SA Steigman, A Ahmed, RM Shanti, RS Tuan, C Valim, DO Fauza. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg 2009; 44(6): 1120–1126 https://doi.org/10.1016/j.jpedsurg.2009.02.038
pmid: 19524727
89
SM Kunisaki, JR Fuchs, A Kaviani, JT Oh, DA LaVan, JP Vacanti, JM Wilson, DO Fauza. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg 2006; 41(1): 34–39 https://doi.org/10.1016/j.jpedsurg.2005.10.011
pmid: 16410104
90
GY Xiao, IH Liu, CC Cheng, CC Chang, YH Lee, WT Cheng, SC Wu. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 2014; 9(9): e106538 https://doi.org/10.1371/journal.pone.0106538
pmid: 25198549
91
T Liu, Y Huang, L Guo, W Cheng, G Zou. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci 2012; 9(7): 592–602 https://doi.org/10.7150/ijms.4841
pmid: 23028242
92
RH Lee, B Kim, I Choi, H Kim, HS Choi, K Suh, YC Bae, JS Jung. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14(4–6): 311–324 https://doi.org/10.1159/000080341
pmid: 15319535
93
LL Damous, JS Nakamuta, AE Carvalho, KC Carvalho, JM Jr Soares, MJ Simões, JE Krieger, EC Baracat. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?. Reprod Biol Endocrinol 2015; 13(1): 108 https://doi.org/10.1186/s12958-015-0104-2
pmid: 26394676
94
M Sun, S Wang, Y Li, L Yu, F Gu, C Wang, Y Yao. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther 2013; 4(4): 80 https://doi.org/10.1186/scrt231
pmid: 23838374
95
S Kilic, B Yuksel, F Pinarli, A Albayrak, B Boztok, T Delibasi. Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet 2014; 31(8): 975–982 https://doi.org/10.1007/s10815-014-0268-2
pmid: 24974357
96
L Ling, X Feng, T Wei, Y Wang, Y Wang, Z Wang, D Tang, Y Luo, Z Xiong. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther 2019; 10(1): 46 https://doi.org/10.1186/s13287-019-1136-x
pmid: 30683144
97
X Feng, L Ling, W Zhang, X Liu, Y Wang, Y Luo, Z Xiong. Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reprod Sci 2020; 27(7): 1502–1512 https://doi.org/10.1007/s43032-020-00147-0
pmid: 31953773
98
N Yin, Y Wang, X Lu, R Liu, L Zhang, W Zhao, W Yuan, Q Luo, H Wu, X Luan, H Zhang. hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res Ther 2018; 9(1): 37 https://doi.org/10.1186/s13287-018-0772-x
pmid: 29444704
99
H Li, W Zhao, L Wang, Q Luo, N Yin, X Lu, Y Hou, J Cui, H Zhang. Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int 2019; 43(8): 899–909 https://doi.org/10.1002/cbin.11165
pmid: 31081266
100
TH Kim, JH Choi, Y Jun, SM Lim, S Park, JY Paek, SH Lee, JY Hwang, GJ Kim. 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep 2018; 8(1): 15313 https://doi.org/10.1038/s41598-018-33575-9
pmid: 30333505
101
HM Qu, LP Qu, XZ Pan, LS Mu. Upregulated miR-222 targets BCL2L11 and promotes apoptosis of mesenchymal stem cells in preeclampsia patients in response to severe hypoxia. Int J Clin Exp Pathol 2018; 11(1): 110–119
pmid: 31938092
102
MD Manshadi, S Navid, Y Hoshino, E Daneshi, P Noory, M Abbasi. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech 2019; 82(6): 635–642 https://doi.org/10.1002/jemt.23120
pmid: 30582244
103
A Domnina, P Novikova, J Obidina, I Fridlyanskaya, L Alekseenko, I Kozhukharova, O Lyublinskaya, V Zenin, N Nikolsky. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther 2018; 9(1): 50 https://doi.org/10.1186/s13287-018-0801-9
pmid: 29482664
104
SX Zheng, J Wang, XL Wang, A Ali, LM Wu, YS Liu. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells. Int J Mol Med 2018; 41(4): 2201–2212 https://doi.org/10.3892/ijmm.2018.3415
pmid: 29393381
105
S Zhang, P Li, Z Yuan, J Tan. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion. Stem Cell Res Ther 2019; 10(1): 61 https://doi.org/10.1186/s13287-019-1155-7
pmid: 30770774
106
Z Yan, F Guo, Q Yuan, Y Shao, Y Zhang, H Wang, S Hao, X Du. Endometrial mesenchymal stem cells isolated from menstrual blood repaired epirubicin-induced damage to human ovarian granulosa cells by inhibiting the expression of Gadd45b in cell cycle pathway. Stem Cell Res Ther 2019; 10(1): 4 https://doi.org/10.1186/s13287-018-1101-0
pmid: 30606243
107
J Tan, P Li, Q Wang, Y Li, X Li, D Zhao, X Xu, L Kong. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum Reprod 2016; 31(12): 2723–2729 https://doi.org/10.1093/humrep/dew235
pmid: 27664218
L Gao, Z Huang, H Lin, Y Tian, P Li, S Lin. Bone marrow mesenchymal stem cells (BMSCs) restore functional endometrium in the rat model for severe Asherman syndrome. Reprod Sci 2019; 26(3): 436–444 https://doi.org/10.1177/1933719118799201
pmid: 30458678
110
HE Besikcioglu, GS Sarıbas, C Ozogul, M Tiryaki, S Kilic, FA Pınarlı, O Gulbahar. Determination of the effects of bone marrow derived mesenchymal stem cells and ovarian stromal stem cells on follicular maturation in cyclophosphamide induced ovarian failure in rats. Taiwan J Obstet Gynecol 2019; 58(1): 53–59 https://doi.org/10.1016/j.tjog.2018.11.010
pmid: 30638481
111
PV Guillot, C Gotherstrom, J Chan, H Kurata, NM Fisk. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25(3): 646–654 https://doi.org/10.1634/stemcells.2006-0208
pmid: 17124009
112
J Wang, B Ju, C Pan, Y Gu, Y Zhang, L Sun, B Zhang, Y Zhang. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats. Cell Physiol Biochem 2016; 39(4): 1553–1560 https://doi.org/10.1159/000447857
pmid: 27614987
113
X Santamaria, S Cabanillas, I Cervelló, C Arbona, F Raga, J Ferro, J Palmero, J Remohí, A Pellicer, C Simón. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod 2016; 31(5): 1087–1096 https://doi.org/10.1093/humrep/dew042
pmid: 27005892
RL Brinster, JW Zimmermann. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994; 91(24): 11298–11302 https://doi.org/10.1073/pnas.91.24.11298
pmid: 7972053
118
K Nayernia, J Nolte, HW Michelmann, JH Lee, K Rathsack, N Drusenheimer, A Dev, G Wulf, IE Ehrmann, DJ Elliott, V Okpanyi, U Zechner, T Haaf, A Meinhardt, W Engel. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11(1): 125–132 https://doi.org/10.1016/j.devcel.2006.05.010
pmid: 16824959
119
K Hayashi, H Ohta, K Kurimoto, S Aramaki, M Saitou. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011; 146(4): 519–532 https://doi.org/10.1016/j.cell.2011.06.052
pmid: 21820164
120
RS Legro, SA Arslanian, DA Ehrmann, KM Hoeger, MH Murad, R Pasquali, CK; Endocrine Society Welt. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013; 98(12): 4565–4592 https://doi.org/10.1210/jc.2013-2350
pmid: 24151290
121
R Chugh, D Ashour, N Garcia, H Park, H Takala, N Ismail, J McAllister, A Al-Hendy, A El Andaloussi. Towards cell therapy of polycystic ovary syndrome (PCOS): human mesenchymal stem cells secretome inhibits androgen production by pcos theca cells. Cytotherapy 2019; 21(5): S81 https://doi.org/10.1016/j.jcyt.2019.03.493
122
M Yin, X Wang, G Yao, M Lü, M Liang, Y Sun, F Sun. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 2014; 289(26): 18239–18257 https://doi.org/10.1074/jbc.M113.546044
pmid: 24828505
123
BS Verkauf. Incidence, symptoms, and signs of endometriosis in fertile and infertile women. J Fla Med Assoc 1987; 74(9): 671–675
pmid: 2961844
ML Macer, HS Taylor. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am 2012; 39(4): 535–549 https://doi.org/10.1016/j.ogc.2012.10.002
pmid: 23182559
126
Y Liu, SP Kodithuwakku, PY Ng, J Chai, EH Ng, WS Yeung, PC Ho, KF Lee. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod 2010; 25(2): 479–490 https://doi.org/10.1093/humrep/dep429
pmid: 19955106
127
HN Sallam, JA Garcia-Velasco, S Dias, A Arici. Long-term pituitary down-regulation before in vitro fertilization (IVF) for women with endometriosis. Cochrane Database Syst Rev 2006; 2006(1): CD004635 https://doi.org/10.1002/14651858.CD004635.pub2
pmid: 16437491
128
L Benschop, C Farquhar, N van der Poel, MJ Heineman. Interventions for women with endometrioma prior to assisted reproductive technology. Cochrane Database Syst Rev 2010; (11): CD008571 https://doi.org/10.1002/14651858.CD008571.pub2
pmid: 21069706
129
Society for Human Reproduction European, (ESHRE) Guideline Group on POI Embryology, L Webber, M Davies, R Anderson, J Bartlett, D Braat, B Cartwright, R Cifkova, Muinck Keizer-Schrama S de, E Hogervorst, F Janse, L Liao, V Vlaisavljevic, C Zillikens, N Vermeulen. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016; 31(5): 926–937 https://doi.org/10.1093/humrep/dew027
pmid: 27008889
130
K Kawamura, Y Cheng, N Suzuki, M Deguchi, Y Sato, S Takae, CH Ho, N Kawamura, M Tamura, S Hashimoto, Y Sugishita, Y Morimoto, Y Hosoi, N Yoshioka, B Ishizuka, AJ Hsueh. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA 2013; 110(43): 17474–17479 https://doi.org/10.1073/pnas.1312830110
pmid: 24082083
KA Zikopoulos, EM Kolibianakis, P Platteau, L de Munck, H Tournaye, P Devroey, M Camus. Live delivery rates in subfertile women with Asherman’s syndrome after hysteroscopic adhesiolysis using the resectoscope or the Versapoint system. Reprod Biomed Online 2004; 8(6): 720–725 https://doi.org/10.1016/S1472-6483(10)61654-9
pmid: 15169591
136
F Alawadhi, H Du, H Cakmak, HS Taylor. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS One 2014; 9(5): e96662 https://doi.org/10.1371/journal.pone.0096662
pmid: 24819371
137
L Gan, H Duan, Q Xu, YQ Tang, JJ Li, FQ Sun, S Wang. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy 2017; 19(5): 603–616 https://doi.org/10.1016/j.jcyt.2017.02.003
pmid: 28285950
138
N Singh, S Mohanty, T Seth, M Shankar, S Bhaskaran, S Dharmendra. Autologous stem cell transplantation in refractory Asherman’s syndrome: a novel cell based therapy. J Hum Reprod Sci 2014; 7(2): 93–98 https://doi.org/10.4103/0974-1208.138864
pmid: 25191021
139
FJ Vizoso, N Eiro, S Cid, J Schneider, R Perez-Fernandez. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852 https://doi.org/10.3390/ijms18091852
pmid: 28841158
I Ullah, RB Subbarao, GJ Rho. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 2015; 35(2): e00191 https://doi.org/10.1042/BSR20150025
pmid: 25797907
142
JB Sneddon, Q Tang, P Stock, JA Bluestone, S Roy, T Desai, M Hebrok. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018; 22(6): 810–823 https://doi.org/10.1016/j.stem.2018.05.016
pmid: 29859172
F Liu, S Hu, H Yang, Z Li, K Huang, T Su, S Wang, K Cheng. Hyaluronic acid hydrogel integrated with mesenchymal stem cell-secretome to treat endometrial injury in a rat model of Asherman’s syndrome. Adv Healthc Mater 2019; 8(14): e1900411 https://doi.org/10.1002/adhm.201900411
pmid: 31148407
M Ullah, Y Qiao, W Concepcion, AS Thakor. Stem cell-derived extracellular vesicles: role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Res Ther 2019; 10(1): 347 https://doi.org/10.1186/s13287-019-1468-6
pmid: 31771657
147
C Théry, KW Witwer, E Aikawa, MJ Alcaraz, JD Anderson, R Andriantsitohaina, A Antoniou, T Arab, F Archer, GK Atkin-Smith, DC Ayre, JM Bach, D Bachurski, H Baharvand, L Balaj, S Baldacchino, NN Bauer, AA Baxter, M Bebawy, C Beckham, A Bedina Zavec, A Benmoussa, AC Berardi, P Bergese, E Bielska, C Blenkiron, S Bobis-Wozowicz, E Boilard, W Boireau, A Bongiovanni, FE Borràs, S Bosch, CM Boulanger, X Breakefield, AM Breglio, MÁ Brennan, DR Brigstock, A Brisson, ML Broekman, JF Bromberg, P Bryl-Górecka, S Buch, AH Buck, D Burger, S Busatto, D Buschmann, B Bussolati, EI Buzás, JB Byrd, G Camussi, DR Carter, S Caruso, LW Chamley, YT Chang, C Chen, S Chen, L Cheng, AR Chin, A Clayton, SP Clerici, A Cocks, E Cocucci, RJ Coffey, A Cordeiro-da-Silva, Y Couch, FA Coumans, B Coyle, R Crescitelli, MF Criado, C D’Souza-Schorey, S Das, A Datta Chaudhuri, P de Candia, EF De Santana, O De Wever, HA Del Portillo, T Demaret, S Deville, A Devitt, B Dhondt, D Di Vizio, LC Dieterich, V Dolo, AP Dominguez Rubio, M Dominici, MR Dourado, TA Driedonks, FV Duarte, HM Duncan, RM Eichenberger, K Ekström, S El Andaloussi, C Elie-Caille, U Erdbrügger, JM Falcón-Pérez, F Fatima, JE Fish, M Flores-Bellver, A Försönits, A Frelet-Barrand, F Fricke, G Fuhrmann, S Gabrielsson, A Gámez-Valero, C Gardiner, K Gärtner, R Gaudin, YS Gho, B Giebel, C Gilbert, M Gimona, I Giusti, DC Goberdhan, A Görgens, SM Gorski, DW Greening, JC Gross, A Gualerzi, GN Gupta, D Gustafson, A Handberg, RA Haraszti, P Harrison, H Hegyesi, A Hendrix, AF Hill, FH Hochberg, KF Hoffmann, B Holder, H Holthofer, B Hosseinkhani, G Hu, Y Huang, V Huber, S Hunt, AG Ibrahim, T Ikezu, JM Inal, M Isin, A Ivanova, HK Jackson, S Jacobsen, SM Jay, M Jayachandran, G Jenster, L Jiang, SM Johnson, JC Jones, A Jong, T Jovanovic-Talisman, S Jung, R Kalluri, SI Kano, S Kaur, Y Kawamura, ET Keller, D Khamari, E Khomyakova, A Khvorova, P Kierulf, KP Kim, T Kislinger, M Klingeborn, 2nd Klinke DJ, M Kornek, MM Kosanović,ÁF Kovács, EM Krämer-Albers, S Krasemann, M Krause, IV Kurochkin, GD Kusuma, S Kuypers, S Laitinen, SM Langevin, LR Languino, J Lannigan, C Lässer, LC Laurent, G Lavieu, E Lázaro-Ibáñez, S Le Lay, MS Lee, YXF Lee, DS Lemos, M Lenassi, A Leszczynska, IT Li, K Liao, SF Libregts, E Ligeti, R Lim, SK Lim, A Linē, K Linnemannstöns, A Llorente, CA Lombard, MJ Lorenowicz,ÁM Lörincz, J Lötvall, J Lovett, MC Lowry, X Loyer, Q Lu, B Lukomska, TR Lunavat, SL Maas, H Malhi, A Marcilla, J Mariani, J Mariscal, ES Martens-Uzunova, L Martin-Jaular, MC Martinez, VR Martins, M Mathieu, S Mathivanan, M Maugeri, LK McGinnis, MJ McVey, Jr Meckes DG, KL Meehan, I Mertens, VR Minciacchi, A Möller, M Møller Jørgensen, A Morales-Kastresana, J Morhayim, F Mullier, M Muraca, L Musante, V Mussack, DC Muth, KH Myburgh, T Najrana, M Nawaz, I Nazarenko, P Nejsum, C Neri, T Neri, R Nieuwland, L Nimrichter, JP Nolan, EN Nolte-’t Hoen, N Noren Hooten, L O’Driscoll, T O’Grady, A O’Loghlen, T Ochiya, M Olivier, A Ortiz, LA Ortiz, X Osteikoetxea, O Østergaard, M Ostrowski, J Park, DM Pegtel, H Peinado, F Perut, MW Pfaffl, DG Phinney, BC Pieters, RC Pink, DS Pisetsky, E Pogge von Strandmann, I Polakovicova, IK Poon, BH Powell, I Prada, L Pulliam, P Quesenberry, A Radeghieri, RL Raffai, S Raimondo, J Rak, MI Ramirez, G Raposo, MS Rayyan, N Regev-Rudzki, FL Ricklefs, PD Robbins, DD Roberts, SC Rodrigues, E Rohde, S Rome, KM Rouschop, A Rughetti, AE Russell, P Saá, S Sahoo, E Salas-Huenuleo, C Sánchez, JA Saugstad, MJ Saul, RM Schiffelers, R Schneider, TH Schøyen, A Scott, E Shahaj, S Sharma, O Shatnyeva, F Shekari, GV Shelke, AK Shetty, K Shiba, PR Siljander, AM Silva, A Skowronek, 2nd Snyder OL, RP Soares, BW Sódar, C Soekmadji, J Sotillo, PD Stahl, W Stoorvogel, SL Stott, EF Strasser, S Swift, H Tahara, M Tewari, K Timms, S Tiwari, R Tixeira, M Tkach, WS Toh, R Tomasini, AC Torrecilhas, JP Tosar, V Toxavidis, L Urbanelli, P Vader, BW van Balkom, SG van der Grein, J Van Deun, MJ van Herwijnen, K Van Keuren-Jensen, G van Niel, ME van Royen, AJ van Wijnen, MH Vasconcelos, Jr Vechetti IJ, TD Veit, LJ Vella,É Velot, FJ Verweij, B Vestad, JL Viñas, T Visnovitz, KV Vukman, J Wahlgren, DC Watson, MH Wauben, A Weaver, JP Webber, V Weber, AM Wehman, DJ Weiss, JA Welsh, S Wendt, AM Wheelock, Z Wiener, L Witte, J Wolfram, A Xagorari, P Xander, J Xu, X Yan, M Yáñez-Mó, H Yin, Y Yuana, V Zappulli, J Zarubova, V Žėkas, JY Zhang, Z Zhao, L Zheng, AR Zheutlin, AM Zickler, P Zimmermann, AM Zivkovic, D Zocco, EK Zuba-Surma. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750 https://doi.org/10.1080/20013078.2018.1535750
pmid: 30637094
148
AG Zhao, K Shah, B Cromer, H Sumer. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic potential. Stem Cells Int 2020; 2020: 8825771 https://doi.org/10.1155/2020/8825771
pmid: 32908543
149
Y Yu, X Lin, Q Wang, M He, Y Chau. Long-term therapeutic effect in nonhuman primate eye from a single injection of anti-VEGF controlled release hydrogel. Bioeng Transl Med 2019; 4(2): e10128 https://doi.org/10.1002/btm2.10128
pmid: 31249878
HS Joo, JH Suh, HJ Lee, ES Bang, JM Lee. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci 2020; 21(3): 727 https://doi.org/10.3390/ijms21030727
pmid: 31979113
154
H Abbaszadeh, F Ghorbani, M Derakhshani, A Movassaghpour, M Yousefi. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol 2020; 235(2): 706–717 https://doi.org/10.1002/jcp.29004
pmid: 31254289
155
DG Phinney, M Di Giuseppe, J Njah, E Sala, S Shiva, CM St Croix, DB Stolz, SC Watkins, YP Di, GD Leikauf, J Kolls, DW Riches, G Deiuliis, N Kaminski, SV Boregowda, DH McKenna, LA Ortiz. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6(1): 8472 https://doi.org/10.1038/ncomms9472
pmid: 26442449
B Huang, C Qian, C Ding, Q Meng, Q Zou, H Li. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1. Stem Cell Res Ther 2019; 10(1): 362 https://doi.org/10.1186/s13287-019-1490-8
pmid: 31783916
159
EH Kim, BH Jeon, J Kim, YM Kim, Y Han, K Ahn, HK Cheong. Exposure to phthalates and bisphenol A are associated with atopic dermatitis symptoms in children: a time-series analysis. Environ Health 2017; 16(1): 24 https://doi.org/10.1186/s12940-017-0225-5
pmid: 28274229
160
EA Ford, EL Beckett, SD Roman, EA McLaughlin, JM Sutherland. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction 2020; 159(1): R15–R29 https://doi.org/10.1530/REP-19-0201
pmid: 31376814
161
I Huhtaniemi, O Hovatta, A La Marca, G Livera, D Monniaux, L Persani, A Heddar, K Jarzabek, T Laisk-Podar, A Salumets, JS Tapanainen, RA Veitia, JA Visser, P Wieacker, S Wolczynski, M Misrahi. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab 2018; 29(6): 400–419 https://doi.org/10.1016/j.tem.2018.03.010
pmid: 29706485
S Caburet, VA Arboleda, E Llano, PA Overbeek, JL Barbero, K Oka, W Harrison, D Vaiman, Z Ben-Neriah, I García-Tuñón, M Fellous, AM Pendás, RA Veitia, E Vilain. Mutant cohesin in premature ovarian failure. N Engl J Med 2014; 370(10): 943–949 https://doi.org/10.1056/NEJMoa1309635
pmid: 24597867
164
J Bouilly, I Beau, S Barraud, V Bernard, K Azibi, J Fagart, A Fèvre, AL Todeschini, RA Veitia, C Beldjord, B Delemer, C Dodé, J Young, N Binart. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab 2016; 101(12): 4541–4550 https://doi.org/10.1210/jc.2016-2152
pmid: 27603904
165
S Jaillard, K Bell, L Akloul, K Walton, K McElreavy, WA Stocker, M Beaumont, C Harrisson, T Jääskeläinen, JJ Palvimo, G Robevska, E Launay, AP Satié, N Listyasari, C Bendavid, R Sreenivasan, S Duros, den Bergen J van, C Henry, M Domin-Bernhard, L Cornevin, N Dejucq-Rainsford, MA Belaud-Rotureau, S Odent, KL Ayers, C Ravel, EJ Tucker, AH Sinclair. New insights into the genetic basis of premature ovarian insufficiency: novel causative variants and candidate genes revealed by genomic sequencing. Maturitas 2020; 141: 9–19 https://doi.org/10.1016/j.maturitas.2020.06.004
pmid: 33036707
166
T Liu, Y Liu, Y Huang, J Chen, Z Yu, C Chen, L Lai. miR-15b induces premature ovarian failure in mice via inhibition of α-Klotho expression in ovarian granulosa cells. Free Radic Biol Med 2019; 141: 383–392 https://doi.org/10.1016/j.freeradbiomed.2019.07.010
pmid: 31310795
167
L Persani, R Rossetti, C Cacciatore, S Fabre. Genetic defects of ovarian TGF-β-like factors and premature ovarian failure. J Endocrinol Invest 2011; 34(3): 244–251 https://doi.org/10.1007/BF03347073
pmid: 21297384
168
J Grosbois, I Demeestere. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod 2018; 33(9): 1705–1714 https://doi.org/10.1093/humrep/dey250
pmid: 30032281
169
S Dragojević-Dikić, D Marisavljević, A Mitrović, S Dikić, T Jovanović, S Janković-Raznatović. An immunological insight into premature ovarian failure (POF). Autoimmun Rev 2010; 9(11): 771–774 https://doi.org/10.1016/j.autrev.2010.06.008
pmid: 20601203
M Shen, Y Jiang, Z Guan, Y Cao, L Li, H Liu, SC Sun. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 2017; 13(8): 1364–1385 https://doi.org/10.1080/15548627.2017.1327941
pmid: 28598230
172
B Huang, J Lu, C Ding, Q Zou, W Wang, H Li. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res Ther 2018; 9(1): 216 https://doi.org/10.1186/s13287-018-0953-7
pmid: 30092819
173
J Zhang, H Yin, H Jiang, X Du, Z Yang. The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells. Taiwan J Obstet Gynecol 2020; 59(4): 527–533 https://doi.org/10.1016/j.tjog.2020.05.010
pmid: 32653124
174
Z Yang, X Du, C Wang, J Zhang, C Liu, Y Li, H Jiang. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Res Ther 2019; 10(1): 250 https://doi.org/10.1186/s13287-019-1327-5
pmid: 31412919
175
S Zhang, B Huang, P Su, Q Chang, P Li, A Song, X Zhao, Z Yuan, J Tan. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency. Stem Cell Res Ther 2021; 12(1): 178 https://doi.org/10.1186/s13287-021-02255-3
pmid: 33712079
176
GY Xiao, CC Cheng, YS Chiang, WT Cheng, IH Liu, SC Wu. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Sci Rep 2016; 6(1): 23120 https://doi.org/10.1038/srep23120
pmid: 26979400
177
L Sun, D Li, K Song, J Wei, S Yao, Z Li, X Su, X Ju, L Chao, X Deng, B Kong, L Li. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 2017; 7(1): 2552 https://doi.org/10.1038/s41598-017-02786-x
pmid: 28566720
178
W Boecker, Horn L van, G Stenman, C Stürken, U Schumacher, T Loening, L Liesenfeld, E Korsching, D Gläser, K Tiemann, I Buchwalow. Spatially correlated phenotyping reveals K5-positive luminal progenitor cells and p63-K5/14-positive stem cell-like cells in human breast epithelium. Lab Invest 2018; 98(8): 1065–1075 https://doi.org/10.1038/s41374-018-0054-3
pmid: 29743728
179
E Thabet, A Yusuf, DA Abdelmonsif, I Nabil, G Mourad, RA Mehanna. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction. Mol Hum Reprod 2020; 26(12): 906–919 https://doi.org/10.1093/molehr/gaaa068
pmid: 33049041
180
B Sun, Y Ma, F Wang, L Hu, Y Sun. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther 2019; 10(1): 360 https://doi.org/10.1186/s13287-019-1442-3
pmid: 31783913
181
C Ding, C Qian, S Hou, J Lu, Q Zou, H Li, B Huang. Exosomal miRNA-320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI. Mol Ther Nucleic Acids 2020; 21: 37–50 https://doi.org/10.1016/j.omtn.2020.05.013
pmid: 32506013
182
C Liu, H Yin, H Jiang, X Du, C Wang, Y Liu, Y Li, Z Yang. Extracellular vesicles derived from mesenchymal stem cells recover fertility of premature ovarian insufficiency mice and the effects on their offspring. Cell Transplant 2020; 29: 963689720923575 https://doi.org/10.1177/0963689720923575
pmid: 32363925
R Blázquez, FM Sánchez-Margallo, V Álvarez, E Matilla, N Hernández, F Marinaro, M Gómez-Serrano, I Jorge, JG Casado, B Macías-García. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates. PLoS One 2018; 13(4): e0196080 https://doi.org/10.1371/journal.pone.0196080
pmid: 29684038
185
F Marinaro, B Macías-García, FM Sánchez-Margallo, R Blázquez, V Álvarez, E Matilla, N Hernández, M Gómez-Serrano, I Jorge, J Vázquez, L González-Fernández, E Pericuesta, A Gutiérrez-Adán, JG Casado. Extracellular vesicles derived from endometrial human mesenchymal stem cells enhance embryo yield and quality in an aged murine model. Biol Reprod 2019; 100(5): 1180–1192 https://doi.org/10.1093/biolre/ioy263
pmid: 30596891
X Liang, L Zhang, S Wang, Q Han, RC Zhao. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 2016; 129(11): 2182–2189 https://doi.org/10.1242/jcs.170373
pmid: 27252357
189
AH Balen, LC Morley, M Misso, S Franks, RS Legro, CN Wijeyaratne, E Stener-Victorin, BC Fauser, RJ Norman, H Teede. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update 2016; 22(6): 687–708 https://doi.org/10.1093/humupd/dmw025
pmid: 27511809
190
A Madkour, N Bouamoud, I Kaarouch, N Louanjli, B Saadani, S Assou, S Aboulmaouahib, O Sefrioui, S Amzazi, H Copin, M Benkhalifa. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil Steril 2018; 110(4): 710–719 https://doi.org/10.1016/j.fertnstert.2018.04.038
pmid: 30196968
191
Y Zhao, M Tao, M Wei, S Du, H Wang, X Wang. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif Cells Nanomed Biotechnol 2019; 47(1): 3804–3813 https://doi.org/10.1080/21691401.2019.1669619
pmid: 31549864
192
CA Salazar, K Isaacson, S Morris. A comprehensive review of Asherman’s syndrome: causes, symptoms and treatment options. Curr Opin Obstet Gynecol 2017; 29(4): 249–256 https://doi.org/10.1097/GCO.0000000000000378
pmid: 28582327
ST Lo, P Ramsay, R Pierson, F Manconi, MG Munro, IS Fraser. Endometrial thickness measured by ultrasound scan in women with uterine outlet obstruction due to intrauterine or upper cervical adhesions. Hum Reprod 2008; 23(2): 306–309 https://doi.org/10.1093/humrep/dem393
pmid: 18083747
195
S Xiao, Y Wan, M Xue, X Zeng, F Xiao, D Xu, X Yang, P Zhang, W Sheng, J Xu, S Zhou. Etiology, treatment, and reproductive prognosis of women with moderate-to-severe intrauterine adhesions. Int J Gynaecol Obstet 2014; 125(2): 121–124 https://doi.org/10.1016/j.ijgo.2013.10.026
pmid: 24598346
196
X Bai, J Liu, S Cao, L Wang. Mechanisms of endometrial fibrosis and the potential application of stem cell therapy. Discov Med 2019; 27(150): 267–279
pmid: 31421695
U Salma, M Xue, MS Ali Sheikh, X Guan, B Xu, A Zhang, L Huang, D Xu. Role of transforming growth factor-β1 and Smads signaling pathway in intrauterine adhesion. Mediators Inflamm 2016; 2016: 4158287 https://doi.org/10.1155/2016/4158287
pmid: 26997760
199
X Wang, N Ma, Q Sun, C Huang, Y Liu, X Luo. Elevated NF-κB signaling in Asherman syndrome patients and animal models. Oncotarget 2017; 8(9): 15399–15406 https://doi.org/10.18632/oncotarget.14853
pmid: 28148903
200
X Xue, Q Chen, G Zhao, JY Zhao, Z Duan, PS Zheng. The overexpression of TGF-β and CCN2 in intrauterine adhesions involves the NF-κB signaling pathway. PLoS One 2015; 10(12): e0146159 https://doi.org/10.1371/journal.pone.0146159
pmid: 26719893
201
HY Zhu, TX Ge, YB Pan, SY Zhang. Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion. Chin Med J (Engl) 2017; 130(22): 2732–2737 https://doi.org/10.4103/0366-6999.218013
pmid: 29133764
202
A Akhmetshina, K Palumbo, C Dees, C Bergmann, P Venalis, P Zerr, A Horn, T Kireva, C Beyer, J Zwerina, H Schneider, A Sadowski, MO Riener, OA MacDougald, O Distler, G Schett, JH Distler. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012; 3(1): 735 https://doi.org/10.1038/ncomms1734
pmid: 22415826
203
L Liu, G Chen, T Chen, W Shi, H Hu, K Song, R Huang, H Cai, Y He. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway. Stem Cell Res Ther 2020; 11(1): 1–17 https://doi.org/10.1186/s13287-020-01990-3
pmid: 31900237
204
G Chen, L Liu, J Sun, L Zeng, H Cai, Y He. Foxf2 and Smad6 co-regulation of collagen 5A2 transcription is involved in the pathogenesis of intrauterine adhesion. J Cell Mol Med 2020; 24(5): 2802–2818 https://doi.org/10.1111/jcmm.14708
pmid: 32022446
205
RKK Leung, Y Lin, Y Liu. Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis. Reprod Sci 2021; 28(7): 1812–1826 https://doi.org/10.1007/s43032-020-00343-y
pmid: 33125685
206
M Liu, D Zhao, X Wu, S Guo, L Yan, S Zhao, H Li, Y Wang, F Rong. miR-466 and NUS1 regulate the AKT/nuclear factor kappa B (NFκB) signaling pathway in intrauterine adhesions in a rat model. Med Sci Monit 2019; 25: 4094–4103 https://doi.org/10.12659/MSM.914202
pmid: 31154456
207
Q Xu, H Duan, L Gan, X Liu, F Chen, X Shen, YQ Tang, S Wang. MicroRNA-1291 promotes endometrial fibrosis by regulating the ArhGAP29-RhoA/ROCK1 signaling pathway in a murine model. Mol Med Rep 2017; 16(4): 4501–4510 https://doi.org/10.3892/mmr.2017.7210
pmid: 28849001
208
H Zhu, Y Pan, Y Jiang, J Li, Y Zhang, S Zhang. Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor β signaling in human endometrial stromal cells. Hum Reprod 2019; 34(4): 635–645 https://doi.org/10.1093/humrep/dez001
pmid: 30715393
209
S Zhao, W Qi, J Zheng, Y Tian, X Qi, D Kong, J Zhang, X Huang. Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod Sci 2020; 27(6): 1266–1275 https://doi.org/10.1007/s43032-019-00112-6
pmid: 31933162
210
L Xin, X Lin, F Zhou, C Li, X Wang, H Yu, Y Pan, H Fei, L Ma, S Zhang. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater 2020; 113: 252–266 https://doi.org/10.1016/j.actbio.2020.06.029
pmid: 32574858
211
C Perrini, MG Strillacci, A Bagnato, P Esposti, MG Marini, B Corradetti, D Bizzaro, A Idda, S Ledda, E Capra, F Pizzi, A Lange-Consiglio, F Cremonesi. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Res Ther 2016; 7(1): 169 https://doi.org/10.1186/s13287-016-0429-6
pmid: 27863532
212
Y Yao, R Chen, G Wang, Y Zhang, F Liu. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther 2019; 10(1): 225 https://doi.org/10.1186/s13287-019-1332-8
pmid: 31358049
213
GS Saribas, C Ozogul, M Tiryaki, F Alpaslan Pinarli, S Hamdemir Kilic. Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman’s syndrome. Acta Histochem 2020; 122(1): 151465 https://doi.org/10.1016/j.acthis.2019.151465
pmid: 31776004
214
Y Chang, Y Liu, X Li. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of endometrial stromal cell. Fertil Steril 2020; 114(3): e530 https://doi.org/10.1016/j.fertnstert.2020.09.035
215
OS Aworunse, O Adeniji, OL Oyesola, I Isewon, J Oyelade, OO Obembe. Genomic interventions in medicine. Bioinform Biol Insights 2018; 12: 1177932218816100 https://doi.org/10.1177/1177932218816100
pmid: 30546257
A Bracke, K Peeters, U Punjabi, D Hoogewijs, S Dewilde. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online 2018; 36(3): 327–339 https://doi.org/10.1016/j.rbmo.2017.12.005
pmid: 29336995
A Jungwirth, A Giwercman, H Tournaye, T Diemer, Z Kopa, G Dohle, C; European Association of Urology Working Group on Male Infertility Krausz. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol 2012; 62(2): 324–332 https://doi.org/10.1016/j.eururo.2012.04.048
pmid: 22591628
222
MS Oud, L Volozonoka, RM Smits, LELM Vissers, L Ramos, JA Veltman. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod 2019; 34(5): 932–941 https://doi.org/10.1093/humrep/dez022
pmid: 30865283
223
C Krausz, AR Escamilla, C Chianese. Genetics of male infertility: from research to clinic. Reproduction 2015; 150(5): R159–R174 https://doi.org/10.1530/REP-15-0261
pmid: 26447148
C Krausz, S Degl’Innocenti. Y chromosome and male infertility: update, 2006. Front Biosci 2006; 11(1): 3049–3061 https://doi.org/10.2741/2032
pmid: 16720375
226
IW Kim, AC Khadilkar, EY Ko, ES Jr Sabanegh. 47, XYY syndrome and male infertility. Rev Urol 2013; 15(4): 188–196
pmid: 24659916
227
C Krausz, L Hoefsloot, M Simoni, F; European Academy of Andrology; European Molecular Genetics Quality Network Tüttelmann. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2014; 2(1): 5–19 https://doi.org/10.1111/j.2047-2927.2013.00173.x
pmid: 24357628
228
L Stuppia, V Gatta, G Calabrese, P Guanciali Franchi, E Morizio, C Bombieri, R Mingarelli, V Sforza, G Frajese, R Tenaglia, G Palka. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet 1998; 102(5): 566–570 https://doi.org/10.1007/s004390050741
pmid: 9654206
229
PC Patsalis, C Sismani, L Quintana-Murci, F Taleb-Bekkouche, C Krausz, K McElreavey. Effects of transmission of Y chromosome AZFc deletions. Lancet 2002; 360(9341): 1222–1224 https://doi.org/10.1016/S0140-6736(02)11248-7
pmid: 12401251
230
P Asero, AE Calogero, RA Condorelli, L Mongioi’, E Vicari, F Lanzafame, R Crisci, Vignera S La. Relevance of genetic investigation in male infertility. J Endocrinol Invest 2014; 37(5): 415–427 https://doi.org/10.1007/s40618-014-0053-1
pmid: 24458834
231
T Kuroda-Kawaguchi, H Skaletsky, LG Brown, PJ Minx, HS Cordum, RH Waterston, RK Wilson, S Silber, R Oates, S Rozen, DC Page. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 2001; 29(3): 279–286 https://doi.org/10.1038/ng757
pmid: 11687796
232
A Ferlin, A Garolla, C Foresta. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities. Cytogenet Genome Res 2005; 111(3–4): 310–316 https://doi.org/10.1159/000086905
pmid: 16192710
233
N Schultz, FK Hamra, DL Garbers. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 2003; 100(21): 12201–12206 https://doi.org/10.1073/pnas.1635054100
pmid: 14526100
234
E Mastantuoni, G Saccone, HB Al-Kouatly, M Paternoster, P D’Alessandro, B Arduino, L Carbone, G Esposito, A Raffone, Vivo V De, GM Maruotti, V Berghella, F Zullo. Expanded carrier screening: a current perspective. Eur J Obstet Gynecol Reprod Biol 2018; 230: 41–54 https://doi.org/10.1016/j.ejogrb.2018.09.014
pmid: 30240948
K Oktay, G Bedoschi, K Berkowitz, R Bronson, B Kashani, P McGovern, L Pal, G Quinn, K Rubin. Fertility preservation in women with Turner syndrome: a comprehensive review and practical guidelines. J Pediatr Adolesc Gynecol 2016; 29(5): 409–416 https://doi.org/10.1016/j.jpag.2015.10.011
pmid: 26485320
238
M Chen, S Wei, J Hu, S Quan. Can comprehensive chromosome screening technology improve IVF/ICSI outcomes? A meta-analysis.. PLoS One 2015; 10(10): e0140779 https://doi.org/10.1371/journal.pone.0140779
pmid: 26470028
239
L Man, J Lekovich, Z Rosenwaks, J Gerhardt. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci 2017; 10: 290 https://doi.org/10.3389/fnmol.2017.00290
pmid: 28955201
240
LR Hoyos, M Thakur. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. J Assist Reprod Genet 2017; 34(3): 315–323 https://doi.org/10.1007/s10815-016-0854-6
pmid: 27995424
241
R Rossetti, I Ferrari, M Bonomi, L Persani. Genetics of primary ovarian insufficiency. Clin Genet 2017; 91(2): 183–198 https://doi.org/10.1111/cge.12921
pmid: 27861765
242
A Stavljenić-Rukavina. 1. Prenatal diagnosis of chromosomal disorders—molecular aspects. EJIFCC 2008; 19(1): 2–6
pmid: 27683284
IB Mathijssen, KCA Holtkamp, CPE Ottenheim, JMC van Eeten-Nijman, P Lakeman, H Meijers-Heijboer, MC van Maarle, L Henneman. Preconception carrier screening for multiple disorders: evaluation of a screening offer in a Dutch founder population. Eur J Hum Genet 2018; 26(2): 166–175 https://doi.org/10.1038/s41431-017-0056-4
pmid: 29321671
A Elce, A Boccia, G Cardillo, S Giordano, R Tomaiuolo, G Paolella, G Castaldo. Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis. Clin Chem 2009; 55(7): 1372–1379 https://doi.org/10.1373/clinchem.2008.119545
pmid: 19443567
247
F Cariati, M Savarese, V D’Argenio, F Salvatore, R Tomaiuolo. The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth. Clin Chem Lab Med 2017; 56(1): 40–50 https://doi.org/10.1515/cclm-2017-0147
pmid: 28787268
248
M Allyse, MA Minear, E Berson, S Sridhar, M Rote, A Hung, S Chandrasekharan. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health 2015; 7: 113–126 https://doi.org/10.2147/IJWH.S67124
pmid: 25653560
249
EKL Chiu, WWI Hui, RWK Chiu. cfDNA screening and diagnosis of monogenic disorders—where are we heading?. Prenat Diagn 2018; 38(1): 52–58 https://doi.org/10.1002/pd.5207
pmid: 29314147
250
L Saba, M Masala, V Capponi, G Marceddu, M Massidda, MC Rosatelli. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the sardinian population. Eur J Hum Genet 2017; 25(5): 600–607 https://doi.org/10.1038/ejhg.2017.26
pmid: 28272531
251
MI New, YK Tong, T Yuen, P Jiang, C Pina, KC Chan, A Khattab, GJ Liao, M Yau, SM Kim, RW Chiu, L Sun, M Zaidi, YM Lo. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab 2014; 99(6): E1022–E1030 https://doi.org/10.1210/jc.2014-1118
pmid: 24606108
252
MK Haahr, CH Jensen, NM Toyserkani, DC Andersen, P Damkier, JA Sørensen, L Lund, SP Sheikh. Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. EBioMedicine 2016; 5: 204–210 https://doi.org/10.1016/j.ebiom.2016.01.024
pmid: 27077129
253
M Mashayekhi, E Mirzadeh, Z Chekini, F Ahmadi, P Eftekhari-Yazdi, S Vesali, T Madani, N Aghdami. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res 2021; 14(1): 5 https://doi.org/10.1186/s13048-020-00743-3
pmid: 33407794
254
P Igboeli, A El Andaloussi, U Sheikh, H Takala, A ElSharoud, A McHugh, L Gavrilova-Jordan, S Levy, A Al-Hendy. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Reports 2020; 14(1): 108 https://doi.org/10.1186/s13256-020-02426-5
pmid: 32680541
255
YC Cheng, M Takagi, A Milbourne, RE Champlin, NT Ueno. Phase II study of gonadotropin-releasing hormone analog for ovarian function preservation in hematopoietic stem cell transplantation patients. Oncologist 2012; 17(2): 233–238 https://doi.org/10.1634/theoncologist.2011-0205
pmid: 22282904
256
Y Cao, H Sun, H Zhu, X Zhu, X Tang, G Yan, J Wang, D Bai, J Wang, L Wang, Q Zhou, H Wang, C Dai, L Ding, B Xu, Y Zhou, J Hao, J Dai, Y Hu. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther 2018; 9(1): 192 https://doi.org/10.1186/s13287-018-0904-3
pmid: 29996892
257
W Yang, J Zhang, B Xu, Y He, W Liu, J Li, S Zhang, X Lin, D Su, T Wu, J Li. HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice. Mol Ther 2020; 28(4): 1200–1213 https://doi.org/10.1016/j.ymthe.2020.02.003
pmid: 32097602
258
M Spinosa, G Lu, G Su, SV Bontha, R Gehrau, MD Salmon, JR Smith, ML Weiss, VR Mas, GR Jr Upchurch, AK Sharma. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147. FASEB J 2018; 32(11): 6038–6050 https://doi.org/10.1096/fj.201701138RR
pmid: 29812968
259
C Lo Sicco, D Reverberi, C Balbi, V Ulivi, E Principi, L Pascucci, P Becherini, MC Bosco, L Varesio, C Franzin, M Pozzobon, R Cancedda, R Tasso. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6(3): 1018–1028 https://doi.org/10.1002/sctm.16-0363
pmid: 28186708
260
C Ding, L Zhu, H Shen, J Lu, Q Zou, C Huang, H Li, B Huang. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7. Stem Cells 2020; 38(9): 1137–1148 https://doi.org/10.1002/stem.3204
pmid: 32442343
261
V Bodart-Santos, LRP de Carvalho, MA de Godoy, AF Batista, LM Saraiva, LG Lima, CA Abreu, FG De Felice, A Galina, R Mendez-Otero, ST Ferreira. Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther 2019; 10(1): 332 https://doi.org/10.1186/s13287-019-1432-5
pmid: 31747944
262
S Chaubey, S Thueson, D Ponnalagu, MA Alam, CP Gheorghe, Z Aghai, H Singh, V Bhandari. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 2018; 9(1): 173 https://doi.org/10.1186/s13287-018-0903-4
pmid: 29941022
263
C Yang, W Lim, J Park, S Park, S You, G Song. Anti-inflammatory effects of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol Hum Reprod 2019; 25(11): 755–771 https://doi.org/10.1093/molehr/gaz054
pmid: 31588496
264
D Ti, H Hao, C Tong, J Liu, L Dong, J Zheng, Y Zhao, H Liu, X Fu, W Han. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308 https://doi.org/10.1186/s12967-015-0642-6
pmid: 26386558
265
MA Alzubi, SS Sohal, M Sriram, TH Turner, P Zot, M Idowu, JC Harrell. Quantitative assessment of breast cancer liver metastasis expansion with patient-derived xenografts. Clin Exp Metastasis 2019; 36(3): 257–269 https://doi.org/10.1007/s10585-019-09968-z
pmid: 31069566
266
JD Anderson, HJ Johansson, CS Graham, M Vesterlund, MT Pham, CS Bramlett, EN Montgomery, MS Mellema, RL Bardini, Z Contreras, M Hoon, G Bauer, KD Fink, B Fury, KJ Hendrix, F Chedin, S El-Andaloussi, B Hwang, MS Mulligan, J Lehtiö, JA Nolta. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells 2016; 34(3): 601–613 https://doi.org/10.1002/stem.2298
pmid: 26782178
267
T Lopatina, S Bruno, C Tetta, N Kalinina, M Porta, G Camussi. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 2014; 12(1): 26 https://doi.org/10.1186/1478-811X-12-26
pmid: 24725987
268
KS Park, K Svennerholm, GV Shelke, E Bandeira, C Lässer, SC Jang, R Chandode, I Gribonika, J Lötvall. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019; 10(1): 231 https://doi.org/10.1186/s13287-019-1352-4
pmid: 31370884
269
H Gonzalez-King, NA García, I Ontoria-Oviedo, M Ciria, JA Montero, P Sepúlveda. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 2017; 35(7): 1747–1759 https://doi.org/10.1002/stem.2618
pmid: 28376567
270
M Gong, B Yu, J Wang, Y Wang, M Liu, C Paul, RW Millard, DS Xiao, M Ashraf, M Xu. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017; 8(28): 45200–45212 https://doi.org/10.18632/oncotarget.16778
pmid: 28423355
271
B Zhang, M Wang, A Gong, X Zhang, X Wu, Y Zhu, H Shi, L Wu, W Zhu, H Qian, W Xu. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015; 33(7): 2158–2168 https://doi.org/10.1002/stem.1771
pmid: 24964196
272
G Baek, H Choi, Y Kim, HC Lee, C Choi. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med 2019; 8(9): 880–886 https://doi.org/10.1002/sctm.18-0226
pmid: 31045328
273
L Liu, Y Liu, C Feng, J Chang, R Fu, T Wu, F Yu, X Wang, L Xia, C Wu, B Fang. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials 2019; 192: 523–536 https://doi.org/10.1016/j.biomaterials.2018.11.007
pmid: 30529871
274
M Yang, L Lin, C Sha, T Li, D Zhao, H Wei, Q Chen, Y Liu, X Chen, W Xu, Y Li, X Zhu. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab Invest 2020; 100(3): 342–352 https://doi.org/10.1038/s41374-019-0321-y
pmid: 31537899
275
J Zhao, X Li, J Hu, F Chen, S Qiao, X Sun, L Gao, J Xie, B Xu. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2019; 115(7): 1205–1216 https://doi.org/10.1093/cvr/cvz040
pmid: 30753344
276
A Eirin, XY Zhu, AS Puranik, JR Woollard, H Tang, S Dasari, A Lerman, AJ van Wijnen, LO Lerman. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Sci Rep 2016; 6(1): 36120 https://doi.org/10.1038/srep36120
pmid: 27786293
277
KR Vrijsen, JA Maring, SA Chamuleau, V Verhage, EA Mol, JC Deddens, CH Metz, K Lodder, EC van Eeuwijk, SM van Dommelen, PA Doevendans, AM Smits, MJ Goumans, JP Sluijter. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 2016; 5(19): 2555–2565 https://doi.org/10.1002/adhm.201600308
pmid: 27570124
278
SK Crain, SR Robinson, KE Thane, AM Davis, DM Meola, BA Barton, VK Yang, AM Hoffman. Extracellular vesicles from Wharton’s jelly mesenchymal stem cells suppress CD4 expressing T cells through transforming growth factor beta and adenosine signaling in a canine model. Stem Cells Dev 2019; 28(3): 212–226 https://doi.org/10.1089/scd.2018.0097
pmid: 30412034
279
S Mardpour, AA Hamidieh, S Taleahmad, F Sharifzad, A Taghikhani, H Baharvand. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol 2019; 234(6): 8249–8258 https://doi.org/10.1002/jcp.27669
pmid: 30378105
280
C Merino-González, FA Zuñiga, C Escudero, V Ormazabal, C Reyes, E Nova-Lamperti, C Salomón, C Aguayo. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol 2016; 7: 24 https://doi.org/10.3389/fphys.2016.00024
pmid: 26903875
281
K Tsuji, S Kitamura, J Wada. Immunomodulatory and regenerative effects of mesenchymal stem cell-derived extracellular vesicles in renal diseases. Int J Mol Sci 2020; 21(3): 756 https://doi.org/10.3390/ijms21030756
pmid: 31979395
282
F Paduano, M Marrelli, F Palmieri, M Tatullo. CD146 expression influences periapical cyst mesenchymal stem cell properties. Stem Cell Rev Rep 2016; 12(5): 592–603 https://doi.org/10.1007/s12015-016-9674-4
pmid: 27406247
283
T Momose, H Miyaji, A Kato, K Ogawa, T Yoshida, E Nishida, S Murakami, Y Kosen, T Sugaya, M Kawanami. Collagen hydrogel scaffold and fibroblast growth factor-2 accelerate periodontal healing of class II furcation defects in dog. Open Dent J 2016; 10(1): 347–359 https://doi.org/10.2174/1874210601610010347
pmid: 27583044
284
I Cervelló, C Gil-Sanchis, X Santamaría, S Cabanillas, A Díaz, A Faus, A Pellicer, C Simón. Human CD133(+) bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril 2015; 104(6): 1552–60.e1-3 https://doi.org/10.1016/j.fertnstert.2015.08.032
pmid: 26384164
285
SA Mohamed, SM Shalaby, M Abdelaziz, S Brakta, WD Hill, N Ismail, A Al-Hendy. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci 2018; 25(1): 51–63 https://doi.org/10.1177/1933719117699705
pmid: 28460567
286
SH Abd-Allah, SM Shalaby, HF Pasha, AS El-Shal, N Raafat, SM Shabrawy, HA Awad, MG Amer, MA Gharib, EA El Gendy, AA Raslan, HM El-Kelawy. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy 2013; 15(1): 64–75 https://doi.org/10.1016/j.jcyt.2012.08.001
pmid: 23260087
287
D Fan, S Wu, S Ye, W Wang, X Guo, Z Liu. Umbilical cord mesenchyme stem cell local intramuscular injection for treatment of uterine niche: protocol for a prospective, randomized, double-blinded, placebo-controlled clinical trial. Medicine (Baltimore) 2017; 96(44): e8480 https://doi.org/10.1097/MD.0000000000008480
pmid: 29095305
288
J Li, Q Mao, J He, H She, Z Zhang, C Yin. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther 2017; 8(1): 55 https://doi.org/10.1186/s13287-017-0514-5
pmid: 28279229
289
S Wang, L Yu, M Sun, S Mu, C Wang, D Wang, Y Yao. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed Res Int 2013; 2013: 690491 https://doi.org/10.1155/2013/690491
pmid: 23998127
290
S Kilic, B Yuksel, F Pinarli, A Albayrak, B Boztok, T Delibasi. Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet 2014; 31(8): 975–982 https://doi.org/10.1007/s10815-014-0268-2
pmid: 24974357
291
J Su, L Ding, J Cheng, J Yang, X Li, G Yan, H Sun, J Dai, Y Hu. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Hum Reprod 2016; 31(5): 1075–1086 https://doi.org/10.1093/humrep/dew041
pmid: 26965432
292
P Terraciano, T Garcez, L Ayres, I Durli, M Baggio, CP Kuhl, C Laurino, E Passos, AH Paz, E Cirne-Lima. Cell therapy for chemically induced ovarian failure in mice. Stem Cells Int 2014; 2014: 720753 https://doi.org/10.1155/2014/720753
pmid: 25548574