Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (6): 932-945   https://doi.org/10.1007/s11684-022-0963-9
  本期目录
R158Q and G212S, novel pathogenic compound heterozygous variants in SLC12A3 of Gitelman syndrome
Zongyue Li1,2,3, Huixiao Wu1,2,3, Shuoshuo Wei1,2,3, Moke Liu1,2,3, Yingzhou Shi1,2,3, Mengzhu Li1,2,3, Ning Wang2,3,4, Li Fang2,3,4, Bo Xiang2,3,4, Ling Gao1,2,3,4, Chao Xu1,2,3,4(), Jiajun Zhao1,2,3,4()
1. Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
2. Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
3. Shandong Institute of Endocrine and Metabolic Disease, Jinan 250021, China
4. Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
 全文: PDF(4725 KB)   HTML
Abstract

The dysfunction of Na+-Cl cotransporter (NCC) caused by mutations in solute carrier family12, member 3 gene (SLC12A3) primarily causes Gitelman syndrome (GS). In identifying the pathogenicity of R158Q and G212S variants of SLC12A3, we evaluated the pathogenicity by bioinformatic, expression, and localization analysis of two variants from a patient in our cohort. The prediction of mutant protein showed that p.R158Q and p.G212S could alter protein’s three-dimensional structure. Western blot showed a decrease of mutant Ncc. Immunofluorescence of the two mutations revealed a diffuse positive staining below the plasma membrane. Meanwhile, we conducted a compound heterozygous model—Ncc R156Q/G210S mice corresponding to human NCC R158Q/G212S. NccR156Q/G210S mice clearly exhibited typical GS features, including hypokalemia, hypomagnesemia, and increased fractional excretion of K+ and Mg2+ with a normal blood pressure level, which made NccR156Q/G210S mice an optimal mouse model for further study of GS. A dramatic decrease and abnormal localization of the mutant Ncc in distal convoluted tubules contributed to the phenotype. The hydrochlorothiazide test showed a loss of function of mutant Ncc in NccR156Q/G210S mice. These findings indicated that R158Q and G212S variants of SLC12A3 were pathogenic variants of GS.

Key wordsGitelman syndrome    mouse model    compound heterozygous    hypokalemia    Slc12a3
收稿日期: 2022-05-26      出版日期: 2023-01-16
Corresponding Author(s): Chao Xu,Jiajun Zhao   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(6): 932-945.
Zongyue Li, Huixiao Wu, Shuoshuo Wei, Moke Liu, Yingzhou Shi, Mengzhu Li, Ning Wang, Li Fang, Bo Xiang, Ling Gao, Chao Xu, Jiajun Zhao. R158Q and G212S, novel pathogenic compound heterozygous variants in SLC12A3 of Gitelman syndrome. Front. Med., 2022, 16(6): 932-945.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0963-9
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I6/932
Value Normal value
BP (mmHg) 110/62 90–140/60–90
Plasma
Na+ (mmol/L) 145.4 137–147
K+ (mmol/L) 2.6 3.5–5.5
Mg2+ (mmol/L) 0.62 0.7–1.0
Cr (mg/dL) 75 59–104
pH 7.46 7.35–7.45
HCO3 (mmol/L) 31.3 18–31
Urine
Volume (mL/day) 4100 1000–2000
Na+ (mmol/day) 237 40–220
K+ (mmol/day) 108.36 25–125
Ca2+ (mmol/day) 0.84 2.5–7.5
Tab.1  
Fig.1  
Fig.2  
Genotyping WT Het (NccR156Q/+) Het (NccG210S/+) Hom (NccR156Q/R156Q) Hom (NccG210S/G210S) CH (NccR156Q/G210S)
BP
SBP (mmHg) 115 ± 11 115 ± 8.6 112 ± 11 111 ± 10 111 ± 12 115 ± 9.0
DBP (mmHg) 76.7 ± 11 70.8 ± 9.9 71.7 ± 9.0 78.5 ± 5.4 68.0 ± 11 72.5 ± 11
Weight (g) 20.1 ± 5.0 18.08 ± 2.9 21.6 ± 3.0 19.7 ± 3.7 20.04 ± 2.5 20.8 ± 4.4
Plasma
Na+ (mmol/L) 150 ± 4.5 149 ± 4.6 150 ± 4.7 151 ± 8.4 150 ± 9.4 150 ± 5.9
K+ (mmol/L) 5.08 ± 0.30 5.00 ± 0.45 5.07 ± 0.58 4.63 ± 0.47* 4.60 ± 0.37*# 4.61 ± 0.29*△#
Mg2 + (mmol/L) 1.16 ± 0.20 1.19 ± 0.16 1.12 ± 0.13 1.02 ± 0.13 0.96 ± 0.12*# 0.89 ± 0.10*△#
Cr (mg/dL) 18.3 ± 3.0 18.1 ± 2.6 19.4 ± 4.1 19.2 ± 2.5 19.9 ± 3.6 19.1 ± 5.2
Urine
Volume (μL/day) 1430 ± 790 1110 ± 560 1180 ± 400 1460 ± 710 2000 ± 540*# 1580 ± 510#
Na+ (μmol/day) 97.0 ± 46 74.8 ± 30 85.7 ± 26 97.9 ± 42 125 ± 33# 86.0 ± 44
K+ (μmol/day) 115 ± 61 96.6 ± 38 101 ± 47 137 ± 63 164 ± 40*# 105 ± 45
Mg2+ (μmol/day) 2.59 ± 2.4 1.12 ± 2.0 2.40 ± 2.3 1.95 ± 2.2 3.64 ± 3.3 4.73 ± 3.6
Ca2+ (μmol/day) 1.23 ± 0.68 0.87 ± 0.46 0.81 ± 0.39 1.20 ± 0.72 1.18 ± 0.61 0.92 ± 0.31
FENa (%) 0.873 ± 0.37 0.832 ± 0.15 0.939 ± 0.58 0.835 ± 0.29 0.955 ± 0.33 0.944 ± 0.16
FEK (%) 28.6 ± 5.6 31.5 ± 5.6 28.2 ± 7.1 38.8 ± 17 40.9 ± 12*# 40.4 ± 7.0*△#
FEMg (%) 3.76 ± 2.8 2.49 ± 2.5 2.52 ± 1.5 2.47 ± 2.8 4.49 ± 4.6 11.5 ± 7.0*△#
Ca2+/Cr (mmol/mmol) 1.23 ± 0.68 0.87 ± 0.46 0.63 ± 0.28 0.81 ± 0.56 0.77 ± 0.47 0.80 ± 0.24
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 O Melander, M Orho-Melander, K Bengtsson, U Lindblad, L Râstam, L Groop, UL Hulthén. Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 2000; 36(3): 389–394
https://doi.org/10.1161/01.HYP.36.3.389 pmid: 10988270
2 HJ Gitelman, JB Graham, LG Welt. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 1966; 79: 221–235
pmid: 5929460
3 N Tago, Y Kokubo, N Inamoto, H Naraba, H Tomoike, N Iwai. A high prevalence of Gitelman’s syndrome mutations in Japanese. Hypertens Res 2004; 27(5): 327–331
https://doi.org/10.1291/hypres.27.327 pmid: 15198479
4 V Ravarotto, J Loffing, D Loffing-Cueni, M Heidemeyer, E Pagnin, LA Calò, GP Rossi. Gitelman’s syndrome: characterization of a novel c.1181G>A point mutation and functional classification of the known mutations. Hypertens Res 2018; 41(8): 578–588
https://doi.org/10.1038/s41440-018-0061-1 pmid: 29925901
5 E Riveira-Munoz, Q Chang, N Godefroid, JG Hoenderop, RJ Bindels, K Dahan, O; Belgian Network for Study of Gitelman Syndrome Devuyst. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol 2007; 18(4): 1271–1283
https://doi.org/10.1681/ASN.2006101095 pmid: 17329572
6 E Sabath, P Meade, J Berkman, los Heros P de, E Moreno, NA Bobadilla, N Vázquez, DH Ellison, G Gamba. Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease. Am J Physiol Renal Physiol 2004; 287(2): F195–F203
https://doi.org/10.1152/ajprenal.00044.2004 pmid: 15068971
7 Z Miao, Y Gao, RJ Bindels, W Yu, Y Lang, N Chen, H Ren, F Sun, Y Li, X Wang, L Shao. Coexistence of normotensive primary aldosteronism in two patients with Gitelman’s syndrome and novel thiazide-sensitive Na-Cl cotransporter mutations. Eur J Endocrinol 2009; 161(2): 275–283
https://doi.org/10.1530/EJE-09-0271 pmid: 19451210
8 B Glaudemans, HG Yntema, P San-Cristobal, J Schoots, R Pfundt, EJ Kamsteeg, RJ Bindels, NV Knoers, JG Hoenderop, LH Hoefsloot. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome. Eur J Hum Genet 2012; 20(3): 263–270
https://doi.org/10.1038/ejhg.2011.189 pmid: 22009145
9 MA Valdez-Flores, R Vargas-Poussou, S Verkaart, OA Tutakhel, A Valdez-Ortiz, A Blanchard, C Treard, JG Hoenderop, RJ Bindels, S Jeleń. Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay. Am J Physiol Renal Physiol 2016; 311(6): F1159–F1167
https://doi.org/10.1152/ajprenal.00124.2016 pmid: 27582097
10 A Blanchard, D Bockenhauer, D Bolignano, LA Calò, E Cosyns, O Devuyst, DH Ellison, Frankl FE Karet, NV Knoers, M Konrad, SH Lin, R Vargas-Poussou. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2017; 91(1): 24–33
https://doi.org/10.1016/j.kint.2016.09.046 pmid: 28003083
11 PJ Schultheis, JN Lorenz, P Meneton, ML Nieman, TM Riddle, M Flagella, JJ Duffy, T Doetschman, ML Miller, GE Shull. Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl– cotransporter of the distal convoluted tubule. J Biol Chem 1998; 273(44): 29150–29155
https://doi.org/10.1074/jbc.273.44.29150 pmid: 9786924
12 J Loffing, V Vallon, D Loffing-Cueni, F Aregger, K Richter, L Pietri, M Bloch-Faure, JG Hoenderop, GE Shull, P Meneton, B Kaissling. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 2004; 15(9): 2276–2288
https://doi.org/10.1097/01.ASN.0000138234.18569.63 pmid: 15339977
13 SS Yang, YF Lo, IS Yu, SW Lin, TH Chang, YJ Hsu, TK Chao, HK Sytwu, S Uchida, S Sasaki, SH Lin. Generation and analysis of the thiazide-sensitive Na+-Cl– cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. Hum Mutat 2010; 31(12): 1304–1315
https://doi.org/10.1002/humu.21364 pmid: 20848653
14 SS Yang, YW Fang, MH Tseng, PY Chu, IS Yu, HC Wu, SW Lin, T Chau, S Uchida, S Sasaki, YF Lin, HK Sytwu, SH Lin. Phosphorylation regulates NCC stability and transporter activity in vivo. J Am Soc Nephrol 2013; 24(10): 1587–1597
https://doi.org/10.1681/ASN.2012070742 pmid: 23833262
15 L Shao, Y Lang, Y Wang, Y Gao, W Zhang, H Niu, S Liu, N Chen. High-frequency variant p.T60M in NaCl cotransporter and blood pressure variability in Han Chinese. Am J Nephrol 2012; 35(6): 515–519
https://doi.org/10.1159/000339165 pmid: 22627394
16 Q Shen, J Chen, M Yu, Z Lin, X Nan, B Dong, X Fang, J Chen, G Ding, A Zhang, C Gao, L Miao, Y Xu, X Jiang, H Bai, J Zhuang, X Gao, H; for Chinese Children Genetic Kidney Disease Database (CCGKDD) Xu. Multi-centre study of the clinical features and gene variant spectrum of Gitelman syndrome in Chinese children. Clin Genet 2021; 99(4): 558–564
https://doi.org/10.1111/cge.13913 pmid: 33382082
17 CL Huang, SS Yang, SH Lin. Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 2008; 17(5): 519–525
https://doi.org/10.1097/MNH.0b013e32830dd580 pmid: 18695394
18 T Liu, C Wang, J Lu, X Zhao, Y Lang, L Shao. Genotype/phenotype analysis in 67 Chinese patients with Gitelman’s syndrome. Am J Nephrol 2016; 44(2): 159–168
https://doi.org/10.1159/000448694 pmid: 27529443
19 R Vargas-Poussou, K Dahan, D Kahila, A Venisse, E Riveira-Munoz, H Debaix, B Grisart, F Bridoux, R Unwin, B Moulin, JP Haymann, MC Vantyghem, C Rigothier, B Dussol, M Godin, H Nivet, L Dubourg, I Tack, AP Gimenez-Roqueplo, P Houillier, A Blanchard, O Devuyst, X Jeunemaitre. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol 2011; 22(4): 693–703
https://doi.org/10.1681/ASN.2010090907 pmid: 21415153
20 F Zhong, H Ying, W Jia, X Zhou, H Zhang, Q Guan, J Xu, L Fang, J Zhao, C Xu. Characteristics and follow-up of 13 pedigrees with Gitelman syndrome. J Endocrinol Invest 2019; 42(6): 653–665
https://doi.org/10.1007/s40618-018-0966-1 pmid: 30413979
21 C Li, X Zhou, W Han, X Jiang, J Liu, L Fang, H Wang, Q Guan, L Gao, J Zhao, J Xu, C Xu. Identification of two novel mutations in SLC12A3 gene in two Chinese pedigrees with Gitelman syndrome and review of literature. Clin Endocrinol (Oxf) 2015; 83(6): 985–993
https://doi.org/10.1111/cen.12820 pmid: 25990047
22 K Jayasinghe, Z Stark, PG Kerr, C Gaff, M Martyn, J Whitlam, B Creighton, E Donaldson, M Hunter, A Jarmolowicz, L Johnstone, E Krzesinski, S Lunke, E Lynch, K Nicholls, C Patel, Y Prawer, J Ryan, EJ See, A Talbot, A Trainer, R Tytherleigh, G Valente, M Wallis, L Wardrop, KH West, SM White, E Wilkins, AJ Mallett, C Quinlan. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet Med 2021; 23(1): 183–191
https://doi.org/10.1038/s41436-020-00963-4 pmid: 32939031
23 ML Syrén, S Tedeschi, L Cesareo, R Bellantuono, G Colussi, M Procaccio, A Alì, R Domenici, F Malberti, M Sprocati, M Sacco, N Miglietti, A Edefonti, F Sereni, G Casari, DA Coviello, A Bettinelli. Identification of fifteen novel mutations in the SLC12A3 gene encoding the Na-Cl Co-transporter in Italian patients with Gitelman syndrome. Hum Mutat 2002; 20(1): 78
https://doi.org/10.1002/humu.9045 pmid: 12112667
24 F Wang, C Shi, Y Cui, C Li, A Tong. Mutation profile and treatment of Gitelman syndrome in Chinese patients. Clin Exp Nephrol 2017; 21(2): 293–299
https://doi.org/10.1007/s10157-016-1284-6 pmid: 27216017
25 M Budakoti, AS Panwar, D Molpa, RK Singh, D Büsselberg, AP Mishra, HDM Coutinho, M Nigam. Micro-RNA: the darkhorse of cancer. Cell Signal 2021; 83: 109995
https://doi.org/10.1016/j.cellsig.2021.109995 pmid: 33785398
26 AA Bicknell, EP Ricci. When mRNA translation meets decay. Biochem Soc Trans 2017; 45(2): 339–351
https://doi.org/10.1042/BST20160243 pmid: 28408474
27 J Fujimura, K Nozu, T Yamamura, S Minamikawa, K Nakanishi, T Horinouchi, C Nagano, N Sakakibara, K Nakanishi, Y Shima, K Miyako, Y Nozu, N Morisada, H Nagase, T Ninchoji, H Kaito, K Iijima. Clinical and genetic characteristics in patients with Gitelman syndrome. Kidney Int Rep 2019; 4(1): 119–125
https://doi.org/10.1016/j.ekir.2018.09.015 pmid: 30596175
28 N Godefroid, E Riveira-Munoz, C Saint-Martin, MC Nassogne, K Dahan, O Devuyst. A novel splicing mutation in SLC12A3 associated with Gitelman syndrome and idiopathic intracranial hypertension. Am J Kidney Dis 2006; 48(5): e73–e79
https://doi.org/10.1053/j.ajkd.2006.08.005 pmid: 17059986
29 Riveira-Munoz E, Chang Q, Bindels RJ, Devuyst O. Gitelman’s syndrome: towards genotype-phenotype correlations? Pediatr Nephrol 2007; 22(3): 326–332 doi:10.1007/s00467-006-0321-1
pmid: 17061123
30 MH Tseng, SS Yang, YJ Hsu, YW Fang, CJ Wu, JD Tsai, DY Hwang, SH Lin. Genotype, phenotype, and follow-up in Taiwanese patients with salt-losing tubulopathy associated with SLC12A3 mutation. J Clin Endocrinol Metab 2012; 97(8): E1478–E1482
https://doi.org/10.1210/jc.2012-1707 pmid: 22679066
31 JW Verlander, TM Tran, L Zhang, MR Kaplan, SC Hebert. Estradiol enhances thiazide-sensitive NaCl cotransporter density in the apical plasma membrane of the distal convoluted tubule in ovariectomized rats. J Clin Invest 1998; 101(8): 1661–1669
https://doi.org/10.1172/JCI601 pmid: 9541496
32 JW Nieves, L Komar, F Cosman, R Lindsay. Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 1998; 67(1): 18–24
https://doi.org/10.1093/ajcn/67.1.18 pmid: 9440370
33 S Park, S Kang, DS Kim. Severe calcium deficiency increased visceral fat accumulation, down-regulating genes associated with fat oxidation, and increased insulin resistance while elevating serum parathyroid hormone in estrogen-deficient rats. Nutr Res 2020; 73: 48–57
https://doi.org/10.1016/j.nutres.2019.09.008 pmid: 31841747
34 WR McKane, S Khosla, MF Burritt, PC Kao, DM Wilson, SJ Ory, BL Riggs. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause—a clinical research center study. J Clin Endocrinol Metab 1995; 80(12): 3458–3464
pmid: 8530583
35 IM Dick, A Devine, J Beilby, RL Prince. Effects of endogenous estrogen on renal calcium and phosphate handling in elderly women. Am J Physiol Endocrinol Metab 2005; 288(2): E430–E435
https://doi.org/10.1152/ajpendo.00140.2004 pmid: 15466921
36 T Nijenhuis, V Vallon, AW van der Kemp, J Loffing, JG Hoenderop, RJ Bindels. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005; 115(6): 1651–1658
https://doi.org/10.1172/JCI24134 pmid: 15902302
37 V Chubanov, T Gudermann. Trpm6. Handb Exp Pharmacol 2014; 222: 503–520
https://doi.org/10.1007/978-3-642-54215-2_20 pmid: 24756719
38 L Flores-Aldama, MW Vandewege, K Zavala, CK Colenso, W Gonzalez, SE Brauchi, JC Opazo. Evolutionary analyses reveal independent origins of gene repertoires and structural motifs associated to fast inactivation in calcium-selective TRPV channels. Sci Rep 2020; 10(1): 8684
https://doi.org/10.1038/s41598-020-65679-6 pmid: 32457384
39 RA Pumroy, EC 3rd Fluck, T Ahmed, VY Moiseenkova-Bell. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87: 102168
https://doi.org/10.1016/j.ceca.2020.102168 pmid: 32004816
40 SS Yang, T Morimoto, T Rai, M Chiga, E Sohara, M Ohno, K Uchida, SH Lin, T Moriguchi, H Shibuya, Y Kondo, S Sasaki, S Uchida. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 2007; 5(5): 331–344
https://doi.org/10.1016/j.cmet.2007.03.009 pmid: 17488636
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed