Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (4): 714-728   https://doi.org/10.1007/s11684-022-0959-5
  本期目录
FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression
Tianzhuo Wang, Huiying Guo, Lei Zhang, Miao Yu, Qianchen Li, Jing Zhang, Yan Tang, Hongquan Zhang, Jun Zhan()
Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
 全文: PDF(5252 KB)   HTML
Abstract

FRMD6, a member of the 4.1 ezrin–radixin–moesin domain-containing protein family, has been reported to inhibit tumor progression in multiple cancers. Here, we demonstrate the involvement of FRMD6 in lung cancer progression. We find that FRMD6 is overexpressed in lung cancer tissues relative to in normal lung tissues. In addition, the enhanced expression of FRMD6 is associated with poor outcomes in patients with lung squamous cell carcinoma (n = 75, P = 0.0054) and lung adenocarcinoma (n = 94, P = 0.0330). Cell migration and proliferation in vitro and tumor formation in vivo are promoted by FRMD6 but are suppressed by the depletion of FRMD6. Mechanistically, FRMD6 interacts and colocalizes with mTOR and S6K, which are the key molecules of the mTOR signaling pathway. FRMD6 markedly enhances the interaction between mTOR and S6K, subsequently increasing the levels of endogenous pS6K and downstream pS6 in lung cancer cells. Furthermore, knocking out FRMD6 inhibits the activation of the mTOR signaling pathway in Frmd6−/− gene KO MEFs and mice. Altogether, our results show that FRMD6 contributes to lung cancer progression by activating the mTOR signaling pathway.

Key wordsFRMD6    lung cancer    mTOR pathway
收稿日期: 2022-05-24      出版日期: 2023-10-12
Corresponding Author(s): Jun Zhan   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(4): 714-728.
Tianzhuo Wang, Huiying Guo, Lei Zhang, Miao Yu, Qianchen Li, Jing Zhang, Yan Tang, Hongquan Zhang, Jun Zhan. FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression. Front. Med., 2023, 17(4): 714-728.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0959-5
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I4/714
Reagent or resource Source Identifier
Antibodies
Rabbit monoclonal antibody anti-FRMD6 (D8X3R) Cell Signaling Technology Cat#14688; RRID:AB_2722638
Rabbit monoclonal antibody anti-mTOR (7C10) Cell Signaling Technology Cat#2983: RRID:AB_2105622
Rabbit polyclonal antibody anti-Phospho-mTOR (Ser2481) Cell Signaling Technology Cat#2974; RRID:AB_2262884
Rabbit monoclonal antibody anti-S6K (49D7) Cell Signaling Technology Cat#2708; RRID:AB_390722
Rabbit polyclonal antibody anti-Phospho-S6K (Thr389) Cell Signaling Technology Cat#9205; RRID:AB_330944
Rabbit monoclonal antibody anti-S6 (5G10) Cell Signaling Technology Cat#2217; RRID:AB_2262884
Rabbit monoclonal antibody anti-Phospho-S6 (Ser235/236) Cell Signaling Technology Cat#4858; RRID:AB_916156
Rabbit polyclonal antibody anti- FRMD6/Willin Abcam Cat#ab218209; RRID:AB_2877174
Rabbit polyclonal antibody anti-HA Abcam Cat#ab9110; RRID:AB_307019
Mouse monoclonal anti-Flag Sigma-Aldrich Cat#F1804; RRID:AB_262044
Mouse monoclonal anti-actin ZSGB-Bio Cat#TA-09; RRID:AB_2636897
Mouse monoclonal anti-actin (2Q1055) Santa Cruz Biotechnology Cat#sc-58673; RRID:AB_2223345
Anti-Rabbit IgG HP-linked Sangon Biotech Cat#D110058
Bacterial and virus strains
DH5α TIANGEN Cat#CB101-03
Chemicals, peptides, and recombinant proteins
Anti-Flag® M2 Beads Sigma-Aldrich Cat#M8823
Protein A-Agarose Santa Cruz Biotechnology Cat#sc-2001
Protein G-Agarose Santa Cruz Biotechnology Cat#sc-2003
Protease inhibitor cocktail Roche Cat#11836170001
PhosSTOP Roche Cat#4906845001
Puromycin Yeasen Cat#60210ES25; Cas 58-58-2
G418 Life Cat#10131027
Critical commercial assays
Lipofectamine 2000 Invitrogen Cat#11668030
RNAi MAX Invitrogen Cat#13778100
Experimental models: cell lines
Human: HEK-293T ATCC N/A
Human: NCI-H1299 ATCC N/A
Human: A549 ATCC N/A
Human: HeLa ATCC N/A
Oligonucleotides
FRMD6 siRNA-1 CAUCCAAGAUGCUUUUCCATT N/A
FRMD6 siRNA-2 GCAGCUCAAUGACCAGUCATT N/A
Recombinant DNA
CMV-3 × Flag-FRMD6 This manuscript N/A
CMV6-AC-3HA-S6K This manuscript N/A
pLVX-Flag-FRMD6 This manuscript N/A
CRISPR/Cas9-FRMD6 This manuscript N/A
Software and algorithms
GraphPad Prism 8.0 GraphPad software
Image J NIH
TCGA PanCancer Atlas
Tab.1  
Fig.1  
Characteristic Classification Total Expression of FRMD6 P
Low (< 2) High (≥2)
Sum 94 26 68
Age ≤60 49 13 (26.5%) 36 (73.5%) 0.8214
> 60 45 13 (28.9%) 32 (71.1/5)
Gender Male 53 16 (30.2%) 37 (69.8%) 0.6437
Female 41 10 (24.4%) 31 (75.6%)
TNM category T1–T2 70 24 (34.3%) 46 (65.7%) 0.0166*
T3–T4 24 2 (8.3%) 22 (91.7%)
N0–N1 59 20 (33.9%) 39 (66.1%) 0.0462*
N2–N3 20 2 (10%) 18 (90%)
M0 93 26 (28%) 67 (72%) > 0.9999
M1 1 0 (0%) 1 (100%)
American Joint Committee on cancer I 30 13 (43.3%) 17 (56.7%) 0.0759
II 20 6 (30%) 14 (70%)
II-III 13 4 (30.8%) 9 (69.2%)
III 29 3 (10.3%) 26 (89.7%)
II-IV 1 0 (0%) 1 (100%)
Lymph node metastasis Negative 82 24 (29.3%) 58 (70.7%) 0.5003
Positive 12 2 (16.7%) 10 (83.3%)
Survival Alive 29 12 (41.4%) 17 (58.6%)
Dead 65 14 (21.5%) 51 (78.5%)
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 J Didkowska, U Wojciechowska, M Mańczuk, J Łobaszewski. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med 2016; 4(8): 150
https://doi.org/10.21037/atm.2016.03.11 pmid: 27195268
2 H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
https://doi.org/10.3322/caac.21660 pmid: 33538338
3 K Wadowska, I Bil-Lula, Ł Trembecki, M Śliwińska-Mossoń. Genetic markers in lung cancer diagnosis: a review. Int J Mol Sci 2020; 21(13): E4569
https://doi.org/10.3390/ijms21134569 pmid: 32604993
4 R Ruiz-Cordero, WP Devine. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 2020; 13(1): 17–33
https://doi.org/10.1016/j.path.2019.11.002 pmid: 32005431
5 P Villalobos, II Wistuba. Lung cancer biomarkers. Hematol Oncol Clin North Am 2017; 31(1): 13–29
https://doi.org/10.1016/j.hoc.2016.08.006 pmid: 27912828
6 CR Sears, PJ Mazzone. Biomarkers in lung cancer. Clin Chest Med 2020; 41(1): 115–127
https://doi.org/10.1016/j.ccm.2019.10.004 pmid: 32008624
7 FJ Gunn-Moore, AM Tilston-Lünel, PA Reynolds. Willing to be involved in cancer. Genes (Basel) 2016; 7(7): E37
https://doi.org/10.3390/genes7070037 pmid: 27438856
8 NM Kronenberg, A Tilston-Lunel, FE Thompson, D Chen, W Yu, K Dholakia, MC Gather, FJ Gunn-Moore. Willin/FRMD6 influences mechanical phenotype and neuronal differentiation in mammalian cells by regulating ERK1/2 activity. Front Cell Neurosci 2020; 14: 552213
https://doi.org/10.3389/fncel.2020.552213 pmid: 33088261
9 J Haldrup, SH Strand, C Cieza-Borrella, ME Jakobsson, M Riedel, M Norgaard, S Hedensted, F Dagnaes-Hansen, BP Ulhoi, R Eeles, M Borre, JV Olsen, M Thomsen, Z Kote-Jarai, KD Sorensen. FRMD6 has tumor suppressor functions in prostate cancer. Oncogene 2021; 40(4): 763–776
https://doi.org/10.1038/s41388-020-01548-w pmid: 33249427
10 D Chen, W Yu, L Aitken, F Gunn-Moore. Willin/FRMD6: a multi-functional neuronal protein associated with Alzheimer’s disease. Cells 2021; 10(11): 3024
https://doi.org/10.3390/cells10113024 pmid: 34831245
11 J Beck, M Kressel. FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species. Cell Tissue Res 2020; 381(1): 13–24
https://doi.org/10.1007/s00441-020-03189-7 pmid: 32200438
12 L Angus, S Moleirinho, L Herron, A Sinha, X Zhang, M Niestrata, K Dholakia, MB Prystowsky, KF Harvey, PA Reynolds, FJ Gunn-Moore. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene 2012; 31(2): 238–250
https://doi.org/10.1038/onc.2011.224 pmid: 21666719
13 LE Fodor, A Gézsi, L Ungvári, AF Semsei, Z Gál, A Nagy, G Gálffy, L Tamási, A Kiss, P Antal, C Szalai. Investigation of the possible role of the Hippo/YAP1 pathway in asthma and allergy. Allergy Asthma Immunol Res 2017; 9(3): 247–256
https://doi.org/10.4168/aair.2017.9.3.247 pmid: 28293931
14 S Moleirinho, C Patrick, AM Tilston-Lünel, JR Higginson, L Angus, M Antkowiak, SC Barnett, MB Prystowsky, PA Reynolds, FJ Gunn-Moore. Willin, an upstream component of the Hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts. PLoS One 2013; 8(4): e60028
https://doi.org/10.1371/journal.pone.0060028 pmid: 23593160
15 S Visser-Grieve, Y Hao, X Yang. Human homolog of Drosophila expanded, hEx, functions as a putative tumor suppressor in human cancer cell lines independently of the Hippo pathway. Oncogene 2012; 31(9): 1189–1195
https://doi.org/10.1038/onc.2011.318 pmid: 21785462
16 Y Xu, K Wang, Q Yu. FRMD6 inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases. Oncotarget 2016; 7(43): 70080–70091
https://doi.org/10.18632/oncotarget.12148 pmid: 27661120
17 MK Holz, BA Ballif, SP Gygi, J Blenis. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2005; 123(4): 569–580
https://doi.org/10.1016/j.cell.2005.10.024 pmid: 16286006
18 M Murakami, T Ichisaka, M Maeda, N Oshiro, K Hara, F Edenhofer, H Kiyama, K Yonezawa, S Yamanaka. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004; 24(15): 6710–6718
https://doi.org/10.1128/MCB.24.15.6710-6718.2004 pmid: 15254238
19 YG Gangloff, M Mueller, SG Dann, P Svoboda, M Sticker, JF Spetz, SH Um, EJ Brown, S Cereghini, G Thomas, SC Kozma. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24(21): 9508–9516
https://doi.org/10.1128/MCB.24.21.9508-9516.2004 pmid: 15485918
20 Y Dobashi, S Suzuki, H Matsubara, M Kimura, S Endo, A Ooi. Critical and diverse involvement of Akt/mammalian target of rapamycin signaling in human lung carcinomas. Cancer 2009; 115(1): 107–118
https://doi.org/10.1002/cncr.23996 pmid: 19090006
21 Y Dobashi, S Suzuki, M Kimura, H Matsubara, H Tsubochi, I Imoto, A Ooi. Paradigm of kinase-driven pathway downstream of epidermal growth factor receptor/Akt in human lung carcinomas. Hum Pathol 2011; 42(2): 214–226
https://doi.org/10.1016/j.humpath.2010.05.025 pmid: 21040950
22 M Hiramatsu, H Ninomiya, K Inamura, K Nomura, K Takeuchi, Y Satoh, S Okumura, K Nakagawa, T Yamori, M Matsuura, T Morikawa, Y Ishikawa. Activation status of receptor tyrosine kinase downstream pathways in primary lung adenocarcinoma with reference of KRAS and EGFR mutations. Lung Cancer 2010; 70(1): 94–102
https://doi.org/10.1016/j.lungcan.2010.01.001 pmid: 20117855
23 Y Dobashi, Y Watanabe, C Miwa, S Suzuki, S Koyama. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 2011; 4(5): 476–495
pmid: 21738819
24 AC Tan. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11(3): 511–518
https://doi.org/10.1111/1759-7714.13328 pmid: 31989769
25 JS Boehm, MT Hession, SE Bulmer, WC Hahn. Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 2005; 25(15): 6464–6474
https://doi.org/10.1128/MCB.25.15.6464-6474.2005 pmid: 16024784
26 J Song, T Wang, X Chi, X Wei, S Xu, M Yu, H He, J Ma, X Li, J Du, X Sun, Y Wang, J Zhan, H Zhang. Kindlin-2 inhibits the Hippo signaling pathway by promoting degradation of MOB1. Cell Rep 2019; 29(11): 3664–3677.e5
https://doi.org/10.1016/j.celrep.2019.11.035 pmid: 31825843
27 J Wan, H Liu, Q Feng, J Liu, L Ming. HOXB9 promotes endometrial cancer progression by targeting E2F3. Cell Death Dis 2018; 9(5): 509–525
https://doi.org/10.1038/s41419-018-0556-3 pmid: 29724991
28 J Zhan, P Wang, S Li, J Song, H He, Y Wang, Z Liu, F Wang, H Bai, W Fang, Q Du, M Ye, Z Chang, J Wang, H Zhang. HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics 2019; 9(7): 2084–2099
https://doi.org/10.7150/thno.29463 pmid: 31037158
29 J Wan, J Zhan, S Li, J Ma, W Xu, C Liu, X Xue, Y Xie, W Fang, YE Chin, H Zhang. PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res 2015; 43(7): 3591–3604
https://doi.org/10.1093/nar/gkv238 pmid: 25800736
30 J Song, T Wang, W Xu, P Wang, J Wan, Y Wang, J Zhan, H Zhang. HOXB9 acetylation at K27 is responsible for its suppression of colon cancer progression. Cancer Lett 2018; 426: 63–72
https://doi.org/10.1016/j.canlet.2018.04.002 pmid: 29654889
31 A González, MN Hall, SC Lin, DG Hardie. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab 2020; 31(3): 472–492
https://doi.org/10.1016/j.cmet.2020.01.015 pmid: 32130880
32 CS Zhang, B Jiang, M Li, M Zhu, Y Peng, YL Zhang, YQ Wu, TY Li, Y Liang, Z Lu, G Lian, Q Liu, H Guo, Z Yin, Z Ye, J Han, JW Wu, H Yin, SY Lin, SC Lin. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20(3): 526–540
https://doi.org/10.1016/j.cmet.2014.06.014 pmid: 25002183
33 C Guan, Z Chang, X Gu, R Liu. MTA2 promotes HCC progression through repressing FRMD6, a key upstream component of Hippo signaling pathway. Biochem Biophys Res Commun 2019; 515(1): 112–118
https://doi.org/10.1016/j.bbrc.2019.05.025 pmid: 31128910
[1] FMD-22036-OF-ZJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed