Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (5): 957-971   https://doi.org/10.1007/s11684-023-0988-8
  本期目录
Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice
Rongchun Wang1,2,3, Danhui Yang1,2,3, Chaofeng Tu4,5, Cheng Lei1,2,3, Shuizi Ding1,2,3, Ting Guo1,2,3, Lin Wang1,2,3, Ying Liu1,2,3, Chenyang Lu1,2,3, Binyi Yang1,2,3, Shi Ouyang6, Ke Gong7, Zhiping Tan8, Yun Deng6, Yueqiu Tan4,5, Jie Qing1,2,3(), Hong Luo1,2,3()
1. Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
2. Research Unit of Respiratory Disease, Central South University, Changsha 410011, China
3. Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha 410011, China
4. Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
5. Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
6. Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
7. Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha 410011, China
8. Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
 全文: PDF(7107 KB)   HTML
Abstract

Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.

Key wordsDNAH10    mice    motile cilia    mutation    primary ciliary dyskinesia
收稿日期: 2022-11-15      出版日期: 2023-12-07
Corresponding Author(s): Jie Qing,Hong Luo   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(5): 957-971.
Rongchun Wang, Danhui Yang, Chaofeng Tu, Cheng Lei, Shuizi Ding, Ting Guo, Lin Wang, Ying Liu, Chenyang Lu, Binyi Yang, Shi Ouyang, Ke Gong, Zhiping Tan, Yun Deng, Yueqiu Tan, Jie Qing, Hong Luo. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice. Front. Med., 2023, 17(5): 957-971.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-0988-8
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I5/957
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 JS Lucas, SD Davis, H Omran, A Shoemark. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020; 8(2): 202–216
https://doi.org/10.1016/S2213-2600(19)30374-1 pmid: 31624012
2 J Wallmeier, KG Nielsen, CE Kuehni, JS Lucas, MW Leigh, MA Zariwala, H Omran. Motile ciliopathies. Nat Rev Dis Primers 2020; 6(1): 77
https://doi.org/10.1038/s41572-020-0209-6 pmid: 32943623
3 M Goutaki, AB Meier, FS Halbeisen, JS Lucas, SD Dell, E Maurer, C Casaulta, M Jurca, BD Spycher, CE Kuehni. Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J 2016; 48(4): 1081–1095
https://doi.org/10.1183/13993003.00736-2016 pmid: 27492829
4 JS Lucas, A Barbato, SA Collins, M Goutaki, L Behan, D Caudri, S Dell, E Eber, E Escudier, RA Hirst, C Hogg, M Jorissen, P Latzin, M Legendre, MW Leigh, F Midulla, KG Nielsen, H Omran, JF Papon, P Pohunek, B Redfern, D Rigau, B Rindlisbacher, F Santamaria, A Shoemark, D Snijders, T Tonia, A Titieni, WT Walker, C Werner, A Bush, CE Kuehni. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49(1): 1601090
https://doi.org/10.1183/13993003.01090-2016 pmid: 27836958
5 M Fliegauf, T Benzing, H Omran. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007; 8(11): 880–893
https://doi.org/10.1038/nrm2278 pmid: 17955020
6 SM King. Dyneins: Dynein Mechanics, Dysfunction, and Disease. Saint Louis: Elsevier Science & Technology, 2017
7 AK Maiti, MG Mattéi, M Jorissen, A Volz, A Zeigler, P Bouvagnet. Identification, tissue specific expression, and chromosomal localisation of several human dynein heavy chain genes. Eur J Hum Genet 2000; 8(12): 923–932
https://doi.org/10.1038/sj.ejhg.5200555 pmid: 11175280
8 L Fagerberg, BM Hallström, P Oksvold, C Kampf, D Djureinovic, J Odeberg, M Habuka, S Tahmasebpoor, A Danielsson, K Edlund, A Asplund, E Sjöstedt, E Lundberg, CA Szigyarto, M Skogs, JO Takanen, H Berling, H Tegel, J Mulder, P Nilsson, JM Schwenk, C Lindskog, F Danielsson, A Mardinoglu, A Sivertsson, Feilitzen K von, M Forsberg, M Zwahlen, I Olsson, S Navani, M Huss, J Nielsen, F Ponten, M Uhlén. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014; 13(2): 397–406
https://doi.org/10.1074/mcp.M113.035600 pmid: 24309898
9 H Olbrich, K Häffner, A Kispert, A Völkel, A Volz, G Sasmaz, R Reinhardt, S Hennig, H Lehrach, N Konietzko, M Zariwala, PG Noone, M Knowles, HM Mitchison, M Meeks, EM Chung, F Hildebrandt, R Sudbrak, H Omran. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 2002; 30(2): 143–144
https://doi.org/10.1038/ng817 pmid: 11788826
10 MR Fassad, A Shoemark, M Legendre, RA Hirst, F Koll, Borgne P le, B Louis, F Daudvohra, MP Patel, L Thomas, M Dixon, T Burgoyne, J Hayes, AG Nicholson, T Cullup, L Jenkins, SB Carr, P Aurora, M Lemullois, A Aubusson-Fleury, JF Papon, C O’Callaghan, S Amselem, C Hogg, E Escudier, AM Tassin, HM Mitchison. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am J Hum Genet 2018; 103(6): 984–994
https://doi.org/10.1016/j.ajhg.2018.10.016 pmid: 30471717
11 M Pifferi, A Michelucci, ME Conidi, AM Cangiotti, P Simi, P Macchia, AL Boner. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J 2010; 35(6): 1413–1416
https://doi.org/10.1183/09031936.00186209 pmid: 20513915
12 Khelifa M Ben, C Coutton, R Zouari, T Karaouzène, J Rendu, M Bidart, S Yassine, V Pierre, J Delaroche, S Hennebicq, D Grunwald, D Escalier, K Pernet-Gallay, PS Jouk, N Thierry-Mieg, A Touré, C Arnoult, PF Ray. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 2014; 94(1): 95–104
https://doi.org/10.1016/j.ajhg.2013.11.017 pmid: 24360805
13 F Imtiaz, R Allam, K Ramzan, M Al-Sayed. Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet 2015; 16(1): 14
https://doi.org/10.1186/s12881-015-0162-5 pmid: 25927852
14 Y Li, H Yagi, EO Onuoha, RR Damerla, R Francis, Y Furutani, M Tariq, SM King, G Hendricks, C Cui, M Saydmohammed, DM Lee, M Zahid, I Sami, L Leatherbury, GJ Pazour, SM Ware, T Nakanishi, E Goldmuntz, M Tsang, CW Lo. DNAH6 and its interactions with PCD genes in heterotaxy and primary ciliary dyskinesia. PLoS Genet 2016; 12(2): e1005821
https://doi.org/10.1371/journal.pgen.1005821 pmid: 26918822
15 C Tu, H Nie, L Meng, S Yuan, W He, A Luo, H Li, W Li, J Du, G Lu, G Lin, YQ Tan. Identification of DNAH6 mutations in infertile men with multiple morphological abnormalities of the sperm flagella. Sci Rep 2019; 9(1): 15864
https://doi.org/10.1038/s41598-019-52436-7 pmid: 31676830
16 C Tu, J Cong, Q Zhang, X He, R Zheng, X Yang, Y Gao, H Wu, M Lv, Y Gu, S Lu, C Liu, S Tian, L Meng, W Wang, C Tan, H Nie, D Li, H Zhang, F Gong, L Hu, G Lu, W Xu, G Lin, F Zhang, Y Cao, YQ Tan. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet 2021; 108(8): 1466–1477
https://doi.org/10.1016/j.ajhg.2021.06.010 pmid: 34237282
17 K Li, G Wang, M Lv, J Wang, Y Gao, F Tang, C Xu, W Yang, H Yu, Z Shao, H Geng, Q Tan, Q Shen, D Tang, X Ni, T Wang, B Song, H Wu, R Huo, Z Zhang, Y Xu, P Zhou, F Tao, Z Wei, X He, Y Cao. Bi-allelic variants in DNAH10 cause asthenoteratozoospermia and male infertility. J Assist Reprod Genet 2022; 39(1): 251–259
https://doi.org/10.1007/s10815-021-02306-x pmid: 34657236
18 C Liu, R Cao, Y Xu, T Li, F Li, S Chen, R Xu, K Sun. Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects. Genome Med 2018; 10(1): 40
https://doi.org/10.1186/s13073-018-0549-y pmid: 29843777
19 Y Wang, BR Troutwine, H Zhang, RS Gray. The axonemal dynein heavy chain 10 gene is essential for monocilia motility and spine alignment in zebrafish. Dev Biol 2022; 482: 82–90
https://doi.org/10.1016/j.ydbio.2021.12.001 pmid: 34915022
20 T Paff, IE Kooi, Y Moutaouakil, E Riesebos, EA Sistermans, HJMA Daniels, JMM Weiss, HHWM Niessen, EG Haarman, G Pals, D Micha. Diagnostic yield of a targeted gene panel in primary ciliary dyskinesia patients. Hum Mutat 2018; 39(5): 653–665
https://doi.org/10.1002/humu.23403 pmid: 29363216
21 T Guo, CF Tu, DH Yang, SZ Ding, C Lei, RC Wang, L Liu, X Kang, XQ Shen, YF Yang, ZP Tan, YQ Tan, H Luo. Bi-allelic BRWD1 variants cause male infertility with asthenoteratozoospermia and likely primary ciliary dyskinesia. Hum Genet 2021; 140(5): 761–773
https://doi.org/10.1007/s00439-020-02241-4 pmid: 33389130
22 M Quinodoz, VG Peter, N Bedoni, B Royer Bertrand, K Cisarova, A Salmaninejad, N Sepahi, R Rodrigues, M Piran, M Mojarrad, A Pasdar, A Ghanbari Asad, AB Sousa, L Coutinho Santos, A Superti-Furga, C Rivolta. AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data. Nat Commun 2021; 12(1): 518
https://doi.org/10.1038/s41467-020-20584-4 pmid: 33483490
23 C Dai, L Hu, F Gong, Y Tan, S Cai, S Zhang, J Dai, C Lu, J Chen, Y Chen, G Lu, J Du, G Lin. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet Med 2019; 21(2): 431–440
https://doi.org/10.1038/s41436-018-0064-y pmid: 29895852
24 TG Cooper, E Noonan, S von Eckardstein, J Auger, HW Baker, HM Behre, TB Haugen, T Kruger, C Wang, MT Mbizvo, KM Vogelsong. World Health Organization reference values for human semen characteristics. Hum Reprod Update 2010; 16(3): 231–245
https://doi.org/10.1093/humupd/dmp048 pmid: 19934213
25 E Johanisson, A Campana, R Luthi, A de Agostini. Evaluation of “round cells” in semen analysis: a comparative study. Hum Reprod Update 2000; 6(4): 404–412
https://doi.org/10.1093/humupd/6.4.404 pmid: 10972527
26 J Sanchez-Alvarez, R Cano-Corres, X Fuentes-Arderiu. A complement for the WHO Laboratory Manual for the Examination and Processing of Human Semen (First Edition, 2010). EJIFCC 2012; 23(3): 103–106
pmid: 27683423
27 H Wang, H Yang, CS Shivalila, MM Dawlaty, AW Cheng, F Zhang, R Jaenisch. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153(4): 910–918
https://doi.org/10.1016/j.cell.2013.04.025 pmid: 23643243
28 R Francis, C Lo. Ex vivo method for high resolution imaging of cilia motility in rodent airway epithelia. J Vis Exp 2013; 8(78): 50343
https://doi.org/10.3791/50343 pmid: 23963287
29 MW Leigh, MJ Hazucha, KK Chawla, BR Baker, AJ Shapiro, DE Brown, LM Lavange, BJ Horton, B Qaqish, JL Carson, SD Davis, SD Dell, TW Ferkol, JJ Atkinson, KN Olivier, SD Sagel, M Rosenfeld, C Milla, HS Lee, J Krischer, MA Zariwala, MR Knowles. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc 2013; 10(6): 574–581
https://doi.org/10.1513/AnnalsATS.201305-110OC pmid: 24024753
30 I Ibañez-Tallon, S Gorokhova, N Heintz. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002; 11(6): 715–721
https://doi.org/10.1093/hmg/11.6.715 pmid: 11912187
31 C Liu, M Lv, X He, Y Zhu, A Amiri-Yekta, W Li, H Wu, ZE Kherraf, W Liu, J Zhang, Q Tan, S Tang, YJ Zhu, Y Zhong, C Li, S Tian, Z Zhang, L Jin, P Ray, F Zhang, Y Cao. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet 2020; 57(1): 31–37
https://doi.org/10.1136/jmedgenet-2019-106011 pmid: 31048344
32 C Tu, H Nie, L Meng, W Wang, H Li, S Yuan, D Cheng, W He, G Liu, J Du, F Gong, G Lu, G Lin, Q Zhang, YQ Tan. Novel mutations in SPEF2 causing different defects between flagella and cilia bridge: the phenotypic link between MMAF and PCD. Hum Genet 2020; 139(2): 257–271
https://doi.org/10.1007/s00439-020-02110-0 pmid: 31942643
33 C Coutton, AS Vargas, A Amiri-Yekta, ZE Kherraf, Mustapha SF Ben, Tanno P Le, C Wambergue-Legrand, T Karaouzène, G Martinez, S Crouzy, A Daneshipour, SH Hosseini, V Mitchell, L Halouani, O Marrakchi, M Makni, H Latrous, M Kharouf, JF Deleuze, A Boland, S Hennebicq, V Satre, PS Jouk, N Thierry-Mieg, B Conne, D Dacheux, N Landrein, A Schmitt, L Stouvenel, P Lorès, Khouri E El, SP Bottari, J Fauré, JP Wolf, K Pernet-Gallay, J Escoffier, H Gourabi, DR Robinson, S Nef, E Dulioust, R Zouari, M Bonhivers, A Touré, C Arnoult, PF Ray. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 2018; 9(1): 686
https://doi.org/10.1038/s41467-017-02792-7 pmid: 29449551
34 Y Morimoto, S Yoshida, A Kinoshita, C Satoh, H Mishima, N Yamaguchi, K Matsuda, M Sakaguchi, T Tanaka, Y Komohara, A Imamura, H Ozawa, M Nakashima, N Kurotaki, T Kishino, KI Yoshiura, S Ono. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology 2019; 92(20): e2364–e2374
https://doi.org/10.1212/WNL.0000000000007505 pmid: 31004071
35 A Sironen, A Shoemark, M Patel, MR Loebinger, HM Mitchison. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77(11): 2029–2048
https://doi.org/10.1007/s00018-019-03389-7 pmid: 31781811
36 A Onoufriadis, T Paff, D Antony, A Shoemark, D Micha, B Kuyt, M Schmidts, S Petridi, JE Dankert-Roelse, EG Haarman, JM Daniels, RD Emes, R Wilson, C Hogg, PJ Scambler, EM; UK10K; Pals G Chung, HM Mitchison. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 2013; 92(1): 88–98
https://doi.org/10.1016/j.ajhg.2012.11.002 pmid: 23261303
37 R Jain, J Pan, JA Driscoll, JW Wisner, T Huang, SP Gunsten, Y You, SL Brody. Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Respir Cell Mol Biol 2010; 43(6): 731–739
https://doi.org/10.1165/rcmb.2009-0328OC pmid: 20118219
38 AC Merveille, EE Davis, A Becker-Heck, M Legendre, I Amirav, G Bataille, J Belmont, N Beydon, F Billen, A Clément, C Clercx, A Coste, R Crosbie, Blic J de, S Deleuze, P Duquesnoy, D Escalier, E Escudier, M Fliegauf, J Horvath, K Hill, M Jorissen, J Just, A Kispert, M Lathrop, NT Loges, JK Marthin, Y Momozawa, G Montantin, KG Nielsen, H Olbrich, JF Papon, I Rayet, G Roger, M Schmidts, H Tenreiro, JA Towbin, D Zelenika, H Zentgraf, M Georges, AS Lequarré, N Katsanis, H Omran, S Amselem. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 2011; 43(1): 72–78
https://doi.org/10.1038/ng.726 pmid: 21131972
39 A Becker-Heck, IE Zohn, N Okabe, A Pollock, KB Lenhart, J Sullivan-Brown, J McSheene, NT Loges, H Olbrich, K Haeffner, M Fliegauf, J Horvath, R Reinhardt, KG Nielsen, JK Marthin, G Baktai, KV Anderson, R Geisler, L Niswander, H Omran, RD Burdine. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 2011; 43(1): 79–84
https://doi.org/10.1038/ng.727 pmid: 21131974
40 D Antony, A Becker-Heck, MA Zariwala, M Schmidts, A Onoufriadis, M Forouhan, R Wilson, T Taylor-Cox, A Dewar, C Jackson, P Goggin, NT Loges, H Olbrich, M Jaspers, M Jorissen, MW Leigh, WE Wolf, ML Daniels, PG Noone, TW Ferkol, SD Sagel, M Rosenfeld, A Rutman, A Dixit, C O’Callaghan, JS Lucas, C Hogg, PJ Scambler, RD; Uk10k; Chung EM Emes, A Shoemark, MR Knowles, H Omran, HM Mitchison. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 2013; 34(3): 462–472
https://doi.org/10.1002/humu.22261 pmid: 23255504
41 V Kumar, Z Umair, S Kumar, RS Goutam, S Park, J Kim. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS 2021; 18(1): 31
https://doi.org/10.1186/s12987-021-00265-0 pmid: 34233705
42 J Wallmeier, D Frank, A Shoemark, T Nöthe-Menchen, S Cindric, H Olbrich, NT Loges, I Aprea, GW Dougherty, P Pennekamp, T Kaiser, HM Mitchison, C Hogg, SB Carr, MA Zariwala, T Ferkol, MW Leigh, SD Davis, J Atkinson, SK Dutcher, MR Knowles, H Thiele, J Altmüller, H Krenz, M Wöste, A Brentrup, F Ahrens, C Vogelberg, DJ Morris-Rosendahl, H Omran. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet 2019; 105(5): 1030–1039
https://doi.org/10.1016/j.ajhg.2019.09.022 pmid: 31630787
43 M Núnez-Ollé, C Jung, B Terré, NA Balsiger, C Plata, R Roset, C Pardo-Pastor, M Garrido, S Rojas, F Alameda, J Lloreta, J Martín-Caballero, JM Flores, TH Stracker, MA Valverde, FJ Muñoz, G Gil-Gómez. Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 2017; 8(59): 99261–99273
https://doi.org/10.18632/oncotarget.21818 pmid: 29245899
44 EA Robson, L Dixon, L Causon, W Dawes, M Benenati, M Fassad, RA Hirst, P Kenia, EF Moya, M Patel, D Peckham, A Rutman, HM Mitchison, K Mankad, C O’Callaghan. Hydrocephalus and diffuse choroid plexus hyperplasia in primary ciliary dyskinesia-related MCIDAS mutation. Neurol Genet 2020; 6(4): e482
https://doi.org/10.1212/NXG.0000000000000482 pmid: 32802948
45 I Ibañez-Tallon, A Pagenstecher, M Fliegauf, H Olbrich, A Kispert, UP Ketelsen, A North, N Heintz, H Omran. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 2004; 13(18): 2133–2141
https://doi.org/10.1093/hmg/ddh219 pmid: 15269178
46 Genome Sequencing Consortium Mouse. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915): 520–562
https://doi.org/10.1038/nature01262 pmid: 12466850
47 A Rossi, Z Kontarakis, C Gerri, H Nolte, S Hölper, M Krüger, DY Stainier. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 2015; 524(7564): 230–233
https://doi.org/10.1038/nature14580 pmid: 26168398
48 MA El-Brolosy, Z Kontarakis, A Rossi, C Kuenne, S Günther, N Fukuda, K Kikhi, GLM Boezio, CM Takacs, SL Lai, R Fukuda, C Gerri, AJ Giraldez, DYR Stainier. Genetic compensation triggered by mutant mRNA degradation. Nature 2019; 568(7751): 193–197
https://doi.org/10.1038/s41586-019-1064-z pmid: 30944477
49 der Vaart J van, L Böttinger, MH Geurts, de Wetering WJ van, K Knoops, N Sachs, H Begthel, J Korving, C Lopez-Iglesias, PJ Peters, K Eitan, A Gileles-Hillel, H Clevers. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep 2021; 22(12): e52058
https://doi.org/10.15252/embr.202052058 pmid: 34693619
50 N Sachs, A Papaspyropoulos, Ommen DD Zomer-van, I Heo, L Böttinger, D Klay, F Weeber, G Huelsz-Prince, N Iakobachvili, GD Amatngalim, Ligt J de, Hoeck A van, N Proost, MC Viveen, A Lyubimova, L Teeven, S Derakhshan, J Korving, H Begthel, JF Dekkers, K Kumawat, E Ramos, Oosterhout MF van, GJ Offerhaus, DJ Wiener, EP Olimpio, KK Dijkstra, EF Smit, der Linden M van, S Jaksani, de Ven M van, J Jonkers, AC Rios, EE Voest, Moorsel CH van, der Ent CK van, E Cuppen, Oudenaarden A van, FE Coenjaerts, L Meyaard, LJ Bont, PJ Peters, SJ Tans, Zon JS van, SF Boj, RG Vries, JM Beekman, H Clevers. Long-term expanding human airway organoids for disease modeling. EMBO J 2019; 38(4): e100300
https://doi.org/10.15252/embj.2018100300 pmid: 30643021
[1] FMD-23007-OF-LH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed