Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (6): 946-956   https://doi.org/10.1007/s11684-022-0962-x
  本期目录
Facile discovery of red blood cell deformation and compromised membrane/skeleton assembly in Prader–Willi syndrome
Yashuang Yang1,2,3, Guimei Li5, Yanzhou Wang6, Yan Sun5, Chao Xu2,3, Zhen Wei7, Shuping Zhang4(), Ling Gao1,2,3, Sijin Liu4, Jiajun Zhao1,2,3()
1. Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
2. Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
3. Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
4. Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
5. Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
6. Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
7. Medical Social Work Office, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
 全文: PDF(3498 KB)   HTML
Abstract

Prader–Willi syndrome (PWS) is a rare congenital disease with genetic alterations in chromosome 15. Although genetic disorders and DNA methylation abnormalities involved in PWS have been investigated to a significant degree, other anomalies such as those in erythrocytes may occur and these have not been clearly elucidated. In the present study, we uncovered slight anemia in children with PWS that was associated with increased red blood cell (RBC) distribution width (RDW) and contrarily reduced hematocrit (HCT) values. Intriguingly, the increased ratio in RDW to HCT allowed sufficient differentiation between the PWS patients from the healthy controls and, importantly, with individuals exhibiting conventional obesity. Further morphologic examinations revealed a significant deformity in erythrocytes and mild hemolysis in PWS patients. Comprehensive mechanistic investigations unveiled compromised membrane skeletal assembly and membrane lipid composition, and revealed a reduced F-actin/G-actin ratio in PWS patients. We ascribed these phenotypic changes in erythrocytes to the observed genetic defects, including DNA methylation abnormalities. Our collective data allowed us to uncover RBC deformation in children with PWS, and this may constitute an auxiliary indicator of PWS in early childhood.

Key wordsPrader–Willi syndrome    early diagnosis    erythrocyte deformation    membrane skeleton    membrane lipid
收稿日期: 2022-06-17      出版日期: 2023-01-16
Corresponding Author(s): Shuping Zhang,Jiajun Zhao   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(6): 946-956.
Yashuang Yang, Guimei Li, Yanzhou Wang, Yan Sun, Chao Xu, Zhen Wei, Shuping Zhang, Ling Gao, Sijin Liu, Jiajun Zhao. Facile discovery of red blood cell deformation and compromised membrane/skeleton assembly in Prader–Willi syndrome. Front. Med., 2022, 16(6): 946-956.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0962-x
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I6/946
Healthy control group(n = 16)Obese control group(n = 16)PWS patients group(n = 16)P1 valueP2 valueP3 value
Age (year)6.31 ± 0.357.13 ± 0.415.94 ± 0.500.540.0740.14
Height (cm)127.9 ± 2.97139.7 ± 3.05109.2 ± 5.990.009* < 0.001*0.009*
Weight (kg)25.38 ± 1.5943.08 ± 2.8630.87 ± 5.030.043*0.31 < 0.001*
BMI (kg/m2)15.32 ± 0.2921.42 ± 0.6924.26 ± 2.19 < 0.001*0.23 < 0.001*
Gender
Malen = 8 (50.00%)n = 11 (68.75%)n = 11 (68.75%)
Femalen = 8 (50.00%)n = 5 (31.25%)n = 5 (31.25%)
ALT (U/L)32.83 ± 0.9430.94 ± 1.0629.31 ± 1.550.0690.380.21
AST (U/L)20.83 ± 1.6424.94 ± 1.7020.62 ± 4.160.960.310.10
TG (mmol/L)0.94 ± 0.150.97 ± 0.0780.81 ± 0.0760.470.160.83
CHOL (mmol/L)4.50 ± 0.214.40 ± 0.194.30 ± 0.210.520.720.75
HDL-C (mmol/L)1.75 ± 0.131.55 ± 0.0421.48 ± 0.120.130.580.10
LDL-C (mmol/L)2.33 ± 0.132.44 ± 0.162.42 ± 0.130.620.920.59
Glu (mmol/L)5.05 ± 0.125.01 ± 0.0575.22 ± 0.130.340.120.76
T3 (nmol/L)2.74 ± 0.0722.92 ± 0.0882.47 ± 0.100.042*0.002*0.15
T4 (nmol/L)110.03 ± 3.18108.70 ± 2.83110.21 ± 4.400.980.760.75
FT3 (pmol/L)6.64 ± 0.156.91 ± 0.167.30 ± 0.950.510.660.22
FT4 (pmol/L)18.51 ± 0.5217.59 ± 0.5117.42 ± 0.610.190.820.23
TSH (μIU/mL)4.02 ± 0.643.85 ± 0.312.84 ± 0.330.110.041*0.80
IGF-1 (ng/mL)223.25 ± 18.95193.62 ± 7.54142.30 ± 38.600.0560.100.12
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 L Baldini, A Robert, B Charpentier, S Labialle. Phylogenetic and molecular analyses identify SNORD116 targets involved in the Prader–Willi syndrome. Mol Biol Evol 2022; 39(1): msab348
https://doi.org/10.1093/molbev/msab348 pmid: 34893870
2 MG Butler, JL Miller, JL Forster. Prader–Willi syndrome—clinical genetics, diagnosis and treatment approaches: an update. Curr Pediatr Rev 2019; 15(4): 207–244
https://doi.org/10.2174/1573396315666190716120925 pmid: 31333129
3 MM Ge, YY Gao, BB Wu, K Yan, Q Qin, H Wang, W Zhou, L Yang. Relationship between phenotype and genotype of 102 Chinese newborns with Prader–Willi syndrome. Mol Biol Rep 2019; 46(5): 4717–4724
https://doi.org/10.1007/s11033-019-04916-2 pmid: 31270759
4 AF Juriaans, GF Kerkhof, ACS Hokken-Koelega. The spectrum of the Prader–Willi-like pheno- and genotype: a review of the literature. Endocr Rev 2022; 43(1): 1–18
https://doi.org/10.1210/endrev/bnab026 pmid: 34460908
5 M Tauber, C Hoybye. Endocrine disorders in Prader–Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol 2021; 9(4): 235–246
https://doi.org/10.1016/S2213-8587(21)00002-4 pmid: 33647242
6 D Yang-Li, L Fei-Hong, Z Hui-Wen, M Ming-Sheng, L Xiao-Ping, L Li, W Yi, Z Qing, J Yong-Hui, Z; PWS Cooperation Group of Rare Diseases Branch of Chinese Pediatric Society; Zhejiang Expert Group for PWS Chao-Chun. Recommendations for the diagnosis and management of childhood Prader–Willi syndrome in China. Orphanet J Rare Dis 2022; 17(1): 221
https://doi.org/10.1186/s13023-022-02302-z pmid: 35698200
7 K Pellikaan, AGW Rosenberg, AA Kattentidt-Mouravieva, R Kersseboom, AG Bos-Roubos, JMC Veen-Roelofs, N van Wieringen, FME Hoekstra, SAA van den Berg, AJ van der Lely, LCG de Graaff. Missed diagnoses and health problems in adults with Prader–Willi syndrome: recommendations for screening and treatment. J Clin Endocrinol Metab 2020; 105(12): e4671–e4687
https://doi.org/10.1210/clinem/dgaa621 pmid: 32877518
8 JR Byrnes, AS Wolberg. Red blood cells in thrombosis. Blood 2017; 130(16): 1795–1799
https://doi.org/10.1182/blood-2017-03-745349 pmid: 28811305
9 E Hedgeman, SP Ulrichsen, S Carter, NC Kreher, KP Malobisky, MM Braun, J Fryzek, MS Olsen. Long-term health outcomes in patients with Prader–Willi syndrome: a nationwide cohort study in Denmark. Int J Obes 2017; 41(10): 1531–1538
https://doi.org/10.1038/ijo.2017.139 pmid: 28634363
10 JL Bonkowsky, JH Son. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11(12): dmm037127
https://doi.org/10.1242/dmm.037127 pmid: 30541748
11 SE 4th Lux. Anatomy of the red cell membrane skeleton: unanswered questions. Blood 2016; 127(2): 187–199
https://doi.org/10.1182/blood-2014-12-512772 pmid: 26537302
12 E Solá, A Vayá, M Martínez, A Moscardó, D Corella, ML Santaolaria, F España, A Hernández-Mijares. Erythrocyte membrane phosphatidylserine exposure in obesity. Obesity (Silver Spring) 2009; 17(2): 318–322
https://doi.org/10.1038/oby.2008.499 pmid: 19023282
13 J Tang, Y Yan, J Li, B Yang, X Zhao, Y Wan, JS Zheng, J Mi, D Li. Relationship between erythrocyte phospholipid fatty acid composition and obesity in children and adolescents. J Clin Lipidol 2019; 13(1): 70–79.e1
https://doi.org/10.1016/j.jacl.2018.09.013 pmid: 30361173
14 G Weiss, T Ganz, LT Goodnough. Anemia of inflammation. Blood 2019; 133(1): 40–50
https://doi.org/10.1182/blood-2018-06-856500 pmid: 30401705
15 HF Bunn. Erythropoietin. Cold Spring Harb Perspect Med 2013; 3(3): a011619
https://doi.org/10.1101/cshperspect.a011619 pmid: 23457296
16 G Qu, X Wang, S Liu. A crucial role of heme-regulated eIF2α kinase in maintaining cytoskeletal meshwork under an oxygen deficient condition. Sci Bull (Beijing) 2017; 62(15): 1045–1047
https://doi.org/10.1016/j.scib.2017.05.023
17 GJ Doherty, HT McMahon. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys 2008; 37(1): 65–95
https://doi.org/10.1146/annurev.biophys.37.032807.125912 pmid: 18573073
18 SB Shohet, PM Ness. Hemolytic anemias. Failure of the red cell membrane. Med Clin North Am 1976; 60(5): 913–932
https://doi.org/10.1016/S0025-7125(16)31839-9 pmid: 181647
19 Y Lu, T Hanada, Y Fujiwara, JO Nwankwo, AJ Wieschhaus, J Hartwig, S Huang, J Han, AH Chishti. Gene disruption of dematin causes precipitous loss of erythrocyte membrane stability and severe hemolytic anemia. Blood 2016; 128(1): 93–103
https://doi.org/10.1182/blood-2016-01-692251 pmid: 27073223
20 YS Huang, LF Delgadillo, KH Cyr, PD Kingsley, X An, KE McGrath, N Mohandas, JG Conboy, RE Waugh, J Wan, J Palis. Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Sci Rep 2017; 7(1): 5164
https://doi.org/10.1038/s41598-017-05498-4 pmid: 28701737
21 GW Stewart. Hemolytic disease due to membrane ion channel disorders. Curr Opin Hematol 2004; 11(4): 244–250
https://doi.org/10.1097/01.moh.0000132240.20671.33 pmid: 15314523
22 YH Hao, JM Doyle, S Ramanathan, TS Gomez, D Jia, M Xu, ZJ Chen, DD Billadeau, MK Rosen, PR Potts. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell 2013; 152(5): 1051–1064
https://doi.org/10.1016/j.cell.2013.01.051 pmid: 23452853
23 KF Tacer, PR Potts. Cellular and disease functions of the Prader–Willi syndrome gene MAGEL2. Biochem J 2017; 474(13): 2177–2190
https://doi.org/10.1042/BCJ20160616 pmid: 28626083
24 MD Fountain, DS Oleson, ME Rech, L Segebrecht, JV Hunter, JM McCarthy, PJ Lupo, M Holtgrewe, R Moran, JA Rosenfeld, B Isidor, Caignec C Le, MS Saenz, RC Pedersen, TM Morgan, JP Pfotenhauer, F Xia, W Bi, SL Kang, A Patel, ID Krantz, SE Raible, W Smith, I Cristian, E Torti, J Juusola, F Millan, IM Wentzensen, RE Person, S Küry, S Bézieau, K Uguen, C Férec, A Munnich, Haelst M van, KD Lichtenbelt, Gassen K van, T Hagelstrom, A Chawla, DL Perry, RJ Taft, M Jones, D Masser-Frye, D Dyment, S Venkateswaran, C Li, LF Escobar, D Horn, RC Spillmann, L Peña, J Wierzba, TM Strom, I Parenti, FJ Kaiser, N Ehmke, CP Schaaf. Pathogenic variants in USP7 cause a neurodevelopmental disorder with speech delays, altered behavior, and neurologic anomalies. Genet Med 2019; 21(8): 1797–1807
https://doi.org/10.1038/s41436-019-0433-1 pmid: 30679821
25 MP Sheetz, JE Sable, HG Döbereiner. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 2006; 35(1): 417–434
https://doi.org/10.1146/annurev.biophys.35.040405.102017 pmid: 16689643
26 SE Kim, L Zhang, K Ma, M Riegman, F Chen, I Ingold, M Conrad, MZ Turker, M Gao, X Jiang, S Monette, M Pauliah, M Gonen, P Zanzonico, T Quinn, U Wiesner, MS Bradbury, M Overholtzer. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 2016; 11(11): 977–985
https://doi.org/10.1038/nnano.2016.164 pmid: 27668796
27 MC Pérez-Gordones, MR Lugo, M Winkler, V Cervino, G Benaim. Diacylglycerol regulates the plasma membrane calcium pump from human erythrocytes by direct interaction. Arch Biochem Biophys 2009; 489(1–2): 55–61
https://doi.org/10.1016/j.abb.2009.07.010 pmid: 19631607
28 P Gupta, VK Vijayan, SK Bansal. Sphingomyelin metabolism in erythrocyte membrane in asthma. J Asthma 2010; 47(9): 966–971
https://doi.org/10.1080/02770903.2010.517590 pmid: 21054235
29 I Jauregibeitia, K Portune, I Rica, I Tueros, O Velasco, G Grau, N Trebolazabala, L Castaño, AV Larocca, C Ferreri, S Arranz. Fatty acid profile of mature red blood cell membranes and dietary intake as a new approach to characterize children with overweight and obesity. Nutrients 2020; 12(11): 3446
https://doi.org/10.3390/nu12113446 pmid: 33182783
30 A Grzelczyk, E Gendaszewska-Darmach. Novel bioactive glycerol-based lysophospholipids: new data—new insight into their function. Biochimie 2013; 95(4): 667–679
https://doi.org/10.1016/j.biochi.2012.10.009 pmid: 23089136
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed