Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF
Miyesaier Abudureyimu1, Mingjie Yang2,3,4,5, Xiang Wang1, Xuanming Luo6, Junbo Ge2,3,4,5(), Hu Peng7(), Yingmei Zhang2,3,4,5(), Jun Ren2,3,4,5,8()
1. Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China 2. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China 3. Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China 4. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China 5. National Clinical Research Center for Interventional Medicine, Shanghai 200032, China 6. Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China 7. Department of Geriatrics, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China 8. Department of Medical Laboratory and Pathology, University of Washington, Seattle, WA 98195, USA
Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.
JE Ho, MM Redfield, GD Lewis, WJ Paulus, CSP Lam. Deliberating the diagnostic dilemma of heart failure with preserved ejection fraction. Circulation 2020; 142(18): 1770–1780 https://doi.org/10.1161/CIRCULATIONAHA.119.041818
pmid: 33136513
3
M Abudureyimu, X Luo, X Wang, JR Sowers, W Wang, J Ge, J Ren, Y Zhang. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol 2022; 14(5): mjac028 https://doi.org/10.1093/jmcb/mjac028
pmid: 35511596
4
Y Zheng, S Ma, Q Huang, Y Fang, H Tan, Y Chen, C Li. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease. Kidney Blood Press Res 2022; 47(4): 219–228 https://doi.org/10.1159/000521908
pmid: 35034019
Y Zhang, AT Whaley-Connell, JR Sowers, J Ren. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018; 191: 1–22 https://doi.org/10.1016/j.pharmthera.2018.06.004
pmid: 29909238
7
L Rosalia, C Ozturk, S Shoar, Y Fan, G Malone, FH Cheema, C Conway, RA Byrne, GP Duffy, A Malone, ET Roche, A Hameed. Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci 2021; 6(9–10): 772–795 https://doi.org/10.1016/j.jacbts.2021.06.002
pmid: 34754993
8
SJ Shah, BA Borlaug, DW Kitzman, AD McCulloch, BC Blaxall, R Agarwal, JA Chirinos, S Collins, RC Deo, MT Gladwin, H Granzier, SL Hummel, DA Kass, MM Redfield, F Sam, TJ Wang, P Desvigne-Nickens, BB Adhikari. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute Working Group summary. Circulation 2020; 141(12): 1001–1026 https://doi.org/10.1161/CIRCULATIONAHA.119.041886
pmid: 32202936
9
Y Cai, Q Xin, J Lu, Y Miao, Q Lin, W Cong, K Chen. A new therapeutic candidate for cardiovascular diseases: berberine. Front Pharmacol 2021; 12: 631100 https://doi.org/10.3389/fphar.2021.631100
pmid: 33815112
10
AF Ceylan-Isik, RM Fliethman, LE Wold, J Ren. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 2008; 4(4): 320–328 https://doi.org/10.2174/157339908786241142
pmid: 18991600
11
X Ai, P Yu, L Peng, L Luo, J Liu, S Li, X Lai, F Luan, X Meng. Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol 2021; 12: 762654 https://doi.org/10.3389/fphar.2021.762654
pmid: 35370628
12
RY Cao, Y Zhang, Z Feng, S Liu, Y Liu, H Zheng, J Yang. The effective role of natural product berberine in modulating oxidative stress and inflammation related atherosclerosis: novel insights into the gut-heart axis evidenced by genetic sequencing analysis. Front Pharmacol 2021; 12: 764994 https://doi.org/10.3389/fphar.2021.764994
pmid: 35002703
13
N An, G Zhang, Y Li, C Yuan, F Yang, L Zhang, Y Gao, Y Xing. Promising antioxidative effect of berberine in cardiovascular diseases. Front Pharmacol 2022; 13: 865353 https://doi.org/10.3389/fphar.2022.865353
pmid: 35321323
14
M Abudureyimu, W Yu, RY Cao, Y Zhang, H Liu, H Zheng. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure. Front Physiol 2020; 11: 565751 https://doi.org/10.3389/fphys.2020.565751
pmid: 33101051
GG Schiattarella, F Altamirano, D Tong, KM French, E Villalobos, SY Kim, X Luo, N Jiang, HI May, ZV Wang, TM Hill, PPA Mammen, J Huang, DI Lee, VS Hahn, K Sharma, DA Kass, S Lavandero, TG Gillette, JA Hill. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 2019; 568(7752): 351–356 https://doi.org/10.1038/s41586-019-1100-z
pmid: 30971818
17
M Madikyzy, M Tilegen, G Nazarbek, C Mu, A Kutzhanova, X Li, C Ma, Y Xie. Honghua extract mediated potent inhibition of COVID-19 host cell pathways. Sci Rep 2022; 12(1): 14296 https://doi.org/10.1038/s41598-022-15338-9
pmid: 35995784
18
M Galderisi, B Cosyns, T Edvardsen, N Cardim, V Delgado, Salvo G Di, E Donal, LE Sade, L Ernande, M Garbi, J Grapsa, A Hagendorff, O Kamp, J Magne, C Santoro, A Stefanidis, P Lancellotti, B Popescu, G; 2016–2018 EACVI Scientific Documents Committee Habib. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2017; 18(12): 1301–1310 https://doi.org/10.1093/ehjci/jex244
pmid: 29045589
19
J Ren, M Sun, H Zhou, A Ajoolabady, Y Zhou, J Tao, JR Sowers, Y Zhang. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci Adv 2020; 6(38): eabc8561 https://doi.org/10.1126/sciadv.abc8561
pmid: 32938669
20
GP Stefani, L Capalonga, LR da Silva, TG Heck, MN Frizzo, LM Sulzbacher, MM Sulzbacher, D de Batista, S Vedovatto, APS Bertoni, MR Wink, P Dal Lago. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O2max in rats with heart failure. Life Sci 2021; 282: 119816 https://doi.org/10.1016/j.lfs.2021.119816
pmid: 34273376
21
W Yu, X Qin, Y Zhang, P Qiu, L Wang, W Zha, J Ren. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovasc Diagn Ther 2020; 10(4): 752–769 https://doi.org/10.21037/cdt-19-707
pmid: 32968631
22
H Xu, W Yu, S Sun, C Li, J Ren, Y Zhang. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66(16): 1669–1683 https://doi.org/10.1016/j.scib.2021.01.030
pmid: 36654301
23
H Huang, M Li, Y Wang, X Wu, J Shen, Z Xiao, Y Zhao, F Du, Y Chen, Z Wu, H Ji, C Zhang, J Li, Q Wen, PJ Kaboli, CH Cho, S Wang, Y Wang, Y He, X Wu. Excessive intake of longan arillus alters gut homeostasis and aggravates colitis in mice. Front Pharmacol 2021; 12: 640417 https://doi.org/10.3389/fphar.2021.640417
pmid: 33841158
24
J Li, H Li, S Cai, S Bai, H Cai, X Zhang. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther 2021; 12(1): 289 https://doi.org/10.1186/s13287-021-02305-w
pmid: 34001228
25
Z Song, H Song, D Liu, B Yan, D Wang, Y Zhang, X Zhao, X Tian, C Yan, Y Han. Overexpression of MFN2 alleviates sorafenib-induced cardiomyocyte necroptosis via the MAM-CaMKIIδ pathway in vitro and in vivo. Theranostics 2022; 12(3): 1267–1285 https://doi.org/10.7150/thno.65716
pmid: 35154486
26
H Xu, W Yu, S Sun, C Li, Y Zhang, J Ren. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol 2020; 11: 113 https://doi.org/10.3389/fphys.2020.00113
pmid: 32116805
27
S Sun, W Yu, H Xu, C Li, R Zou, NN Wu, L Wang, J Ge, J Ren, Y Zhang. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism 2022; 134: 155239 https://doi.org/10.1016/j.metabol.2022.155239
pmid: 35680100
28
L Yang, P Xie, J Wu, J Yu, X Li, H Ma, T Yu, H Wang, J Ye, J Wang, H Zheng. Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats. Front Pharmacol 2020; 11: 6 https://doi.org/10.3389/fphar.2020.00006
pmid: 32140105
29
X Wang, Y Jiang, Y Zhang, Q Sun, G Ling, J Jiang, W Li, X Tian, Q Jiang, L Lu, Y Wang. The roles of the mitophagy inducer Danqi pill in heart failure: a new therapeutic target to preserve energy metabolism. Phytomedicine 2022; 99: 154009 https://doi.org/10.1016/j.phymed.2022.154009
pmid: 35217438
30
AJ Kowaltowski, SL Menezes-Filho, EA Assali, IG Gonçalves, JV Cabral-Costa, P Abreu, N Miller, P Nolasco, FRM Laurindo, A Bruni-Cardoso, OS Shirihai. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 2019; 33(12): 13176–13188 https://doi.org/10.1096/fj.201901136R
pmid: 31480917
31
N Zhu, B Huang, L Zhu, Y Wang. Potential mechanisms of triptolide against diabetic cardiomyopathy based on network pharmacology analysis and molecular docking. J Diabetes Res 2021; 2021: 9944589 https://doi.org/10.1155/2021/9944589
pmid: 34926700
32
LE Wold, DP Relling, J Duan, FL Norby, J Ren. Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 2002; 39(1): 69–74 https://doi.org/10.1161/hy0102.100777
pmid: 11799081
33
SJ Shah, DW Kitzman, BA Borlaug, L van Heerebeek, MR Zile, DA Kass, WJ Paulus. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 2016; 134(1): 73–90 https://doi.org/10.1161/CIRCULATIONAHA.116.021884
pmid: 27358439
A Picca, RT Mankowski, JL Burman, L Donisi, JS Kim, E Marzetti, C Leeuwenburgh. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2018; 15(9): 543–554 https://doi.org/10.1038/s41569-018-0059-z
pmid: 30042431
37
SC Kamerkar, F Kraus, AJ Sharpe, TJ Pucadyil, MT Ryan. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9(1): 5239 https://doi.org/10.1038/s41467-018-07543-w
pmid: 30531964
38
Y Ikeda, A Shirakabe, Y Maejima, P Zhai, S Sciarretta, J Toli, M Nomura, K Mihara, K Egashira, M Ohishi, M Abdellatif, J Sadoshima. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 2015; 116(2): 264–278 https://doi.org/10.1161/CIRCRESAHA.116.303356
pmid: 25332205
39
A Ajoolabady, M Chiong, S Lavandero, DJ Klionsky, J Ren. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28(10): 836–849 https://doi.org/10.1016/j.molmed.2022.06.007
pmid: 35879138
40
S Xu, P Wang, H Zhang, G Gong, N Gutierrez Cortes, W Zhu, Y Yoon, R Tian, W Wang. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 2016; 7(1): 13189 https://doi.org/10.1038/ncomms13189
pmid: 27739424
41
BS Jhun, J O-Uchi, SM Adaniya, TJ Mancini, JL Cao, ME King, AK Landi, H Ma, M Shin, D Yang, X Xu, Y Yoon, G Choudhary, RT Clements, U Mende, SS Sheu. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 2018; 596(5): 827–855 https://doi.org/10.1113/JP275418
pmid: 29313986
42
Y Kageyama, M Hoshijima, K Seo, D Bedja, P Sysa-Shah, SA Andrabi, W Chen, A Höke, VL Dawson, TM Dawson, K Gabrielson, DA Kass, M Iijima, H Sesaki. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33(23): 2798–2813 https://doi.org/10.15252/embj.201488658
pmid: 25349190
43
H Zhang, P Wang, S Bisetto, Y Yoon, Q Chen, SS Sheu, W Wang. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 2017; 113(2): 160–170 https://doi.org/10.1093/cvr/cvw212
pmid: 27794519
44
S Wasiak, R Zunino, HM McBride. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177(3): 439–450 https://doi.org/10.1083/jcb.200610042
pmid: 17470634
45
J Shou, Y Huo. PINK1 phosphorylates Drp1S616 to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF. Int J Mol Sci 2022; 23(19): 11934 https://doi.org/10.3390/ijms231911934
pmid: 36233236
46
AH Chaanine, LD Joyce, JM Stulak, S Maltais, DL Joyce, JA Dearani, K Klaus, KS Nair, RJ Hajjar, MM Redfield. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail 2019; 12(2): e005131 https://doi.org/10.1161/CIRCHEARTFAILURE.118.005131
pmid: 30744415
47
G Favaro, V Romanello, T Varanita, M Andrea Desbats, V Morbidoni, C Tezze, M Albiero, M Canato, G Gherardi, D De Stefani, C Mammucari, B Blaauw, S Boncompagni, F Protasi, C Reggiani, L Scorrano, L Salviati, M Sandri. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 2019; 10(1): 2576 https://doi.org/10.1038/s41467-019-10226-9
pmid: 31189900
48
Q Zhao, D Lu, J Wang, B Liu, H Cheng, MP Mattson, A Cheng. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2019; 26(9): 1600–1614 https://doi.org/10.1038/s41418-018-0230-4
pmid: 30390091
49
G Morciano, A Rimessi, S Patergnani, VAM Vitto, A Danese, A Kahsay, L Palumbo, M Bonora, MR Wieckowski, C Giorgi, P Pinton. Calcium dysregulation in heart diseases: targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177: 106119 https://doi.org/10.1016/j.phrs.2022.106119
pmid: 35131483
50
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and heart failure: how did we get here and where are we going? Int J Mol Sci 2021; 22(14): 7392 doi:10.3390/ijms22147392
pmid: 34299010
51
GS Williams, L Boyman, AC Chikando, RJ Khairallah, WJ Lederer. Mitochondrial calcium uptake. Proc Natl Acad Sci USA 2013; 110(26): 10479–10486 https://doi.org/10.1073/pnas.1300410110
pmid: 23759742
D Miranda-Silva, RCI Wüst, G Conceição, P Gonçalves-Rodrigues, N Gonçalves, A Gonçalves, DWD Kuster, AF Leite-Moreira, der Velden J van, Sousa Beleza JM de, J Magalhães, GJM Stienen, I Falcão-Pires. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2020; 228(3): e13378 https://doi.org/10.1111/apha.13378
pmid: 31520455