Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors
Shi-Yong Sun()
Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
A significant clinical challenge in lung cancer treatment is management of the inevitable acquired resistance to third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs), such as osimertinib, which have shown remarkable success in the treatment of advanced NSCLC with EGFR activating mutations, in order to achieve maximal response duration or treatment remission. Apoptosis is a major type of programmed cell death tightly associated with cancer development and treatment. Evasion of apoptosis is considered a key hallmark of cancer and acquisition of apoptosis resistance is accordingly a key mechanism of drug acquired resistance in cancer therapy. It has been clearly shown that effective induction of apoptosis is a key mechanism for third generation EGFR-TKIs, particularly osimertinib, to exert their therapeutic efficacies and the development of resistance to apoptosis is tightly associated with the emergence of acquired resistance. Hence, restoration of cell sensitivity to undergo apoptosis using various means promises an effective strategy for the management of acquired resistance to third generation EGFR-TKIs.
A study of APG-1252 plus osimertinib (AZD9292) in EGFR TKI resistant NSCLC patients
NCT04001777
Osimertinib and navitoclax in treating patients with EGFR-positive previously treated advanced or metastatic NSCLC
NCT02520778
Combinations that lead to enhanced induction of apoptosis
A phase 2 study of osimertinib in combination with selumetinib in EGFR-inhibitor na?ve advanced EGFR mutant lung cancer
NCT03392246
Alisertib in combination with osimertinib in metastatic EGFR-mutant lung cancer
NCT04085315
Dasatinib and osimertinib (AZD9291) in advanced non-small cell lung cancer with EGFR mutations
NCT02954523
A study comparing savolitinib plus osimertinib vs. savolitinib plus placebo in patients with EGFRm+ and MET amplified advanced NSCLC
NCT04606771
Osimertinib in combination with alisertib or sapanisertib for the treatment of osimertinib-resistant EGFR mutant stage IIIB or IV non-small cell lung cancer
NCT04479306
Combination of osimertinib and aspirin to treat osimertinib resistance NSCLC
NCT03532698
MRX-2843 and osimertinib for the treatment of advanced EGFR mutant non-small cell lung cancer
NCT04762199
Aurora kinase inhibitor LY3295668 in combination with osimertinib for the treatment of advanced or metastatic EGFR-mutant non-squamous non-small cell lung cancer
NCT05017025
A study of tepotinib plus osimertinib in osimertinib relapsed MET amplified NSCLC (INSIGHT 2)
NCT03940703
Clinical study on savolitinib + osimertinib in treatment of EGFRm+/MET+ locally advanced or metastatic NSCLC
H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71( 3): 209– 249 https://doi.org/10.3322/caac.21660
pmid: 33538338
SS Ramalingam, J Vansteenkiste, D Planchard, BC Cho, JE Gray, Y Ohe, C Zhou, T Reungwetwattana, Y Cheng, B Chewaskulyong, R Shah, M Cobo, KH Lee, P Cheema, M Tiseo, T John, MC Lin, F Imamura, T Kurata, A Todd, R Hodge, M Saggese, Y Rukazenkov, JC; FLAURA Investigators Soria. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382( 1): 41– 50 https://doi.org/10.1056/NEJMoa1913662
pmid: 31751012
5
JC Soria, Y Ohe, J Vansteenkiste, T Reungwetwattana, B Chewaskulyong, KH Lee, A Dechaphunkul, F Imamura, N Nogami, T Kurata, I Okamoto, C Zhou, BC Cho, Y Cheng, EK Cho, PJ Voon, D Planchard, WC Su, JE Gray, SM Lee, R Hodge, M Marotti, Y Rukazenkov, SS; FLAURA Investigators Ramalingam. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018; 378( 2): 113– 125 https://doi.org/10.1056/NEJMoa1713137
pmid: 29151359
6
S Lu, Q Wang, G Zhang, X Dong, CT Yang, Y Song, GC Chang, Y Lu, H Pan, CH Chiu, Z Wang, J Feng, J Zhou, X Xu, R Guo, J Chen, H Yang, Y Chen, Z Yu, HS Shiah, CC Wang, N Yang, J Fang, P Wang, K Wang, Y Hu, J He, Z Wang, J Shi, S Chen, Q Wu, C Sun, C Li, H Wei, Y Cheng, WC Su, TC Hsia, J Cui, Y Sun, SI Ou, VW Zhu, J Chih-Hsin Yang. Efficacy of aumolertinib (HS-10296) in patients with advanced EGFR T790M+ NSCLC: updated post-national medical products administration approval results from the APOLLO registrational trial. J Thorac Oncol 2022; 17( 3): 411– 422 https://doi.org/10.1016/j.jtho.2021.10.024
pmid: 34801749
ST Diepstraten, MA Anderson, PE Czabotar, G Lessene, A Strasser, GL Kelly. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22( 1): 45– 64 https://doi.org/10.1038/s41568-021-00407-4
pmid: 34663943
Y Kim, N Suh, M Sporn, JC Reed. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002; 277( 25): 22320– 22329 https://doi.org/10.1074/jbc.M202458200
pmid: 11940602
22
M Poukkula, A Kaunisto, V Hietakangas, K Denessiouk, T Katajamäki, MS Johnson, L Sistonen, JE Eriksson. Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 2005; 280( 29): 27345– 27355 https://doi.org/10.1074/jbc.M504019200
pmid: 15886205
23
L Chang, H Kamata, G Solinas, JL Luo, S Maeda, K Venuprasad, YC Liu, M Karin. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124( 3): 601– 613 https://doi.org/10.1016/j.cell.2006.01.021
pmid: 16469705
RW Johnstone, AJ Frew, MJ Smyth. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 2008; 8( 10): 782– 798 https://doi.org/10.1038/nrc2465
pmid: 18813321
26
Reilly E O’, A Tirincsi, SE Logue, E Szegezdi. The Janus face of death receptor signaling during tumor immunoediting. Front Immunol 2016; 7 : 446 https://doi.org/10.3389/fimmu.2016.00446
pmid: 27843441
27
WD Fairlie, EF Lee. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem Soc Trans 2021; 49( 5): 2397– 2410 https://doi.org/10.1042/BST20210750
pmid: 34581776
28
D Westaby, JM Jimenez-Vacas, A Padilha, A Varkaris, SP Balk, JS de Bono, A Sharp. Targeting the intrinsic apoptosis pathway: a window of opportunity for prostate cancer. Cancers (Basel) 2021; 14( 1): 51 https://doi.org/10.3390/cancers14010051
pmid: 35008216
29
P Shi, YT Oh, L Deng, G Zhang, G Qian, S Zhang, H Ren, G Wu, B Jr Legendre, E Anderson, SS Ramalingam, TK Owonikoko, M Chen, SY Sun. Overcoming acquired resistance to AZD9291, a third-generation EGFR inhibitor, through modulation of MEK/ERK-dependent Bim and Mcl-1 degradation. Clin Cancer Res 2017; 23( 21): 6567– 6579 https://doi.org/10.1158/1078-0432.CCR-17-1574
pmid: 28765329
30
X Ge, Y Zhang, F Huang, Y Wu, J Pang, X Li, F Fan, H Liu, S Li. EGFR tyrosine kinase inhibitor almonertinib induces apoptosis and autophagy mediated by reactive oxygen species in non-small cell lung cancer cells. Hum Exp Toxicol 2021; 40( 12_suppl): S49– S62 https://doi.org/10.1177/09603271211030554
pmid: 34219533
31
P Shi, S Zhang, L Zhu, G Qian, H Ren, SS Ramalingam, M Chen, SY Sun. The third-generation EGFR inhibitor, osimertinib, promotes c-FLIP degradation, enhancing apoptosis including TRAIL-induced apoptosis in NSCLC cells with activating EGFR mutations. Transl Oncol 2019; 12( 5): 705– 713 https://doi.org/10.1016/j.tranon.2019.02.006
pmid: 30856555
32
S Zhang, Z Chen, P Shi, S Fan, Y He, Q Wang, Y Li, SS Ramalingam, TK Owonikoko, SY Sun. Downregulation of death receptor 4 is tightly associated with positive response of EGFR mutant lung cancer to EGFR-targeted therapy and improved prognosis. Theranostics 2021; 11( 8): 3964– 3980 https://doi.org/10.7150/thno.54824
pmid: 33664875
33
A Leonetti, S Sharma, R Minari, P Perego, E Giovannetti, M Tiseo. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121( 9): 725– 737 https://doi.org/10.1038/s41416-019-0573-8
pmid: 31564718
34
CH Weng, LY Chen, YC Lin, JY Shih, YC Lin, RY Tseng, AC Chiu, YH Yeh, C Liu, YT Lin, JM Fang, CC Chen. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 2019; 38( 4): 455– 468 https://doi.org/10.1038/s41388-018-0454-2
pmid: 30111817
35
ZA Yochum, J Cades, H Wang, S Chatterjee, BW Simons, JP O’Brien, SK Khetarpal, G Lemtiri-Chlieh, KV Myers, EH Huang, CM Rudin, PT Tran, TF Burns. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 2019; 38( 5): 656– 670 https://doi.org/10.1038/s41388-018-0482-y
pmid: 30171258
36
TH Chang, MF Tsai, KY Su, SG Wu, CP Huang, SL Yu, YL Yu, CC Lan, CH Yang, SB Lin, CP Wu, JY Shih, PC Yang. Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med 2011; 183( 8): 1071– 1079 https://doi.org/10.1164/rccm.201009-1440OC
pmid: 21037017
37
KA Song, MJ Niederst, TL Lochmann, AN Hata, H Kitai, J Ham, KV Floros, MA Hicks, H Hu, HE Mulvey, Y Drier, DAR Heisey, MT Hughes, NU Patel, EL Lockerman, A Garcia, S Gillepsie, HL Archibald, M Gomez-Caraballo, TJ Nulton, BE Windle, Z Piotrowska, SE Sahingur, SM Taylor, M Dozmorov, LV Sequist, B Bernstein, H Ebi, JA Engelman, AC Faber. Epithelial-to-mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM. Clin Cancer Res 2018; 24( 1): 197– 208 https://doi.org/10.1158/1078-0432.CCR-17-1577
pmid: 29051323
38
Q Qin, X Li, X Liang, L Zeng, J Wang, L Sun, D Zhong. Targeting the EMT transcription factor Snail overcomes resistance to osimertinib in EGFR-mutant non-small cell lung cancer. Thorac Cancer 2021; 12( 11): 1708– 1715 https://doi.org/10.1111/1759-7714.13906
pmid: 33943009
39
XM Jiang, YL Xu, LW Yuan, LL Zhang, MY Huang, ZH Ye, MX Su, XP Chen, H Zhu, RD Ye, JJ Lu. TGFβ2-mediated epithelial-mesenchymal transition and NF-κB pathway activation contribute to osimertinib resistance. Acta Pharmacol Sin 2021; 42( 3): 451– 459 https://doi.org/10.1038/s41401-020-0457-8
pmid: 32678313
40
AC Faber, RB Corcoran, H Ebi, LV Sequist, BA Waltman, E Chung, J Incio, SR Digumarthy, SF Pollack, Y Song, A Muzikansky, E Lifshits, S Roberge, EJ Coffman, CH Benes, HL Gómez, J Baselga, CL Arteaga, MN Rivera, D Dias-Santagata, RK Jain, JA Engelman. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov 2011; 1( 4): 352– 365 https://doi.org/10.1158/2159-8290.CD-11-0106
pmid: 22145099
41
C Costa, MA Molina, A Drozdowskyj, A Giménez-Capitán, J Bertran-Alamillo, N Karachaliou, R Gervais, B Massuti, J Wei, T Moran, M Majem, E Felip, E Carcereny, R Garcia-Campelo, S Viteri, M Taron, M Ono, P Giannikopoulos, T Bivona, R Rosell. The impact of EGFR T790M mutations and BIM mRNA expression on outcome in patients with EGFR-mutant NSCLC treated with erlotinib or chemotherapy in the randomized phase III EURTAC trial. Clin Cancer Res 2014; 20( 7): 2001– 2010 https://doi.org/10.1158/1078-0432.CCR-13-2233
pmid: 24493829
42
KP Ng, AM Hillmer, CT Chuah, WC Juan, TK Ko, AS Teo, PN Ariyaratne, N Takahashi, K Sawada, Y Fei, S Soh, WH Lee, JW Huang, JC Jr Allen, XY Woo, N Nagarajan, V Kumar, A Thalamuthu, WT Poh, AL Ang, HT Mya, GF How, LY Yang, LP Koh, B Chowbay, CT Chang, VS Nadarajan, WJ Chng, H Than, LC Lim, YT Goh, S Zhang, D Poh, P Tan, JE Seet, MK Ang, NM Chau, QS Ng, DS Tan, M Soda, K Isobe, MM Nöthen, TY Wong, A Shahab, X Ruan, V Cacheux-Rataboul, WK Sung, EH Tan, Y Yatabe, H Mano, RA Soo, TM Chin, WT Lim, Y Ruan, ST Ong. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012; 18( 4): 521– 528 https://doi.org/10.1038/nm.2713
pmid: 22426421
43
K Isobe, A Kakimoto, T Mikami, K Kaburaki, H Kobayashi, T Yoshizawa, T Makino, H Otsuka, GO Sano, K Sugino, S Sakamoto, Y Takai, N Tochigi, A Iyoda, S Homma. Association of BIM deletion polymorphism and BIM-γ RNA expression in NSCLC with EGFR mutation. Cancer Genomics Proteomics 2016; 13( 6): 475– 482 https://doi.org/10.21873/cgp.20010
pmid: 27807070
44
SG Wu, YN Liu, CJ Yu, PC Yang, JY Shih. Association of BIM deletion polymorphism with intrinsic resistance to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma. JAMA Oncol 2016; 2( 6): 826– 828 https://doi.org/10.1001/jamaoncol.2016.0016
pmid: 27077907
45
K Isobe, Y Hata, N Tochigi, K Kaburaki, H Kobayashi, T Makino, H Otsuka, F Sato, F Ishida, N Kikuchi, N Hirota, K Sato, G Sano, K Sugino, S Sakamoto, Y Takai, K Shibuya, A Iyoda, S Homma. Clinical significance of BIM deletion polymorphism in non-small-cell lung cancer with epidermal growth factor receptor mutation. J Thorac Oncol 2014; 9( 4): 483– 487 https://doi.org/10.1097/JTO.0000000000000125
pmid: 24736070
46
JK Lee, JY Shin, S Kim, S Lee, C Park, JY Kim, Y Koh, B Keam, HS Min, TM Kim, YK Jeon, DW Kim, DH Chung, DS Heo, SH Lee, JI Kim. Primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive EGFR mutations: an exploratory study. Ann Oncol 2013; 24( 8): 2080– 2087 https://doi.org/10.1093/annonc/mdt127
pmid: 23559152
47
A Tanimoto, S Takeuchi, S Arai, K Fukuda, T Yamada, X Roca, ST Ong, S Yano. Histone deacetylase 3 inhibition overcomes BIM deletion polymorphism-mediated osimertinib resistance in EGFR-mutant lung cancer. Clin Cancer Res 2017; 23( 12): 3139– 3149 https://doi.org/10.1158/1078-0432.CCR-16-2271
pmid: 27986747
48
X Li, D Zhang, B Li, B Zou, S Wang, B Fan, W Li, J Yu, L Wang. Clinical implications of germline BCL2L11 deletion polymorphism in pretreated advanced NSCLC patients with osimertinib therapy. Lung Cancer 2021; 151 : 39– 43 https://doi.org/10.1016/j.lungcan.2020.12.002
pmid: 33296806
49
K Isobe, T Yoshizawa, M Sekiya, S Miyoshi, Y Nakamura, N Urabe, T Isshiki, S Sakamoto, Y Takai, T Tomida, S Adachi-Akahane, A Iyoda, S Homma, K Kishi. Quantification of BIM mRNA in circulating tumor cells of osimertinib-treated patients with EGFR mutation-positive lung cancer. Respir Investig 2021; 59( 4): 535– 544 https://doi.org/10.1016/j.resinv.2021.03.010
pmid: 33934994
50
S Chen, L Fu, SM Raja, P Yue, FR Khuri, SY Sun. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer 2010; 9( 1): 23 https://doi.org/10.1186/1476-4598-9-23
pmid: 20113484
51
T Hartwig, A Montinaro, S von Karstedt, A Sevko, S Surinova, A Chakravarthy, L Taraborrelli, P Draber, E Lafont, F Arce Vargas, MA El-Bahrawy, SA Quezada, H Walczak. The TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2. Mol Cell 2017; 65( 4): 730– 742.e5 https://doi.org/10.1016/j.molcel.2017.01.021
pmid: 28212753
52
CM Henry, SJ Martin. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell 2017; 65( 4): 715– 729.e5 https://doi.org/10.1016/j.molcel.2017.01.022
pmid: 28212752
53
Y Li, H Zang, G Qian, TK Owonikoko, SR Ramalingam, SY Sun. ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib. Cancer 2020; 126( 6): 1339– 1350 https://doi.org/10.1002/cncr.32655
pmid: 31821539
54
W Jiang, F Cai, H Xu, Y Lu, J Chen, J Liu, N Cao, X Zhang, X Chen, Q Huang, H Zhuang, ZC Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell 2020; 11( 11): 825– 845 https://doi.org/10.1007/s13238-020-00701-1
pmid: 32144580
55
J Jiang, LG Zhao, YJ Teng, SL Chen, LP An, JL Ma, J Wang, YY Xia. ERK5 signalling pathway is essential for fluid shear stress-induced COX-2 gene expression in MC3T3-E1 osteoblast. Mol Cell Biochem 2015; 406( 1–2): 237– 243 https://doi.org/10.1007/s11010-015-2441-z
pmid: 25976667
56
Z Liang, W Xie, R Wu, H Geng, L Zhao, C Xie, X Li, C Huang, J Zhu, M Zhu, W Zhu, J Wu, S Geng, C Zhong. ERK5 negatively regulates tobacco smoke-induced pulmonary epithelial-mesenchymal transition. Oncotarget 2015; 6( 23): 19605– 19618 https://doi.org/10.18632/oncotarget.3747
pmid: 25965818
57
SJ Park, YS Choi, S Lee, YJ Lee, S Hong, S Han, BC Kim. BIX02189 inhibits TGF-β1-induced lung cancer cell metastasis by directly targeting TGF-β type I receptor. Cancer Lett 2016; 381( 2): 314– 322 https://doi.org/10.1016/j.canlet.2016.08.010
pmid: 27543359
58
W Zhao, D Yu, Z Chen, W Yao, J Yang, SS Ramalingam, SY Sun. Inhibition of MEK5/ERK5 signaling overcomes acquired resistance to the third generation EGFR inhibitor, osimertinib, via enhancing Bim-dependent apoptosis. Cancer Lett 2021; 519 : 141– 149 https://doi.org/10.1016/j.canlet.2021.07.007
pmid: 34245854
59
H Zang, G Qian, D Zong, S Fan, TK Owonikoko, SS Ramalingam, SY Sun. Overcoming acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589). Cancer 2020; 126( 9): 2024– 2033 https://doi.org/10.1002/cncr.32744
pmid: 31999837
60
F Cao, YB Gong, XH Kang, ZH Lu, Y Wang, KL Zhao, ZH Miao, MJ Liao, ZY Xu. Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer. Toxicol Appl Pharmacol 2019; 379 : 114662 https://doi.org/10.1016/j.taap.2019.114662
pmid: 31301315
61
H Zang, G Qian, J Arbiser, TK Owonikoko, SS Ramalingam, S Fan, SY Sun. Overcoming acquired resistance of EGFR-mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Mol Oncol 2020; 14( 4): 882– 895 https://doi.org/10.1002/1878-0261.12645
pmid: 32003107
62
Z Chen, KA Vallega, H Chen, J Zhou, SS Ramalingam, SY Sun. The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacol Res 2022; 175 : 105998 https://doi.org/10.1016/j.phrs.2021.105998
pmid: 34826601
63
R Han, S Hao, C Lu, C Zhang, C Lin, L Li, Y Wang, C Hu, Y He. Aspirin sensitizes osimertinib-resistant NSCLC cells in vitro and in vivo via Bim-dependent apoptosis induction. Mol Oncol 2020; 14( 6): 1152– 1169 https://doi.org/10.1002/1878-0261.12682
pmid: 32239624
64
Z Chen, D Yu, TK Owonikoko, SS Ramalingam, SY Sun. Induction of SREBP1 degradation coupled with suppression of SREBP1-mediated lipogenesis impacts the response of EGFR mutant NSCLC cells to osimertinib. Oncogene 2021; 40( 49): 6653– 6665 https://doi.org/10.1038/s41388-021-02057-0
pmid: 34635799
65
L Zhu, Z Chen, H Zang, S Fan, J Gu, G Zhang, KD Sun, Q Wang, Y He, TK Owonikoko, SS Ramalingam, SY Sun. Targeting c-Myc to overcome acquired resistance of EGFR mutant NSCLC cells to the third-generation EGFR tyrosine kinase inhibitor, osimertinib. Cancer Res 2021; 81( 18): 4822– 4834 https://doi.org/10.1158/0008-5472.CAN-21-0556
pmid: 34289988
66
K Tanaka, HA Yu, S Yang, S Han, SD Selcuklu, K Kim, S Ramani, YT Ganesan, A Moyer, S Sinha, Y Xie, K Ishizawa, HU Osmanbeyoglu, Y Lyu, N Roper, U Guha, CM Rudin, MG Kris, JJ Hsieh, EH Cheng. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell 2021; 39( 9): 1245– 1261.e6 https://doi.org/10.1016/j.ccell.2021.07.006
pmid: 34388376
67
S Watanabe, T Yoshida, H Kawakami, N Takegawa, J Tanizaki, H Hayashi, M Takeda, K Yonesaka, J Tsurutani, K Nakagawa. T790M-selective EGFR-TKI combined with dasatinib as an optimal strategy for overcoming EGFR-TKI resistance in T790M-positive non-small cell lung cancer. Mol Cancer Ther 2017; 16( 11): 2563– 2571 https://doi.org/10.1158/1535-7163.MCT-17-0351
pmid: 28839001
68
G Ma, Y Deng, L Qian, KA Vallega, G Zhang, X Deng, TK Owonikoko, SS Ramalingam, DD Fang, Y Zhai, SY Sun. Overcoming acquired resistance to third-generation EGFR inhibitors by targeting activation of intrinsic apoptotic pathway through Mcl-1 inhibition, Bax activation, or both. Oncogene 2022; 41( 12): 1691– 1700 https://doi.org/10.1038/s41388-022-02200-5
pmid: 35102249
69
Y Lu, D Bian, X Zhang, H Zhang, Z Zhu. Inhibition of Bcl-2 and Bcl-xL overcomes the resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer. Mol Med Rep 2021; 23( 1): 48 https://doi.org/10.3892/mmr.2020.11686
pmid: 33200796
70
Z Liu, W Gao. Synergistic effects of Bcl-2 inhibitors with AZD9291 on overcoming the acquired resistance of AZD9291 in H1975 cells. Arch Toxicol 2020; 94( 9): 3125– 3136 https://doi.org/10.1007/s00204-020-02816-0
pmid: 32577785
71
K Suda, T Mitsudomi. Drug tolerance to EGFR tyrosine kinase inhibitors in lung cancers with EGFR mutations. Cells 2021; 10( 7): 1590 https://doi.org/10.3390/cells10071590
pmid: 34202566
SV Sharma, DY Lee, B Li, MP Quinlan, F Takahashi, S Maheswaran, U McDermott, N Azizian, L Zou, MA Fischbach, KK Wong, K Brandstetter, B Wittner, S Ramaswamy, M Classon, J Settleman. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141( 1): 69– 80 https://doi.org/10.1016/j.cell.2010.02.027
pmid: 20371346
74
AN Hata, MJ Niederst, HL Archibald, M Gomez-Caraballo, FM Siddiqui, HE Mulvey, YE Maruvka, F Ji, HE Bhang, V Krishnamurthy Radhakrishna, G Siravegna, H Hu, S Raoof, E Lockerman, A Kalsy, D Lee, CL Keating, DA Ruddy, LJ Damon, AS Crystal, C Costa, Z Piotrowska, A Bardelli, AJ Iafrate, RI Sadreyev, F Stegmeier, G Getz, LV Sequist, AC Faber, JA Engelman. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 2016; 22( 3): 262– 269 https://doi.org/10.1038/nm.4040
pmid: 26828195
75
KJ Kurppa, Y Liu, C To, T Zhang, M Fan, A Vajdi, EH Knelson, Y Xie, K Lim, P Cejas, A Portell, PH Lizotte, SB Ficarro, S Li, T Chen, HM Haikala, H Wang, M Bahcall, Y Gao, S Shalhout, S Boettcher, BH Shin, T Thai, MK Wilkens, ML Tillgren, M Mushajiang, M Xu, J Choi, AA Bertram, BL Ebert, R Beroukhim, P Bandopadhayay, MM Awad, PC Gokhale, PT Kirschmeier, JA Marto, FD Camargo, R Haq, CP Paweletz, KK Wong, DA Barbie, HW Long, NS Gray, PA Jänne. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 2020; 37( 1): 104– 122.e12 https://doi.org/10.1016/j.ccell.2019.12.006
pmid: 31935369
76
J Gu, W Yang, P Shi, G Zhang, TK Owonikoko, SR Ramalingam, SY Sun. MEK or ERK inhibition effectively abrogates emergence of acquired osimertinib resistance in the treatment of epidermal growth factor receptor-mutant lung cancers. Cancer 2020; 126 : 3788– 3799 https://doi.org/10.1002/cncr.32996
pmid: 32497272