Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (1): 180-191   https://doi.org/10.1007/s11684-023-1003-0
  本期目录
Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1
Fang Wang1, Yuxing Liu1,2, Yi Dong2, Meifang Zhao2, Hao Huang2, Jieyuan Jin2, Liangliang Fan1,2(), Rong Xiang1,2()
1. Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
2. Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha 410013, China
 全文: PDF(4480 KB)   HTML
Abstract

Lipin proteins including Lipin 1–3 act as transcriptional co-activators and phosphatidic acid phosphohydrolase enzymes, which play crucial roles in lipid metabolism. However, little is known about the function of Lipin3 in triglyceride (TG) metabolism. Here, we identified a novel mutation (NM_001301860: p.1835A>T/p.D612V) of Lipin3 in a large family with hypertriglyceridemia (HTG) and obesity through whole-exome sequencing and Sanger sequencing. Functional studies revealed that the novel variant altered the half-life and stability of the Lipin3 protein. Hence, we generated Lipin3 heterozygous knockout (Lipin3-heKO) mice and cultured primary hepatocytes to explore the pathophysiological roles of Lipin3 in TG metabolism. We found that Lipin3-heKO mice exhibited obvious obesity, HTG, and non-alcoholic fatty liver disorder. Mechanistic study demonstrated that the haploinsufficiency of Lipin3 in primary hepatocytes may induce the overexpression and abnormal distribution of Lipin1 in cytosol and nucleoplasm. The increased expression of Lipin1 in cytosol may contribute to TG anabolism, and the decreased Lipin1 in nucleoplasm can reduce PGC1α, further leading to mitochondrial dysfunction and reduced TG catabolism. Our study suggested that Lipin3 was a novel disease-causing gene inducing obesity and HTG. We also established a relationship between Lipin3 and mitochondrial dysfunction.

Key wordsLipin3    Lipin1    hypertriglyceridemia    obesity    mitochondrial dysfunction
收稿日期: 2022-12-16      出版日期: 2024-04-22
Corresponding Author(s): Liangliang Fan,Rong Xiang   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(1): 180-191.
Fang Wang, Yuxing Liu, Yi Dong, Meifang Zhao, Hao Huang, Jieyuan Jin, Liangliang Fan, Rong Xiang. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1. Front. Med., 2024, 18(1): 180-191.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-1003-0
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I1/180
Fig.1  
No. Age (year) TG (mmol/L) TC (mmol/L) LDL (mmol/L) HDL (mmol/L) AS/CHD BMI (kg/m2)
I-1 60 (D) CHD
I-2 94 1.97 4.97 3.10 0.82
II-1 78 1.74 4.20 3.67 1.33 23.4
II-2 75 13.9 4.23 2.96 1.17 25.1
II-3 70 (D) CHD
II-4 73 21.9
II-5 62 (D) CHD
II-6 60 (D) CHD
II-7 60 (D) 11.76 4.73 3.85 1.21 AS 24.9
II-8 66 14.6 4.25 2.61 1.22 25.3
III-1 55 1.62 4.17 3.00 0.94 21.4
III-2 51 1.88 3.45 3.67 1.02 22.7
III-3 49 11.20 4.02 3.49 1.15 AS 24.7
III-4 48 12.03 3.77 2.47 1.38 25.3
VI-1 22 1.33 3.07 2.66 0.91 20.8
VI-2 23 7.40 4.12 3.05 0.96 24.0
V-1 2 1.45 3.75 2.88 1.29
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 SA Polyzos, J Kountouras, CS Mantzoros. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism 2019; 92: 82–97
https://doi.org/10.1016/j.metabol.2018.11.014
2 M Blüher. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15(5): 288–298
https://doi.org/10.1038/s41574-019-0176-8
3 ME Piché, A Tchernof, JP Després. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020; 126(11): 1477–1500
https://doi.org/10.1161/CIRCRESAHA.120.316101
4 AG Tsai, DH Bessesen. Obesity. Ann Intern Med 2019; 170(5): ITC33–ITC48
https://doi.org/10.7326/AITC201903050
5 MO Goodarzi. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol 2018; 6(3): 223–236
https://doi.org/10.1016/S2213-8587(17)30200-0
6 M Claussnitzer, SN Dankel, KH Kim, G Quon, W Meuleman, C Haugen, V Glunk, IS Sousa, JL Beaudry, V Puviindran, NA Abdennur, J Liu, PA Svensson, YH Hsu, DJ Drucker, G Mellgren, CC Hui, H Hauner, M Kellis. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373(10): 895–907
https://doi.org/10.1056/NEJMoa1502214
7 R Xiang, LL Fan, H Huang, YQ Chen, W He, S Guo, JJ Li, JY Jin, R Du, R Yan, K Xia. Increased reticulon 3 (RTN3) leads to obesity and hypertriglyceridemia by interacting with heat shock protein family A (Hsp70) member 5 (HSPA5). Circulation 2018; 138(17): 1828–1838
https://doi.org/10.1161/CIRCULATIONAHA.117.030718
8 C Chen, H Wang, B Chen, D Chen, C Lu, H Li, Y Qian, Y Tan, H Weng, L Cai. Pex11a deficiency causes dyslipidaemia and obesity in mice. J Cell Mol Med 2019; 23(3): 2020–2031
https://doi.org/10.1111/jcmm.14108
9 X Lei, GW Wong. C1q/TNF-related protein 2 (CTRP2) deletion promotes adipose tissue lipolysis and hepatic triglyceride secretion. J Biol Chem 2019; 294(43): 15638–15649
https://doi.org/10.1074/jbc.RA119.009230
10 A Moslehi, Z Hamidi-Zad. Role of SREBPs in liver diseases: a mini-review. J Clin Transl Hepatol 2018; 6(3): 332–338
https://doi.org/10.14218/JCTH.2017.00061
11 AK Hauck, Y Huang, AV Hertzel, DA Bernlohr. Adipose oxidative stress and protein carbonylation. J Biol Chem 2019; 294(4): 1083–1088
https://doi.org/10.1074/jbc.R118.003214
12 AH de Mello, AB Costa, JDG Engel, GT Rezin. Mitochondrial dysfunction in obesity. Life Sci 2018; 192: 26–32
https://doi.org/10.1016/j.lfs.2017.11.019
13 L Han, WJ Shen, S Bittner, FB Kraemer, S Azhar. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13(3): 259–278
https://doi.org/10.2217/fca-2016-0059
14 K Reue. The lipin family: mutations and metabolism. Curr Opin Lipidol 2009; 20(3): 165–170
https://doi.org/10.1097/MOL.0b013e32832adee5
15 BN Finck, MC Gropler, Z Chen, TC Leone, MA Croce, TE Harris, JC Jr Lawrence, DP Kelly. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 2006; 4(3): 199–210
https://doi.org/10.1016/j.cmet.2006.08.005
16 Y Chen, BB Rui, LY Tang, CM Hu. Lipin family proteins-key regulators in lipid metabolism. Ann Nutr Metab 2015; 66(1): 10–18
https://doi.org/10.1159/000368661
17 P Romani, I Brian, G Santinon, A Pocaterra, M Audano, S Pedretti, S Mathieu, M Forcato, S Bicciato, JB Manneville, N Mitro, S Dupont. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol 2019; 21(3): 338–347
https://doi.org/10.1038/s41556-018-0270-5
18 J Casas, C Meana, JR López-López, J Balsinde, MA Balboa. Lipin-1-derived diacylglycerol activates intracellular TRPC3 which is critical for inflammatory signaling. Cell Mol Life Sci 2021; 78(24): 8243–8260
https://doi.org/10.1007/s00018-021-03999-0
19 M Chae, JY Jung, IH Bae, HJ Kim, TR Lee, DW Shin. Lipin-1 expression is critical for keratinocyte differentiation. J Lipid Res 2016; 57(4): 563–573
https://doi.org/10.1194/jlr.M062588
20 K Reue, P Zhang. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett 2008; 582(1): 90–96
https://doi.org/10.1016/j.febslet.2007.11.014
21 LL Fan, DB Ding, H Huang, YQ Chen, JY Jin, K Xia, R Xiang. A de novo mutation of SMYD1 (p. F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient. Clin Chem Lab Med 2019; 57(4): 532–539
https://doi.org/10.1515/cclm-2018-0578
22 H Huang, S Guo, YQ Chen, YX Liu, JY Jin, Y Liang, LL Fan, R Xiang. Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway. MedComm (2020) 2023; 4(2): e226
23 Q Shi, Y Ge, MG Sharoar, W He, R Xiang, Z Zhang, X Hu, R Yan. Impact of RTN3 deficiency on expression of BACE1 and amyloid deposition. J Neurosci 2014; 34(42): 13954–13962
https://doi.org/10.1523/JNEUROSCI.1588-14.2014
24 LS Csaki, JR Dwyer, X Li, MH Nguyen, J Dewald, DN Brindley, AJ Lusis, Y Yoshinaga, P de Jong, L Fong, SG Young, K Reue. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol Metab 2014; 3(2): 145–154
https://doi.org/10.1016/j.molmet.2013.11.008
25 M Péterfy, J Phan, P Xu, K Reue. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 2001; 27(1): 121–124
https://doi.org/10.1038/83685
26 L Bi, Z Jiang, J Zhou. The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol 2015; 50(2): 146–151
https://doi.org/10.1093/alcalc/agu102
27 E BarrosoAM AstudilloJ BalsindeM Vázquez-Carrera. PPARβ/δ Activation prevents hypertriglyceridemia caused by a high fat diet. Involvement of AMPK and PGC-1α-Lipin1-PPARα pathway. Clin Investig Arterioscler 2013; 25(2): 63–73 (in Spanish)
pmid: 23849213
28 HL Kim, J Park, H Park, Y Jung, DH Youn, J Kang, MY Jeong, JY Um. Platycodon grandiflorum A. De Candolle ethanolic extract inhibits adipogenic regulators in 3T3-L1 cells and induces mitochondrial biogenesis in primary brown preadipocytes. J Agric Food Chem 2015; 63(35): 7721–7730
https://doi.org/10.1021/acs.jafc.5b01908
29 L Bi, Z Jiang, J Zhou. The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol 2015; 50(2): 146–151
https://doi.org/10.1093/alcalc/agu102
30 D De Rasmo, A Signorile, E De Leo, EV Polishchuk, A Ferretta, R Raso, S Russo, R Polishchuk, F Emma, F Bellomo. Mitochondrial dynamics of proximal tubular epithelial cells in nephropathic cystinosis. Int J Mol Sci 2019; 21(1): 192
https://doi.org/10.3390/ijms21010192
31 MN Serasinghe, JE Chipuk. Mitochondrial fission in human diseases. Handb Exp Pharmacol 2017; 240: 159–188
https://doi.org/10.1007/164_2016_38
32 C Michot, L Hubert, NB Romero, A Gouda, A Mamoune, S Mathew, E Kirk, L Viollet, S Rahman, S Bekri, H Peters, J McGill, E Glamuzina, M Farrar, M von der Hagen, IE Alexander, B Kirmse, M Barth, P Laforet, P Benlian, A Munnich, M JeanPierre, O Elpeleg, O Pines, A Delahodde, Y de Keyzer, P de Lonlay. Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. J Inherit Metab Dis 2012; 35(6): 1119–1128
https://doi.org/10.1007/s10545-012-9461-6
33 EM Pennisi, M Garibaldi, G Antonini. Lipid myopathies. J Clin Med 2018; 7(12): 472
https://doi.org/10.3390/jcm7120472
34 K Reue, DN Brindley. Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 2008; 49(12): 2493–2503
https://doi.org/10.1194/jlr.R800019-JLR200
35 T Rashid, I Nemazanyy, C Paolini, T Tatsuta, P Crespin, D de Villeneuve, S Brodesser, P Benit, P Rustin, MA Baraibar, O Agbulut, A Olivier, F Protasi, T Langer, R Chrast, P de Lonlay, H de Foucauld, B Blaauw, M Pende. Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperone-responsive myopathy. EMBO J 2019; 38(1): e99576
https://doi.org/10.15252/embj.201899576
36 A Watahiki, S Hoshikawa, M Chiba, H Egusa, S Fukumoto, H Inuzuka. Deficiency of Lipin2 results in enhanced NF-κB signaling and osteoclast formation in RAW-D murine macrophages. Int J Mol Sci 2021; 22(6): 2893
https://doi.org/10.3390/ijms22062893
37 M Bou Khalil, A Blais, D Figeys, Z Yao. Lipin — the bridge between hepatic glycerolipid biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2010; 1801(12): 1249–1259
https://doi.org/10.1016/j.bbalip.2010.07.008
38 P Zhang, LS Csaki, E Ronquillo, LJ Baufeld, JY Lin, A Gutierrez, JR Dwyer, DN Brindley, LG Fong, P Tontonoz, SG Young, K Reue. Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. J Clin Invest 2019; 129(1): 281–295
https://doi.org/10.1172/JCI122595
39 ICM Simões, A Fontes, P Pinton, H Zischka, MR Wieckowski. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol 2018; 95: 93–99
https://doi.org/10.1016/j.biocel.2017.12.019
40 JP Mazat, A Devin, S Ransac. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77(3): 455–465
https://doi.org/10.1007/s00018-019-03381-1
41 C Rives, A Fougerat, S Ellero-Simatos, N Loiseau, H Guillou, L Gamet-Payrastre, W Wahli. Oxidative stress in NAFLD: role of nutrients and food contaminants. Biomolecules 2020; 10(12): 1702
https://doi.org/10.3390/biom10121702
42 S Kakehi, Y Tamura, SI Ikeda, N Kaga, H Taka, N Ueno, T Shiuchi, A Kubota, K Sakuraba, R Kawamori, H Watada. Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation. Am J Physiol Endocrinol Metab 2021; 321(6): E766–E781
https://doi.org/10.1152/ajpendo.00254.2020
43 P Zhang, K Takeuchi, LS Csaki, K Reue. Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor γ (PPARγ) gene expression during adipogenesis. J Biol Chem 2012; 287(5): 3485–3494
https://doi.org/10.1074/jbc.M111.296681
44 A Kauppinen, T Suuronen, J Ojala, K Kaarniranta, A Salminen. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25(10): 1939–1948
https://doi.org/10.1016/j.cellsig.2013.06.007
45 N Bougarne, B Weyers, SJ Desmet, J Deckers, DW Ray, B Staels, K De Bosscher. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev 2018; 39(5): 760–802
https://doi.org/10.1210/er.2018-00064
[1] FMD-23022-OF-FLL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed