Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (5): 939-956   https://doi.org/10.1007/s11684-023-0987-9
  本期目录
Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart
Miaomiao Zhu1,2,3, Huamin Liang1,2,3, Zhe Zhang1, Hao Jiang1,2,3, Jingwen Pu1,2,3, Xiaoyi Hang1,2,3, Qian Zhou1,2,3, Jiacheng Xiang1,2,3, Ximiao He1,2,3()
1. Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
3. Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
 全文: PDF(5339 KB)   HTML
Abstract

A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM–fibroblast (FB) communications and one maintaining MNDCM status with least CM–FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell–cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.

Key wordsmononuclear diploid cardiomyocytes    cell–cell communication    cardiac fibroblast    single-cell RNA sequencing    cardiac regeneration
收稿日期: 2022-07-31      出版日期: 2023-12-07
Corresponding Author(s): Ximiao He   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(5): 939-956.
Miaomiao Zhu, Huamin Liang, Zhe Zhang, Hao Jiang, Jingwen Pu, Xiaoyi Hang, Qian Zhou, Jiacheng Xiang, Ximiao He. Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart. Front. Med., 2023, 17(5): 939-956.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-0987-9
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I5/939
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 CE Murry, H Reinecke, LM Pabon. Regeneration gaps. J Am Coll Cardiol 2006; 47(9): 1777–1785
https://doi.org/10.1016/j.jacc.2006.02.002 pmid: 16682301
2 RS Whelan, V Kaplinskiy, RN Kitsis. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72(1): 19–44
https://doi.org/10.1146/annurev.physiol.010908.163111 pmid: 20148665
3 Y Wang, F Yao, L Wang, Z Li, Z Ren, D Li, M Zhang, L Han, SQ Wang, B Zhou, L Wang. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat Commun 2020; 11(1): 2585
https://doi.org/10.1038/s41467-020-16204-w pmid: 32444791
4 O Bergmann, RD Bhardwaj, S Bernard, S Zdunek, F Barnabé-Heider, S Walsh, J Zupicich, K Alkass, BA Buchholz, H Druid, S Jovinge, J Frisén. Evidence for cardiomyocyte renewal in humans. Science 2009; 324(5923): 98–102
https://doi.org/10.1126/science.1164680 pmid: 19342590
5 SE Senyo, ML Steinhauser, CL Pizzimenti, VK Yang, L Cai, M Wang, TD Wu, JL Guerquin-Kern, CP Lechene, RT Lee. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013; 493(7432): 433–436
https://doi.org/10.1038/nature11682 pmid: 23222518
6 AB Carvalho, AC de Carvalho. Heart regeneration: past, present and future. World J Cardiol 2010; 2(5): 107–111
https://doi.org/10.4330/wjc.v2.i5.107 pmid: 21160711
7 MA Laflamme, CE Murry. Heart regeneration. Nature 2011; 473(7347): 326–335
https://doi.org/10.1038/nature10147 pmid: 21593865
8 MH Soonpaa, KK Kim, L Pajak, M Franklin, LJ Field. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996; 271(5 Pt 2): H2183–H2189
pmid: 8945939
9 M Mollova, K Bersell, S Walsh, J Savla, LT Das, SY Park, LE Silberstein, Remedios CG Dos, D Graham, S Colan, B Kühn. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 2013; 110(4): 1446–1451
https://doi.org/10.1073/pnas.1214608110 pmid: 23302686
10 L Ye, L Qiu, H Zhang, H Chen, C Jiang, H Hong, J Liu. Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 2016; 6(1): 23188
https://doi.org/10.1038/srep23188 pmid: 26976548
11 ER Porrello, AI Mahmoud, E Simpson, JA Hill, JA Richardson, EN Olson, HA Sadek. Transient regenerative potential of the neonatal mouse heart. Science 2011; 331(6020): 1078–1080
https://doi.org/10.1126/science.1200708 pmid: 21350179
12 KD Poss, LG Wilson, MT Keating. Heart regeneration in zebrafish. Science 2002; 298(5601): 2188–2190
https://doi.org/10.1126/science.1077857 pmid: 12481136
13 JO Oberpriller, JC Oberpriller. Response of the adult newt ventricle to injury. J Exp Zool 1974; 187(2): 249–259
https://doi.org/10.1002/jez.1401870208 pmid: 4813417
14 SR Ali, S Hippenmeyer, LV Saadat, L Luo, IL Weissman, R Ardehali. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 2014; 111(24): 8850–8855
https://doi.org/10.1073/pnas.1408233111 pmid: 24876275
15 F Li, X Wang, JM Capasso, AM Gerdes. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996; 28(8): 1737–1746
https://doi.org/10.1006/jmcc.1996.0163 pmid: 8877783
16 M Patterson, L Barske, B Van Handel, CD Rau, P Gan, A Sharma, S Parikh, M Denholtz, Y Huang, Y Yamaguchi, H Shen, H Allayee, JG Crump, TI Force, CL Lien, T Makita, AJ Lusis, SR Kumar, HM Sucov. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49(9): 1346–1353
https://doi.org/10.1038/ng.3929 pmid: 28783163
17 R Xavier-Vidal, CA Mandarim-de-Lacerda. Cardiomyocyte proliferation and hypertrophy in the human fetus: quantitative study of the myocyte nuclei. Bull Assoc Anat (Nancy) 1995; 79(246): 27–31
pmid: 8541608
18 K Kikuchi, JE Holdway, AA Werdich, RM Anderson, Y Fang, GF Egnaczyk, T Evans, CA Macrae, DY Stainier, KD Poss. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 2010; 464(7288): 601–605
https://doi.org/10.1038/nature08804 pmid: 20336144
19 W Derks, O Bergmann. Polyploidy in cardiomyocytes: roadblock to heart regeneration?. Circ Res 2020; 126(4): 552–565
https://doi.org/10.1161/CIRCRESAHA.119.315408 pmid: 32078450
20 K Malliaras, Y Zhang, J Seinfeld, G Galang, E Tseliou, K Cheng, B Sun, M Aminzadeh, E Marbán. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 2013; 5(2): 191–209
https://doi.org/10.1002/emmm.201201737 pmid: 23255322
21 X Chen, RM Wilson, H Kubo, RM Berretta, DM Harris, X Zhang, N Jaleel, SM MacDonnell, C Bearzi, J Tillmanns, I Trofimova, T Hosoda, F Mosna, L Cribbs, A Leri, J Kajstura, P Anversa, SR Houser. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007; 100(4): 536–544
https://doi.org/10.1161/01.RES.0000259560.39234.99 pmid: 17272809
22 HS Liao, PM Kang, H Nagashima, N Yamasaki, A Usheva, B Ding, BH Lorell, S Izumo. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001; 88(4): 443–450
https://doi.org/10.1161/01.RES.88.4.443 pmid: 11230113
23 AI Mahmoud, F Kocabas, SA Muralidhar, W Kimura, AS Koura, S Thet, ER Porrello, HA Sadek. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 2013; 497(7448): 249–253
https://doi.org/10.1038/nature12054 pmid: 23594737
24 DT Paik, S Cho, L Tian, HY Chang, JC Wu. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020; 17(8): 457–473
https://doi.org/10.1038/s41569-020-0359-y pmid: 32231331
25 G Jia, J Preussner, X Chen, S Guenther, X Yuan, M Yekelchyk, C Kuenne, M Looso, Y Zhou, S Teichmann, T Braun. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 2018; 9(1): 4877
https://doi.org/10.1038/s41467-018-07307-6 pmid: 30451828
26 DM DeLaughter, AG Bick, H Wakimoto, D McKean, JM Gorham, IS Kathiriya, JT Hinson, J Homsy, J Gray, W Pu, BG Bruneau, JG Seidman, CE Seidman. Single-cell resolution of temporal gene expression during heart development. Dev Cell 2016; 39(4): 480–490
https://doi.org/10.1016/j.devcel.2016.10.001 pmid: 27840107
27 JM Churko, P Garg, B Treutlein, M Venkatasubramanian, H Wu, J Lee, QN Wessells, SY Chen, WY Chen, K Chetal, G Mantalas, N Neff, E Jabart, A Sharma, GP Nolan, N Salomonis, JC Wu. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018; 9(1): 4906
https://doi.org/10.1038/s41467-018-07333-4 pmid: 30464173
28 MM Gladka, B Molenaar, H de Ruiter, S van der Elst, H Tsui, D Versteeg, GPA Lacraz, MMH Huibers, A van Oudenaarden, E van Rooij. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 2018; 138(2): 166–180
https://doi.org/10.1161/CIRCULATIONAHA.117.030742 pmid: 29386203
29 L Wang, P Yu, B Zhou, J Song, Z Li, M Zhang, G Guo, Y Wang, X Chen, L Han, S Hu. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 2020; 22(1): 108–119
https://doi.org/10.1038/s41556-019-0446-7 pmid: 31915373
30 A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
https://doi.org/10.1093/bioinformatics/bts635 pmid: 23104886
31 A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
https://doi.org/10.1038/nbt.4096 pmid: 29608179
32 G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
https://doi.org/10.1089/omi.2011.0118 pmid: 22455463
33 C Trapnell, D Cacchiarelli, J Grimsby, P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak, TS Mikkelsen, JL Rinn. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386
https://doi.org/10.1038/nbt.2859 pmid: 24658644
34 S Jin, AL MacLean, T Peng, Q Nie. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 2018; 34(12): 2077–2086
https://doi.org/10.1093/bioinformatics/bty058 pmid: 29415263
35 I Tirosh, B Izar, SM Prakadan, MH 2nd Wadsworth, D Treacy, JJ Trombetta, A Rotem, C Rodman, C Lian, G Murphy, M Fallahi-Sichani, K Dutton-Regester, JR Lin, O Cohen, P Shah, D Lu, AS Genshaft, TK Hughes, CG Ziegler, SW Kazer, A Gaillard, KE Kolb, AC Villani, CM Johannessen, AY Andreev, Allen EM Van, M Bertagnolli, PK Sorger, RJ Sullivan, KT Flaherty, DT Frederick, J Jané-Valbuena, CH Yoon, O Rozenblatt-Rosen, AK Shalek, A Regev, LA Garraway. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352(6282): 189–196
https://doi.org/10.1126/science.aad0501 pmid: 27124452
36 CF Guerrero-Juarez, PH Dedhia, S Jin, R Ruiz-Vega, D Ma, Y Liu, K Yamaga, O Shestova, DL Gay, Z Yang, K Kessenbrock, Q Nie, WS Pear, G Cotsarelis, MV Plikus. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun 2019; 10(1): 650
https://doi.org/10.1038/s41467-018-08247-x pmid: 30737373
37 S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
https://doi.org/10.1038/s41467-021-21246-9 pmid: 33597522
38 K Hirose, AY Payumo, S Cutie, A Hoang, H Zhang, R Guyot, D Lunn, RB Bigley, H Yu, J Wang, M Smith, E Gillett, SE Muroy, T Schmid, E Wilson, KA Field, DM Reeder, M Maden, MM Yartsev, MJ Wolfgang, F Grützner, TS Scanlan, LI Szweda, R Buffenstein, G Hu, F Flamant, JE Olgin, GN Huang. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 2019; 364(6436): 184–188
https://doi.org/10.1126/science.aar2038 pmid: 30846611
39 Z Zhang, M Zhu, Q Xie, RM Larkin, X Shi, B Zheng. CProtMEDIAS: clustering of amino acid sequences encoded by gene families by MErging and DIgitizing Aligned Sequences. Brief Bioinform 2022; 23(4): bbac276
https://doi.org/10.1093/bib/bbac276 pmid: 35834931
40 T Wu, Z Liang, Z Zhang, C Liu, L Zhang, Y Gu, KL Peterson, SM Evans, XD Fu, J Chen. PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation 2022; 145(8): 586–602
https://doi.org/10.1161/CIRCULATIONAHA.121.056666 pmid: 34915728
41 S Yamada, T Ko, S Hatsuse, S Nomura, B Zhang, Z Dai, S Inoue, M Kubota, K Sawami, T Yamada, T Sassa, M Katagiri, K Fujita, M Katoh, M Ito, M Harada, H Toko, N Takeda, H Morita, H Aburatani, I Komuro. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat Cardiovasc Res 2022; 1: 1072–1083
https://doi.org/10.1038/s44161-022-00140-7
42 M Cui, Z Wang, K Chen, AM Shah, W Tan, L Duan, E Sanchez-Ortiz, H Li, L Xu, N Liu, R Bassel-Duby, EN Olson. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell 2020; 53(1): 102–116.e8
https://doi.org/10.1016/j.devcel.2020.02.019 pmid: 32220304
43 A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
https://doi.org/10.1038/nbt.4096 pmid: 29608179
44 SG Zeitlin, RD Shelby, KF Sullivan. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 2001; 155(7): 1147–1157
https://doi.org/10.1083/jcb.200108125 pmid: 11756469
45 N Kunitoku, T Sasayama, T Marumoto, D Zhang, S Honda, O Kobayashi, K Hatakeyama, Y Ushio, H Saya, T Hirota. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 2003; 5(6): 853–864
https://doi.org/10.1016/S1534-5807(03)00364-2 pmid: 14667408
46 S Orthaus, C Biskup, B Hoffmann, C Hoischen, S Ohndorf, K Benndorf, S Diekmann. Assembly of the inner kinetochore proteins CENP-A and CENP-B in living human cells. ChemBioChem 2008; 9(1): 77–92
https://doi.org/10.1002/cbic.200700358 pmid: 18072184
47 AO Bailey, T Panchenko, KM Sathyan, JJ Petkowski, PJ Pai, DL Bai, DH Russell, IG Macara, J Shabanowitz, DF Hunt, BE Black, DR Foltz. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci USA 2013; 110(29): 11827–11832
https://doi.org/10.1073/pnas.1300325110 pmid: 23818633
48 Z Yu, X Zhou, W Wang, W Deng, J Fang, H Hu, Z Wang, S Li, L Cui, J Shen, L Zhai, S Peng, J Wong, S Dong, Z Yuan, G Ou, X Zhang, P Xu, J Lou, N Yang, P Chen, RM Xu, G Li. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 2015; 32(1): 68–81
https://doi.org/10.1016/j.devcel.2014.11.030 pmid: 25556658
49 Y Roulland, K Ouararhni, M Naidenov, L Ramos, M Shuaib, SH Syed, IN Lone, R Boopathi, E Fontaine, G Papai, H Tachiwana, T Gautier, D Skoufias, K Padmanabhan, J Bednar, H Kurumizaka, P Schultz, D Angelov, A Hamiche, S Dimitrov. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol Cell 2016; 63(4): 674–685
https://doi.org/10.1016/j.molcel.2016.06.023 pmid: 27499292
50 M Szibor, J Pöling, H Warnecke, T Kubin, T Braun. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci 2014; 71(10): 1907–1916
https://doi.org/10.1007/s00018-013-1535-6 pmid: 24322910
51 AE Teschendorff, T Enver. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat Commun 2017; 8(1): 15599
https://doi.org/10.1038/ncomms15599 pmid: 28569836
52 PM Ridker, BM Everett, T Thuren, JG MacFadyen, WH Chang, C Ballantyne, F Fonseca, J Nicolau, W Koenig, SD Anker, JJP Kastelein, JH Cornel, P Pais, D Pella, J Genest, R Cifkova, A Lorenzatti, T Forster, Z Kobalava, L Vida-Simiti, M Flather, H Shimokawa, H Ogawa, M Dellborg, PRF Rossi, RPT Troquay, P Libby, RJ; CANTOS Trial Group Glynn. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119–1131
https://doi.org/10.1056/NEJMoa1707914 pmid: 28845751
53 A Uygur, RT Lee. Mechanisms of cardiac regeneration. Dev Cell 2016; 36(4): 362–374
https://doi.org/10.1016/j.devcel.2016.01.018 pmid: 26906733
54 CJ Vivien, JE Hudson, ER Porrello. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 2016; 1(1): 16012
https://doi.org/10.1038/npjregenmed.2016.12 pmid: 29302337
55 M Dodson, V Darley-Usmar, J Zhang. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63: 207–221
https://doi.org/10.1016/j.freeradbiomed.2013.05.014 pmid: 23702245
56 H Honkoop, Bakker DE de, A Aharonov, F Kruse, A Shakked, PD Nguyen, Heus C de, L Garric, MJ Muraro, A Shoffner, F Tessadori, JC Peterson, W Noort, A Bertozzi, G Weidinger, G Posthuma, D Grün, der Laarse WJ van, J Klumperman, RT Jaspers, KD Poss, Oudenaarden A van, E Tzahor, J Bakkers. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 2019; 8: e50163
https://doi.org/10.7554/eLife.50163 pmid: 31868166
57 AM Galow, M Wolfien, P Müller, M Bartsch, RM Brunner, A Hoeflich, O Wolkenhauer, R David, T Goldammer. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice. Cells 2020; 9(5): 1144
https://doi.org/10.3390/cells9051144 pmid: 32384695
58 P Gan, M Patterson, HM Sucov. Cardiomyocyte polyploidy and implications for heart regeneration. Annu Rev Physiol 2020; 82: 45–61
https://doi.org/10.1146/annurev-physiol-021119-034618 pmid: 31585517
59 C Pellieux, A Foletti, G Peduto, JF Aubert, J Nussberger, F Beermann, HR Brunner, T Pedrazzini. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 2001; 108(12): 1843–1851
https://doi.org/10.1172/JCI13627 pmid: 11748268
60 M Dobaczewski, W Chen, NG Frangogiannis. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2011; 51(4): 600–606
https://doi.org/10.1016/j.yjmcc.2010.10.033 pmid: 21059352
61 S Demyanets, C Kaun, R Pentz, KA Krychtiuk, S Rauscher, S Pfaffenberger, A Zuckermann, A Aliabadi, M Gröger, G Maurer, K Huber, J Wojta. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013; 60: 16–26
https://doi.org/10.1016/j.yjmcc.2013.03.020 pmid: 23567618
62 S Sanada, D Hakuno, LJ Higgins, ER Schreiter, AN McKenzie, RT Lee. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117(6): 1538–1549
https://doi.org/10.1172/JCI30634 pmid: 17492053
63 N Xia, Y Lu, M Gu, N Li, M Liu, J Jiao, Z Zhu, J Li, D Li, T Tang, B Lv, S Nie, M Zhang, M Liao, Y Liao, X Yang, X Cheng. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 2020; 142(20): 1956–1973
https://doi.org/10.1161/CIRCULATIONAHA.120.046789 pmid: 32985264
64 AM Ambari, B Setianto, A Santoso, B Radi, B Dwiputra, E Susilowati, F Tulrahmi, PA Doevendans, MJ Cramer. Angiotensin converting enzyme inhibitors (ACEIs) decrease the progression of cardiac fibrosis in rheumatic heart disease through the inhibition of IL-33/sST2. Front Cardiovasc Med 2020; 7: 115
https://doi.org/10.3389/fcvm.2020.00115 pmid: 32850979
65 M Ieda, T Tsuchihashi, KN Ivey, RS Ross, TT Hong, RM Shaw, D Srivastava. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009; 16(2): 233–244
https://doi.org/10.1016/j.devcel.2008.12.007 pmid: 19217425
66 JW Godwin, AR Pinto, NA Rosenthal. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 2013; 110(23): 9415–9420
https://doi.org/10.1073/pnas.1300290110 pmid: 23690624
67 AB Aurora, ER Porrello, W Tan, AI Mahmoud, JA Hill, R Bassel-Duby, HA Sadek, EN Olson. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124(3): 1382–1392
https://doi.org/10.1172/JCI72181 pmid: 24569380
[1] FMD-23006-OF-HXM_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed