Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (1): 98-108   https://doi.org/10.1007/s11684-023-1001-2
  本期目录
A randomized, controlled, open label non-inferiority trial of intravenous ferric carboxymaltose versus iron sucrose in patients with iron deficiency anemia in China
Jie Jin1, Zhihua Ran2, Emanuele Noseda3, Bernard Roubert3, Matthieu Marty3, Anna Mezzacasa3(), Udo Michael Göring3
1. The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310058, China
2. Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
3. Vifor Pharma, Glattbrugg, 8152, Switzerland
 全文: PDF(1582 KB)   HTML
Abstract

Iron deficiency (ID) and ID anemia (IDA) pose significant public health concerns in China. Although iron sucrose (IS) treatment is well-established in the country, ferric carboxymaltose (FCM) offers the advantage of higher doses and fewer infusions. This open label, randomized, controlled, non-inferiority trial was conducted at multiple sites in China to compare the outcomes of FCM (maximum of 2 doses, 500 or 1000 mg iron) and IS (up to 11 infusions, 200 mg iron) treatments in subjects with IDA. The primary endpoint was the achievement of hemoglobin (Hb) response (an increase of ≥2 g/dL from baseline) within 8 weeks, whereas secondary endpoints included changes in Hb, transferrin saturation, and serum ferritin levels. Among the 371 randomized subjects, a similar percentage of subjects treated with FCM and IS achieved Hb-response (FCM 99.4%, IS 98.3%), thereby confirming the non-inferiority of FCM compared with IS (difference 1.12 (−2.15, 4.71; 95% confidence interval (CI))). Furthermore, a significantly higher proportion of FCM-treated subjects achieved early Hb-response at Week 2 (FCM 85.2%, IS 73.2%; difference 12.1 (3.31, 20.65; 95% CI)). Additionally, the increase in TSAT and serum ferritin levels from baseline was significantly greater at all time points for FCM-treated subjects. The safety profiles of FCM and IS were comparable, with the exception of transient hypophosphatemia and pyrexia, which are consistent with FCM’s known safety profile. In conclusion, FCM proves to be an efficacious treatment for IDA, providing faster Hb-response and correction of ID with fewer administrations than IS.

Key wordsiron deficiency    anemia    intravenous iron    ferric carboxymaltose    iron sucrose    Hb response    early response
收稿日期: 2022-08-16      出版日期: 2024-04-22
Corresponding Author(s): Anna Mezzacasa   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(1): 98-108.
Jie Jin, Zhihua Ran, Emanuele Noseda, Bernard Roubert, Matthieu Marty, Anna Mezzacasa, Udo Michael Göring. A randomized, controlled, open label non-inferiority trial of intravenous ferric carboxymaltose versus iron sucrose in patients with iron deficiency anemia in China. Front. Med., 2024, 18(1): 98-108.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-1001-2
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I1/98
Treatment day Total iron (mg) as FCM
BW 35 to < 70 kga BW ≥70 kg
Hb < 10 g/dL Hb ≥10 to 14 g/dL Hb < 10 g/dL Hb ≥10 to 14 g/dL
Day 1 1000 1000 1000 1000
Day 8 500 No dose 1000 500
Tab.1  
Fig.1  
FCM (N = 187) IS (N = 180)
Sex, n (%)
Female 173 (92.5%) 169 (93.9%)
Age (year) 39.9 (9.9) 38.9 (8.7)
Weight (kg) 59.8 (9.4) 60.4 (9.4)
Body mass index 22.8 (3.4) 23.0 (3.2)
Hb (g/dL) 7.74 (1.49) 8.06 (1.45)
Serum ferritin (µg/L) 4.47 (2.15) 4.93 (6.10)
TSAT (%) 4.82 (1.90) 4.92 (2.91)
hsCRP (mg/L) 1.03 (2.14) 1.57 (5.98)
Etiology, n (%)b
Menorrhagia 103 (55.1) 99 (55.0)
Iron deficient anemiac 33 (17.6) 47 (26.1)
Inadequate diet 9 (4.8) 7 (3.9)
Gastrointestinal disorders 24 (12.8) 19 (10.6)
Crohn’s disease 7 (3.7) 6 (3.3)
Hemorrhoids 5 (2.7) 2 (1.1)
Malabsorption 3 (1.6) 2 (1.1)
Hemorrhoidal hemorrhage 2 (1.1) 3 (1.7)
Uterine leiomyoma 3 (1.6) 4 (2.2)
Metabolism and nutritional disorders 2 (1.1) 2 (1.1)
Prior medications, n (%)d
Unspecified herbal and traditional medicines 30 (16.0) 17 (9.4)
Anti-anemic preparations 18 (9.6) 19 (10.6)
Antibacterial medications for systemic use 16 (8.6) 8 (4.4)
Drugs for acid related disorders 12 (6.4) 8 (4.4)
Concomitant medications, n (%)d
Unspecified herbal and traditional medicines 47 (25.1) 33 (18.3)
Antibacterial medications for systemic use 21 (11.2) 24 (13.3)
Drugs for acid related disorders 20 (10.7) 13 (7.2)
Analgesics 15 (8.0) 7 (3.9)
Blood substitutes and perfusion solutions 10 (5.3) 4 (2.2)
Tab.2  
FCMn/N (%) ISn/N (%) Difference of response rates (95% CI)
FAS (N = 365) 184/185 (99.5) 177/180 (98.3) 1.13 (−2.02, 4.68)a
PPS (N = 355) 176/177 (99.4) 175/178 (98.3) 1.12 (−2.15, 4.71)a
Tab.3  
Fig.2  
Fig.3  
FCM (N = 185) n/Nx (%) IS (N = 180) n/Nx (%) Difference of response rates (95% CI)a
Week 2 156/183 (85.2) 131/179 (73.2) 12.1 (3.31, 20.65)
Week 4 170/178 (95.5) 168/174 (96.6) −1.05 (−5.97, 3.83)
Week 6 174/178 (97.8) 168/172 (97.7) 0.08 (−4.01, 4.27)
Week 8 178/180 (98.9) 171/173 (98.8) 0.04 (−3.36, 3.56)
Tab.4  
FCM (N = 185) n/Nx (%) IS (N = 180) n/Nx (%) OR (Wald 95% CI), P valueb
Week 2 180/183 (98.4) 136/172 (79.1) 21.5 (6.01, 76.9), < 0.001
Week 4 171/177 (96.6) 169/172 (94.8) 0.74 (0.19, 2.81), 0.653
Week 6 165/179 (92.2) 163/172 (94.8) 0.60 (0.24, 1.50), 0.273
Week 8 167/180 (92.8) 154/173 (89.0) 1.66 (0.76, 3.61), 0.204
Tab.5  
FCM (N = 187)% (n), eventsa IS (N = 180)% (n), eventsa P valueb
Any TEAE (total) 66.3% (124), 302 56.1% (101), 190 0.054
– related 45.5% (85), 172 33.3% (60), 93 0.019
Any severe TEAE 2.1% (4), 4 0.6% (1), 1 0.372
– related 0 0
Any serious TEAE 5.3% (10), 10 3.9% (7), 10 0.622
– related 0.5% (1), 1 1.1% (2), 2 0.617
Any deaths 0 0
– related 0 0
Most common TEAEsc
Hypophosphatemia 10.2% (19), 20 2.8% (5), 5 0.005
Upper respiratory tract infection 8.0% (15), 17 7.2% (13), 13 0.845
Decreased urine phosphorus 7.5% (14), 18 7.8% (14), 16 1.000
Hepatic function abnormal 7.0% (13), 16 5.0% (9), 12 0.512
Blood phosphorus decreased 7.0% (13), 13 0.6% (1), 1 0.002
Pyrexia 6.4% (12), 12 1.7% (3), 3 0.032
Alanine aminotransferase increased 5.9% (11), 14 2.8% (5), 6 0.201
Aspartate aminotransferase increased 3.7% (7), 7 2.2% (4), 4 0.543
White blood cells urine positive 3.7% (7), 7 4.4% (8), 8 0.796
Gamma-glutamyl transferase increased 3.2% (6), 6 3.3% (6), 6 1.000
Urinary tract infection 3.2% (6), 6 3.9% (7), 7 0.783
Hepatic enzyme increased 3.2% (6), 7 1.7% (3), 3 0.503
Nausea 2.7% (5), 6 1.1% (2), 3 0.449
Red blood cells urine positive 2.1% (4), 4 0.6% (1), 1 0.372
Abdominal pain upper 2.1% (4), 4 0% (0), 0 0.123
Rash 2.1% (4), 4 0.6% (1), 1 0.372
Urticaria 2.1% (4), 4 0% (0), 0 0.123
Headache 2.1% (4), 4 0% (0), 0 0.123
Crohn’s disease 1.1% (2), 2 2.2% (4),4 0.441
Menorrhagia 1.1% (2), 2 3.3% (6), 6 0.168
Tab.6  
1 NJ; GBD 2013 Anemia Collaborators Kassebaum. The global burden of anemia. Hematol Oncol Clin North Am 2016; 30(2): 247–308
https://doi.org/10.1016/j.hoc.2015.11.002
2 2019 Diseases GBD, Collaborators Injuries. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204–1222
https://doi.org/10.1016/S0140-6736(20)30925-9
3 Health Organization World. Iron deficiency anaemia assessment, prevention and control. A guide for programme managers. 2001. Available at the website of WHO
4 S Kulnigg, C Gasche. Systematic review: managing anaemia in Crohn’s disease. Aliment Pharmacol Ther 2006; 24(11–12): 1507–1523
https://doi.org/10.1111/j.1365-2036.2006.03146.x
5 S Nurko. Anemia in chronic kidney disease: causes, diagnosis, treatment. Cleve Clin J Med 2006; 73(3): 289–297
https://doi.org/10.3949/ccjm.73.3.289
6 EA Jankowska, P Rozentryt, A Witkowska, J Nowak, O Hartmann, B Ponikowska, L Borodulin-Nadzieja, W Banasiak, L Polonski, G Filippatos, JJ McMurray, SD Anker, P Ponikowski. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 2010; 31(15): 1872–1880
https://doi.org/10.1093/eurheartj/ehq158
7 M Aapro, A Österborg, P Gascón, H Ludwig, Y Beguin. Prevalence and management of cancer-related anaemia, iron deficiency and the specific role of i.v.iron. Ann Oncol 2012; 23(8): 1954–1962
https://doi.org/10.1093/annonc/mds112
8 MB Lopes, C Tu, J Zee, M Guedes, RL Pisoni, BM Robinson, B Foote, K Hedman, G James, AA Lopes, Z Massy, H Reichel, J Sloand, S Waechter, MMY Wong, R Pecoits-Filho. A real-world longitudinal study of anemia management in non-dialysis-dependent chronic kidney disease patients: a multinational analysis of CKDopps. Sci Rep 2021; 11(1): 1784
https://doi.org/10.1038/s41598-020-79254-6
9 Y Beguin, A Jaspers. Iron sucrose—characteristics, efficacy and regulatory aspects of an established treatment of iron deficiency and iron-deficiency anemia in a broad range of therapeutic areas. Expert Opin Pharmacother 2014; 15(14): 2087–2103
https://doi.org/10.1517/14656566.2014.953928
10 M Muñoz, E Martín-Montañez. Ferric carboxymaltose for the treatment of iron-deficiency anemia. [corrected]. Expert Opin Pharmacother 2012; 13(6): 907–921
https://doi.org/10.1517/14656566.2012.669373
11 Health Organization World. The global prevalence of anaemia in 2011. 2015. Available at the website of WHO
12 YP ZhuQK; Collaborative Study Group for “The Epidemiological Survey of Iron Deficiency in Children in China” Liao. Prevalence of iron deficiency in children aged 7 months to 7 years in China. Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2004; 42(12): 886–891 (in Chinese)
pmid: 15733354
13 L WangJ SunJ HuangH LiJ Li Y TangW PiaoD ChenJ Huo. Iron status of first-year junior high school students in rural boarding school among nine provinces in China. J Hyg Res (Wei Sheng Yan Jiu) 2016; 45(6): 911–937 (in Chinese)
pmid: 29903072
14 JY ZhanSS ZhengWW DongJ Shao. Predictive values of routine blood test results for iron deficiency in children. Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2020; 58(3): 201–205 (in Chinese)
pmid: 32135591
15 QK; Chinese Children LiaoWomen & Premenopausal Women Iron Deficiency Epidemiological Survey Group Pregnant. Prevalence of iron deficiency in pregnant and premenopausal women in China: a nationwide epidemiological survey. Chin J Hematol (Zhonghua Xue Ye Xue Za Zhi) 2004; 25(11): 653–657 (in Chinese)
pmid: 15634568
16 AU Dignass, C Gasche, D Bettenworth, G Birgegård, S Danese, JP Gisbert, F Gomollon, T Iqbal, K Katsanos, I Koutroubakis, F Magro, G Savoye, J Stein, S; European Crohn’s Vavricka, OrganisationECCO Colitis. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohn’s Colitis 2015; 9(3): 211–222
https://doi.org/10.1093/ecco-jcc/jju009
17 Disease: Improving Global Outcomes (KDIGO) Kidney. KDIGO clinical practice guideline for anemia in CKD. Kidney Int 2012; 2 (Suppl 2012)(4): 279–335
18 Comprehensive Cancer Network National. Management of cancer- and chemotherapy-induced anemia in hematopoietic growth factors. 2021. Available at the website of National Comprehensive Cancer Network
19 S Pavord, J Daru, N Prasannan, S Robinson, S Stanworth, J; BSH Committee Girling. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 2020; 188(6): 819–830
https://doi.org/10.1111/bjh.16221
20 R Sharma, JR Stanek, TL Koch, L Grooms, SH O’Brien. Intravenous iron therapy in non-anemic iron-deficient menstruating adolescent females with fatigue. Am J Hematol 2016; 91(10): 973–977
https://doi.org/10.1002/ajh.24461
21 S Sazawal, RE Black, M Ramsan, HM Chwaya, RJ Stoltzfus, A Dutta, U Dhingra, I Kabole, S Deb, MK Othman, FM Kabole. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 2006; 367(9505): 133–143
https://doi.org/10.1016/S0140-6736(06)67962-2
22 T Ganz. Anemia of inflammation. N Engl J Med 2019; 381(12): 1148–1157
https://doi.org/10.1056/NEJMra1804281
23 KA Lyseng-Williamson, GM Keating. Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs 2009; 69(6): 739–756
https://doi.org/10.2165/00003495-200969060-00007
24 P Vaucher, PL Druais, S Waldvogel, B Favrat. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ 2012; 184(11): 1247–1254
https://doi.org/10.1503/cmaj.110950
25 A Nowak, A Angelillo-Scherrer, D Betticher, M Dickenmann, I Guessous, P Juillerat, W Korte, S Neuner-Jehle, O Pfister, D Surbek, E Battegay, J Steurer. Swiss Delphi study on iron deficiency. Swiss Med Wkly 2019; 149: w20097
26 A Martin-Malo, G Borchard, B Flühmann, C Mori, D Silverberg, EA Jankowska. Differences between intravenous iron products: focus on treatment of iron deficiency in chronic heart failure patients. ESC Heart Fail 2019; 6(2): 241–253
https://doi.org/10.1002/ehf2.12400
27 Pharma Vifor. SmPC Ferinject (ferric carboxymaltose). 2021. Available at the related website
28 Pharma Vifor. SmPC Venofer (iron sucrose). 2020. Available at the related website
29 AM Ganzoni. Intravenous iron-dextran: therapeutic and experimental possibilities. Schweiz Med Wochenschr 1970; 100(7): 301–303 (in German)
pmid: 5413918
30 MH Seid, AD Butcher, A Chatwani. Ferric carboxymaltose as treatment in women with iron-deficiency anemia. Anemia 2017; 2017: 9642027
https://doi.org/10.1155/2017/9642027
31 JE Onken, DB Bregman, RA Harrington, D Morris, J Buerkert, D Hamerski, H Iftikhar, R Mangoo-Karim, ER Martin, CO Martinez, GE Newman, WY Qunibi, DL Ross, B Singh, MT Smith, A Butcher, TA Koch, LT Goodnough. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial. Nephrol Dial Transplant 2014; 29(4): 833–842
https://doi.org/10.1093/ndt/gft251
32 A Naqash, R Ara, GN Bader. Effectiveness and safety of ferric carboxymaltose compared to iron sucrose in women with iron deficiency anemia: phase IV clinical trials. BMC Womens Health 2018; 18(1): 6
https://doi.org/10.1186/s12905-017-0506-8
33 A Jose, R Mahey, JB Sharma, N Bhatla, R Saxena, M Kalaivani, A Kriplani. Comparison of ferric carboxymaltose and iron sucrose complex for treatment of iron deficiency anemia in pregnancy—randomised controlled trial. BMC Pregnancy Childbirth 2019; 19(1): 54
https://doi.org/10.1186/s12884-019-2200-3
34 S Beshara, J Sörensen, M Lubberink, V Tolmachev, B Långström, G Antoni, BG Danielson, H Lundqvist. Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography. Br J Haematol 2003; 120(5): 853–859
https://doi.org/10.1046/j.1365-2141.2003.03590.x
35 GR Bailie. Efficacy and safety of ferric carboxymaltose in correcting iron-deficiency anemia: a review of randomized controlled trials across different indications. Arzneimittelforschung 2010; 60(6a): 386–398
36 R Evstatiev, P Marteau, T Iqbal, IL Khalif, J Stein, B Bokemeyer, IV Chopey, FS Gutzwiller, L Riopel, C; FERGI Study Group Gasche. FERGIcor, a randomized controlled trial on ferric carboxymaltose for iron deficiency anemia in inflammatory bowel disease. Gastroenterology 2011; 141(3): 846–853. e1–2
https://doi.org/10.1053/j.gastro.2011.06.005
37 B Rozen-Zvi, A Gafter-Gvili, B Zingerman, RS Levy-Drummer, L Levy, E Mor, U Gafter, R Rahamimov. Intravenous iron supplementation after kidney transplantation. Clin Transplant 2012; 26(4): 608–614
https://doi.org/10.1111/j.1399-0012.2012.01602.x
38 MM Okam, TA Koch, MH Tran. Iron supplementation, response in iron-deficiency anemia: analysis of five trials. Am J Med 2017; 130(8): 991.e1–991.e8
https://doi.org/10.1016/j.amjmed.2017.03.045
39 K Ikuta, H Hanashi, K Hirai, Y Ota, Y Matsuyama, A Shimura, M Terauchi, M Momoeda. Comparison of efficacy and safety between intravenous ferric carboxymaltose and saccharated ferric oxide in Japanese patients with iron-deficiency anemia due to hypermenorrhea: a multi-center, randomized, open-label noninferiority study. Int J Hematol 2019; 109(1): 41–49
https://doi.org/10.1007/s12185-018-2501-8
40 P Koduru, BP Abraham. The role of ferric carboxymaltose in the treatment of iron deficiency anemia in patients with gastrointestinal disease. Therap Adv Gastroenterol 2016; 9(1): 76–85
https://doi.org/10.1177/1756283X15616577
41 LJ Scott. Ferric carboxymaltose: a review in iron deficiency. Drugs 2018; 78(4): 479–493
https://doi.org/10.1007/s40265-018-0885-7
42 B Favrat, K Balck, C Breymann, M Hedenus, T Keller, A Mezzacasa, C Gasche. Evaluation of a single dose of ferric carboxymaltose in fatigued, iron-deficient women—PREFER a randomized, placebo-controlled study. PLoS One 2014; 9(4): e94217
https://doi.org/10.1371/journal.pone.0094217
43 S Hardy, X Vandemergel. Intravenous iron administration and hypophosphatemia in clinical practice. Int J Rheumatol 2015; 2015: 468675
https://doi.org/10.1155/2015/468675
44 I Bellos, M Frountzas, V Pergialiotis. Comparative risk of hypophosphatemia following the administration of intravenous iron formulations: a network meta-analysis. Transfus Med Rev 2020; 34(3): 188–194
https://doi.org/10.1016/j.tmrv.2020.07.002
45 JA Glaspy, MZ Lim-Watson, MA Libre, SS Karkare, N Hadker, A Bajic-Lucas, WE Strauss, NV Dahl. Hypophosphatemia associated with intravenous iron therapies for iron deficiency anemia: a systematic literature review. Ther Clin Risk Manag 2020; 16: 245–259
https://doi.org/10.2147/TCRM.S243462
46 R Subramanian, R Khardori. Severe hypophosphatemia. Pathophysiologic implications, clinical presentations, and treatment. Medicine (Baltimore) 2000; 79(1): 1–8
https://doi.org/10.1097/00005792-200001000-00001
47 P Bager, CL Hvas, JF Dahlerup. Drug-specific hypophosphatemia and hypersensitivity reactions following different intravenous iron infusions. Br J Clin Pharmacol 2017; 83(5): 1118–1125
https://doi.org/10.1111/bcp.13189
48 M Wolf, GM Chertow, IC Macdougall, R Kaper, J Krop, W Strauss. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight 2018; 3(23): e124486
https://doi.org/10.1172/jci.insight.124486
49 SD Anker, Colet J Comin, G Filippatos, R Willenheimer, K Dickstein, H Drexler, TF Lüscher, B Bart, W Banasiak, J Niegowska, BA Kirwan, C Mori, Eisenhart Rothe B von, SJ Pocock, PA Poole-Wilson, P; FAIR-HF Trial Investigators Ponikowski. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 2009; 361(25): 2436–2448
https://doi.org/10.1056/NEJMoa0908355
50 WY Qunibi, C Martinez, M Smith, J Benjamin, A Mangione, SD Roger. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of non-dialysis-dependent chronic kidney disease patients. Nephrol Dial Transplant 2011; 26(5): 1599–1607
https://doi.org/10.1093/ndt/gfq613
[1] FMD-23020-OF-MA_suppl_1 Download
[2] FMD-23020-OF-MA_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed