1. Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2. Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 3. Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM–fibroblast (FB) communications and one maintaining MNDCM status with least CM–FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell–cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Y Wang, F Yao, L Wang, Z Li, Z Ren, D Li, M Zhang, L Han, SQ Wang, B Zhou, L Wang. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat Commun 2020; 11(1): 2585 https://doi.org/10.1038/s41467-020-16204-w
pmid: 32444791
4
O Bergmann, RD Bhardwaj, S Bernard, S Zdunek, F Barnabé-Heider, S Walsh, J Zupicich, K Alkass, BA Buchholz, H Druid, S Jovinge, J Frisén. Evidence for cardiomyocyte renewal in humans. Science 2009; 324(5923): 98–102 https://doi.org/10.1126/science.1164680
pmid: 19342590
5
SE Senyo, ML Steinhauser, CL Pizzimenti, VK Yang, L Cai, M Wang, TD Wu, JL Guerquin-Kern, CP Lechene, RT Lee. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013; 493(7432): 433–436 https://doi.org/10.1038/nature11682
pmid: 23222518
MH Soonpaa, KK Kim, L Pajak, M Franklin, LJ Field. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996; 271(5 Pt 2): H2183–H2189
pmid: 8945939
9
M Mollova, K Bersell, S Walsh, J Savla, LT Das, SY Park, LE Silberstein, Remedios CG Dos, D Graham, S Colan, B Kühn. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 2013; 110(4): 1446–1451 https://doi.org/10.1073/pnas.1214608110
pmid: 23302686
10
L Ye, L Qiu, H Zhang, H Chen, C Jiang, H Hong, J Liu. Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 2016; 6(1): 23188 https://doi.org/10.1038/srep23188
pmid: 26976548
11
ER Porrello, AI Mahmoud, E Simpson, JA Hill, JA Richardson, EN Olson, HA Sadek. Transient regenerative potential of the neonatal mouse heart. Science 2011; 331(6020): 1078–1080 https://doi.org/10.1126/science.1200708
pmid: 21350179
SR Ali, S Hippenmeyer, LV Saadat, L Luo, IL Weissman, R Ardehali. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 2014; 111(24): 8850–8855 https://doi.org/10.1073/pnas.1408233111
pmid: 24876275
15
F Li, X Wang, JM Capasso, AM Gerdes. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996; 28(8): 1737–1746 https://doi.org/10.1006/jmcc.1996.0163
pmid: 8877783
16
M Patterson, L Barske, B Van Handel, CD Rau, P Gan, A Sharma, S Parikh, M Denholtz, Y Huang, Y Yamaguchi, H Shen, H Allayee, JG Crump, TI Force, CL Lien, T Makita, AJ Lusis, SR Kumar, HM Sucov. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49(9): 1346–1353 https://doi.org/10.1038/ng.3929
pmid: 28783163
17
R Xavier-Vidal, CA Mandarim-de-Lacerda. Cardiomyocyte proliferation and hypertrophy in the human fetus: quantitative study of the myocyte nuclei. Bull Assoc Anat (Nancy) 1995; 79(246): 27–31
pmid: 8541608
18
K Kikuchi, JE Holdway, AA Werdich, RM Anderson, Y Fang, GF Egnaczyk, T Evans, CA Macrae, DY Stainier, KD Poss. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 2010; 464(7288): 601–605 https://doi.org/10.1038/nature08804
pmid: 20336144
K Malliaras, Y Zhang, J Seinfeld, G Galang, E Tseliou, K Cheng, B Sun, M Aminzadeh, E Marbán. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 2013; 5(2): 191–209 https://doi.org/10.1002/emmm.201201737
pmid: 23255322
21
X Chen, RM Wilson, H Kubo, RM Berretta, DM Harris, X Zhang, N Jaleel, SM MacDonnell, C Bearzi, J Tillmanns, I Trofimova, T Hosoda, F Mosna, L Cribbs, A Leri, J Kajstura, P Anversa, SR Houser. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007; 100(4): 536–544 https://doi.org/10.1161/01.RES.0000259560.39234.99
pmid: 17272809
22
HS Liao, PM Kang, H Nagashima, N Yamasaki, A Usheva, B Ding, BH Lorell, S Izumo. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001; 88(4): 443–450 https://doi.org/10.1161/01.RES.88.4.443
pmid: 11230113
23
AI Mahmoud, F Kocabas, SA Muralidhar, W Kimura, AS Koura, S Thet, ER Porrello, HA Sadek. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 2013; 497(7448): 249–253 https://doi.org/10.1038/nature12054
pmid: 23594737
24
DT Paik, S Cho, L Tian, HY Chang, JC Wu. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020; 17(8): 457–473 https://doi.org/10.1038/s41569-020-0359-y
pmid: 32231331
25
G Jia, J Preussner, X Chen, S Guenther, X Yuan, M Yekelchyk, C Kuenne, M Looso, Y Zhou, S Teichmann, T Braun. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 2018; 9(1): 4877 https://doi.org/10.1038/s41467-018-07307-6
pmid: 30451828
26
DM DeLaughter, AG Bick, H Wakimoto, D McKean, JM Gorham, IS Kathiriya, JT Hinson, J Homsy, J Gray, W Pu, BG Bruneau, JG Seidman, CE Seidman. Single-cell resolution of temporal gene expression during heart development. Dev Cell 2016; 39(4): 480–490 https://doi.org/10.1016/j.devcel.2016.10.001
pmid: 27840107
27
JM Churko, P Garg, B Treutlein, M Venkatasubramanian, H Wu, J Lee, QN Wessells, SY Chen, WY Chen, K Chetal, G Mantalas, N Neff, E Jabart, A Sharma, GP Nolan, N Salomonis, JC Wu. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018; 9(1): 4906 https://doi.org/10.1038/s41467-018-07333-4
pmid: 30464173
28
MM Gladka, B Molenaar, H de Ruiter, S van der Elst, H Tsui, D Versteeg, GPA Lacraz, MMH Huibers, A van Oudenaarden, E van Rooij. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 2018; 138(2): 166–180 https://doi.org/10.1161/CIRCULATIONAHA.117.030742
pmid: 29386203
29
L Wang, P Yu, B Zhou, J Song, Z Li, M Zhang, G Guo, Y Wang, X Chen, L Han, S Hu. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 2020; 22(1): 108–119 https://doi.org/10.1038/s41556-019-0446-7
pmid: 31915373
30
A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21 https://doi.org/10.1093/bioinformatics/bts635
pmid: 23104886
31
A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420 https://doi.org/10.1038/nbt.4096
pmid: 29608179
32
G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287 https://doi.org/10.1089/omi.2011.0118
pmid: 22455463
33
C Trapnell, D Cacchiarelli, J Grimsby, P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak, TS Mikkelsen, JL Rinn. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386 https://doi.org/10.1038/nbt.2859
pmid: 24658644
34
S Jin, AL MacLean, T Peng, Q Nie. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 2018; 34(12): 2077–2086 https://doi.org/10.1093/bioinformatics/bty058
pmid: 29415263
35
I Tirosh, B Izar, SM Prakadan, MH 2nd Wadsworth, D Treacy, JJ Trombetta, A Rotem, C Rodman, C Lian, G Murphy, M Fallahi-Sichani, K Dutton-Regester, JR Lin, O Cohen, P Shah, D Lu, AS Genshaft, TK Hughes, CG Ziegler, SW Kazer, A Gaillard, KE Kolb, AC Villani, CM Johannessen, AY Andreev, Allen EM Van, M Bertagnolli, PK Sorger, RJ Sullivan, KT Flaherty, DT Frederick, J Jané-Valbuena, CH Yoon, O Rozenblatt-Rosen, AK Shalek, A Regev, LA Garraway. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352(6282): 189–196 https://doi.org/10.1126/science.aad0501
pmid: 27124452
36
CF Guerrero-Juarez, PH Dedhia, S Jin, R Ruiz-Vega, D Ma, Y Liu, K Yamaga, O Shestova, DL Gay, Z Yang, K Kessenbrock, Q Nie, WS Pear, G Cotsarelis, MV Plikus. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun 2019; 10(1): 650 https://doi.org/10.1038/s41467-018-08247-x
pmid: 30737373
37
S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088 https://doi.org/10.1038/s41467-021-21246-9
pmid: 33597522
38
K Hirose, AY Payumo, S Cutie, A Hoang, H Zhang, R Guyot, D Lunn, RB Bigley, H Yu, J Wang, M Smith, E Gillett, SE Muroy, T Schmid, E Wilson, KA Field, DM Reeder, M Maden, MM Yartsev, MJ Wolfgang, F Grützner, TS Scanlan, LI Szweda, R Buffenstein, G Hu, F Flamant, JE Olgin, GN Huang. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 2019; 364(6436): 184–188 https://doi.org/10.1126/science.aar2038
pmid: 30846611
39
Z Zhang, M Zhu, Q Xie, RM Larkin, X Shi, B Zheng. CProtMEDIAS: clustering of amino acid sequences encoded by gene families by MErging and DIgitizing Aligned Sequences. Brief Bioinform 2022; 23(4): bbac276 https://doi.org/10.1093/bib/bbac276
pmid: 35834931
40
T Wu, Z Liang, Z Zhang, C Liu, L Zhang, Y Gu, KL Peterson, SM Evans, XD Fu, J Chen. PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation 2022; 145(8): 586–602 https://doi.org/10.1161/CIRCULATIONAHA.121.056666
pmid: 34915728
41
S Yamada, T Ko, S Hatsuse, S Nomura, B Zhang, Z Dai, S Inoue, M Kubota, K Sawami, T Yamada, T Sassa, M Katagiri, K Fujita, M Katoh, M Ito, M Harada, H Toko, N Takeda, H Morita, H Aburatani, I Komuro. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat Cardiovasc Res 2022; 1: 1072–1083 https://doi.org/10.1038/s44161-022-00140-7
42
M Cui, Z Wang, K Chen, AM Shah, W Tan, L Duan, E Sanchez-Ortiz, H Li, L Xu, N Liu, R Bassel-Duby, EN Olson. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell 2020; 53(1): 102–116.e8 https://doi.org/10.1016/j.devcel.2020.02.019
pmid: 32220304
43
A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420 https://doi.org/10.1038/nbt.4096
pmid: 29608179
44
SG Zeitlin, RD Shelby, KF Sullivan. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 2001; 155(7): 1147–1157 https://doi.org/10.1083/jcb.200108125
pmid: 11756469
45
N Kunitoku, T Sasayama, T Marumoto, D Zhang, S Honda, O Kobayashi, K Hatakeyama, Y Ushio, H Saya, T Hirota. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 2003; 5(6): 853–864 https://doi.org/10.1016/S1534-5807(03)00364-2
pmid: 14667408
46
S Orthaus, C Biskup, B Hoffmann, C Hoischen, S Ohndorf, K Benndorf, S Diekmann. Assembly of the inner kinetochore proteins CENP-A and CENP-B in living human cells. ChemBioChem 2008; 9(1): 77–92 https://doi.org/10.1002/cbic.200700358
pmid: 18072184
47
AO Bailey, T Panchenko, KM Sathyan, JJ Petkowski, PJ Pai, DL Bai, DH Russell, IG Macara, J Shabanowitz, DF Hunt, BE Black, DR Foltz. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci USA 2013; 110(29): 11827–11832 https://doi.org/10.1073/pnas.1300325110
pmid: 23818633
48
Z Yu, X Zhou, W Wang, W Deng, J Fang, H Hu, Z Wang, S Li, L Cui, J Shen, L Zhai, S Peng, J Wong, S Dong, Z Yuan, G Ou, X Zhang, P Xu, J Lou, N Yang, P Chen, RM Xu, G Li. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 2015; 32(1): 68–81 https://doi.org/10.1016/j.devcel.2014.11.030
pmid: 25556658
49
Y Roulland, K Ouararhni, M Naidenov, L Ramos, M Shuaib, SH Syed, IN Lone, R Boopathi, E Fontaine, G Papai, H Tachiwana, T Gautier, D Skoufias, K Padmanabhan, J Bednar, H Kurumizaka, P Schultz, D Angelov, A Hamiche, S Dimitrov. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol Cell 2016; 63(4): 674–685 https://doi.org/10.1016/j.molcel.2016.06.023
pmid: 27499292
50
M Szibor, J Pöling, H Warnecke, T Kubin, T Braun. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci 2014; 71(10): 1907–1916 https://doi.org/10.1007/s00018-013-1535-6
pmid: 24322910
51
AE Teschendorff, T Enver. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat Commun 2017; 8(1): 15599 https://doi.org/10.1038/ncomms15599
pmid: 28569836
52
PM Ridker, BM Everett, T Thuren, JG MacFadyen, WH Chang, C Ballantyne, F Fonseca, J Nicolau, W Koenig, SD Anker, JJP Kastelein, JH Cornel, P Pais, D Pella, J Genest, R Cifkova, A Lorenzatti, T Forster, Z Kobalava, L Vida-Simiti, M Flather, H Shimokawa, H Ogawa, M Dellborg, PRF Rossi, RPT Troquay, P Libby, RJ; CANTOS Trial Group Glynn. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119–1131 https://doi.org/10.1056/NEJMoa1707914
pmid: 28845751
H Honkoop, Bakker DE de, A Aharonov, F Kruse, A Shakked, PD Nguyen, Heus C de, L Garric, MJ Muraro, A Shoffner, F Tessadori, JC Peterson, W Noort, A Bertozzi, G Weidinger, G Posthuma, D Grün, der Laarse WJ van, J Klumperman, RT Jaspers, KD Poss, Oudenaarden A van, E Tzahor, J Bakkers. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 2019; 8: e50163 https://doi.org/10.7554/eLife.50163
pmid: 31868166
57
AM Galow, M Wolfien, P Müller, M Bartsch, RM Brunner, A Hoeflich, O Wolkenhauer, R David, T Goldammer. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice. Cells 2020; 9(5): 1144 https://doi.org/10.3390/cells9051144
pmid: 32384695
C Pellieux, A Foletti, G Peduto, JF Aubert, J Nussberger, F Beermann, HR Brunner, T Pedrazzini. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 2001; 108(12): 1843–1851 https://doi.org/10.1172/JCI13627
pmid: 11748268
60
M Dobaczewski, W Chen, NG Frangogiannis. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2011; 51(4): 600–606 https://doi.org/10.1016/j.yjmcc.2010.10.033
pmid: 21059352
61
S Demyanets, C Kaun, R Pentz, KA Krychtiuk, S Rauscher, S Pfaffenberger, A Zuckermann, A Aliabadi, M Gröger, G Maurer, K Huber, J Wojta. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013; 60: 16–26 https://doi.org/10.1016/j.yjmcc.2013.03.020
pmid: 23567618
62
S Sanada, D Hakuno, LJ Higgins, ER Schreiter, AN McKenzie, RT Lee. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117(6): 1538–1549 https://doi.org/10.1172/JCI30634
pmid: 17492053
63
N Xia, Y Lu, M Gu, N Li, M Liu, J Jiao, Z Zhu, J Li, D Li, T Tang, B Lv, S Nie, M Zhang, M Liao, Y Liao, X Yang, X Cheng. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 2020; 142(20): 1956–1973 https://doi.org/10.1161/CIRCULATIONAHA.120.046789
pmid: 32985264
64
AM Ambari, B Setianto, A Santoso, B Radi, B Dwiputra, E Susilowati, F Tulrahmi, PA Doevendans, MJ Cramer. Angiotensin converting enzyme inhibitors (ACEIs) decrease the progression of cardiac fibrosis in rheumatic heart disease through the inhibition of IL-33/sST2. Front Cardiovasc Med 2020; 7: 115 https://doi.org/10.3389/fcvm.2020.00115
pmid: 32850979
65
M Ieda, T Tsuchihashi, KN Ivey, RS Ross, TT Hong, RM Shaw, D Srivastava. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009; 16(2): 233–244 https://doi.org/10.1016/j.devcel.2008.12.007
pmid: 19217425
66
JW Godwin, AR Pinto, NA Rosenthal. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 2013; 110(23): 9415–9420 https://doi.org/10.1073/pnas.1300290110
pmid: 23690624
67
AB Aurora, ER Porrello, W Tan, AI Mahmoud, JA Hill, R Bassel-Duby, HA Sadek, EN Olson. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124(3): 1382–1392 https://doi.org/10.1172/JCI72181
pmid: 24569380