Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (1): 109-127   https://doi.org/10.1007/s11684-023-1008-8
  本期目录
Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer
Guoqiang Li1,2,3, Peng Pu1,2,3, Mengqiao Pan2, Xiaoling Weng2, Shimei Qiu4, Yiming Li1,2,3, Sk Jahir Abbas2, Lu Zou1,2,3, Ke Liu1,2,3, Zheng Wang5, Ziyu Shao6, Lin Jiang3,6, Wenguang Wu1,2,3, Yun Liu2,3(), Rong Shao7(), Fatao Liu2,3(), Yingbin Liu1,2,3()
1. Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
2. Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
3. Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
4. Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China
5. Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
6. Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200082, China
7. Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
 全文: PDF(9386 KB)   HTML
Abstract

Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial–mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer–promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.

Key words3D genome    cancer    TADs    loop    gene regulation
收稿日期: 2022-11-14      出版日期: 2024-04-22
Corresponding Author(s): Yun Liu,Rong Shao,Fatao Liu,Yingbin Liu   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(1): 109-127.
Guoqiang Li, Peng Pu, Mengqiao Pan, Xiaoling Weng, Shimei Qiu, Yiming Li, Sk Jahir Abbas, Lu Zou, Ke Liu, Zheng Wang, Ziyu Shao, Lin Jiang, Wenguang Wu, Yun Liu, Rong Shao, Fatao Liu, Yingbin Liu. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer. Front. Med., 2024, 18(1): 109-127.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-1008-8
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I1/109
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 A Kloetgen, P Thandapani, P Ntziachristos, Y Ghebrechristos, S Nomikou, C Lazaris, X Chen, H Hu, S Bakogianni, J Wang, Y Fu, F Boccalatte, H Zhong, E Paietta, T Trimarchi, Y Zhu, P Van Vlierberghe, GG Inghirami, T Lionnet, I Aifantis, A Tsirigos. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52(4): 388–400
https://doi.org/10.1038/s41588-020-0602-9
2 LJT Kaaij, F Mohn, der Weide RH van, Wit E de, M Bühler. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 2019; 178(6): 1437–1451.e14
https://doi.org/10.1016/j.cell.2019.08.007
3 J Zha, Q Lai, M Deng, P Shi, H Zhao, Q Chen, H Wu, B Xu. Disruption of CTCF boundary at HOXA locus promote BET inhibitors’ therapeutic sensitivity in acute myeloid leukemia. Stem Cell Rev Rep 2020; 16(6): 1280–1291
https://doi.org/10.1007/s12015-020-10057-y
4 Y Guo, Q Xu, D Canzio, J Shou, J Li, DU Gorkin, I Jung, H Wu, Y Zhai, Y Tang, Y Lu, Y Wu, Z Jia, W Li, MQ Zhang, B Ren, AR Krainer, T Maniatis, Q Wu. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 2015; 162(4): 900–910
https://doi.org/10.1016/j.cell.2015.07.038
5 BD Pope, T Ryba, V Dileep, F Yue, W Wu, O Denas, DL Vera, Y Wang, RS Hansen, TK Canfield, RE Thurman, Y Cheng, G Gülsoy, JH Dennis, MP Snyder, JA Stamatoyannopoulos, J Taylor, RC Hardison, T Kahveci, B Ren, DM Gilbert. Topologically associating domains are stable units of replication-timing regulation. Nature 2014; 515(7527): 402–405
https://doi.org/10.1038/nature13986
6 M Yu, B Ren. The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol 2017; 33(1): 265–289
https://doi.org/10.1146/annurev-cellbio-100616-060531
7 T Misteli. The self-organizing genome: principles of genome architecture and function. Cell 2020; 183(1): 28–45
https://doi.org/10.1016/j.cell.2020.09.014
8 E Lieberman-Aiden, NL van Berkum, L Williams, M Imakaev, T Ragoczy, A Telling, I Amit, BR Lajoie, PJ Sabo, MO Dorschner, R Sandstrom, B Bernstein, MA Bender, M Groudine, A Gnirke, J Stamatoyannopoulos, LA Mirny, ES Lander, J Dekker. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326(5950): 289–293
https://doi.org/10.1126/science.1181369
9 P Wu, T Li, R Li, L Jia, P Zhu, Y Liu, Q Chen, D Tang, Y Yu, C Li. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 2017; 8(1): 1937
https://doi.org/10.1038/s41467-017-01793-w
10 A Pandey, EW Stawiski, S Durinck, H Gowda, LD Goldstein, MA Barbhuiya, MS Schröder, SK Sreenivasamurthy, SW Kim, S Phalke, K Suryamohan, K Lee, P Chakraborty, V Kode, X Shi, A Chatterjee, K Datta, AA Khan, T Subbannayya, J Wang, S Chaudhuri, S Gupta, BR Shrivastav, BS Jaiswal, SS Poojary, S Bhunia, P Garcia, C Bizama, L Rosa, W Kwon, H Kim, Y Han, TD Yadav, VL Ramprasad, A Chaudhuri, Z Modrusan, JC Roa, PK Tiwari, JY Jang, S Seshagiri. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate. Nat Commun 2020; 11(1): 4225
https://doi.org/10.1038/s41467-020-17880-4
11 L Zhang, R Miao, X Zhang, W Chen, Y Zhou, R Wang, R Zhang, Q Pang, X Xu, C Liu. Exploring the diagnosis markers for gallbladder cancer based on clinical data. Front Med 2015; 9(3): 350–355
https://doi.org/10.1007/s11684-015-0402-2
12 TA Aloia, N Járufe, M Javle, SK Maithel, JC Roa, V Adsay, FJ Coimbra, WR Jarnagin. Gallbladder cancer: expert consensus statement. HPB (Oxford) 2015; 17(8): 681–690
https://doi.org/10.1111/hpb.12444
13 T Rustagi, CA Dasanu. Risk factors for gallbladder cancer and cholangiocarcinoma: similarities, differences and updates. J Gastrointest Cancer 2012; 43(2): 137–147
https://doi.org/10.1007/s12029-011-9284-y
14 M Li, F Liu, F Zhang, W Zhou, X Jiang, Y Yang, K Qu, Y Wang, Q Ma, T Wang, L Bai, Z Wang, X Song, Y Zhu, R Yuan, Y Gao, Y Liu, Y Jin, H Li, S Xiang, Y Ye, Y Zhang, L Jiang, Y Hu, Y Hao, W Lu, S Chen, J Gu, J Zhou, W Gong, Y Zhang, X Wang, X Liu, C Liu, H Liu, Y Liu, Y Liu. Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis. Gut 2019; 68(6): 1024–1033
https://doi.org/10.1136/gutjnl-2018-316039
15 M Li, Z Zhang, X Li, J Ye, X Wu, Z Tan, C Liu, B Shen, XA Wang, W Wu, D Zhou, D Zhang, T Wang, B Liu, K Qu, Q Ding, H Weng, Q Ding, J Mu, Y Shu, R Bao, Y Cao, P Chen, T Liu, L Jiang, Y Hu, P Dong, J Gu, W Lu, W Shi, J Lu, W Gong, Z Tang, Y Zhang, X Wang, YE Chin, X Weng, H Zhang, W Tang, Y Zheng, L He, H Wang, Y Liu, Y Liu. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet 2014; 46(8): 872–876
https://doi.org/10.1038/ng.3030
16 YP Hu, ZB Wu, L Jiang, YP Jin, HF Li, YJ Zhang, Q Ma, YY Ye, Z Wang, YC Liu, HZ Chen, YB Liu. STYK1 promotes cancer cell proliferation and malignant transformation by activating PI3K-AKT pathway in gallbladder carcinoma. Int J Biochem Cell Biol 2018; 97: 16–27
https://doi.org/10.1016/j.biocel.2018.01.016
17 YP Jin, YP Hu, XS Wu, YS Wu, YY Ye, HF Li, YC Liu, L Jiang, FT Liu, YJ Zhang, YJ Hao, XY Liu, YB Liu. miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis 2018; 9(2): 182
https://doi.org/10.1038/s41419-017-0258-2
18 H Li, Y Jin, Y Hu, L Jiang, F Liu, Y Zhang, Y Hao, S Chen, X Wu, Y Liu. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. Cancer Sci 2018; 109(5): 1532–1544
https://doi.org/10.1111/cas.13585
19 SS Rao, MH Huntley, NC Durand, EK Stamenova, ID Bochkov, JT Robinson, AL Sanborn, I Machol, AD Omer, ES Lander, EL Aiden. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014; 159(7): 1665–1680
https://doi.org/10.1016/j.cell.2014.11.021
20 N Servant, N Varoquaux, BR Lajoie, E Viara, CJ Chen, JP Vert, E Heard, J Dekker, E Barillot. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 2015; 16(1): 259
https://doi.org/10.1186/s13059-015-0831-x
21 M Imakaev, G Fudenberg, RP McCord, N Naumova, A Goloborodko, BR Lajoie, J Dekker, LA Mirny. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 2012; 9(10): 999–1003
https://doi.org/10.1038/nmeth.2148
22 T Rausch, T Zichner, A Schlattl, AM Stütz, V Benes, JO Korbel. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012; 28(18): i333–i339
https://doi.org/10.1093/bioinformatics/bts378
23 X Wang, J Xu, B Zhang, Y Hou, F Song, H Lyu, F Yue. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat Methods 2021; 18(6): 661–668
https://doi.org/10.1038/s41592-021-01164-w
24 NC Durand, MS Shamim, I Machol, SS Rao, MH Huntley, ES Lander, EL Aiden. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 2016; 3(1): 95–98
https://doi.org/10.1016/j.cels.2016.07.002
25 AM Bolger, M Lohse, B Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–2120
https://doi.org/10.1093/bioinformatics/btu170
26 A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
https://doi.org/10.1093/bioinformatics/bts635
27 S Anders, PT Pyl, W Huber. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31(2): 166–169
https://doi.org/10.1093/bioinformatics/btu638
28 MI Love, W Huber, S Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550
https://doi.org/10.1186/s13059-014-0550-8
29 MD Robinson, DJ McCarthy, GK Smyth. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139–140
https://doi.org/10.1093/bioinformatics/btp616
30 B Langmead, SL Salzberg. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357–359
https://doi.org/10.1038/nmeth.1923
31 Y Zhang, T Liu, CA Meyer, J Eeckhoute, DS Johnson, BE Bernstein, C Nusbaum, RM Myers, M Brown, W Li, XS Liu. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137
https://doi.org/10.1186/gb-2008-9-9-r137
32 F Ramírez, DP Ryan, B Grüning, V Bhardwaj, F Kilpert, AS Richter, S Heyne, F Dündar, T Manke. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016; 44(W1): W160–5
https://doi.org/10.1093/nar/gkw257
33 AR Quinlan, IM Hall. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841–842
https://doi.org/10.1093/bioinformatics/btq033
34 E Crane, Q Bian, RP McCord, BR Lajoie, BS Wheeler, EJ Ralston, S Uzawa, J Dekker, BJ Meyer. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 2015; 523(7559): 240–244
https://doi.org/10.1038/nature14450
35 G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
https://doi.org/10.1089/omi.2011.0118
36 S Heinz, C Benner, N Spann, E Bertolino, YC Lin, P Laslo, JX Cheng, C Murre, H Singh, CK Glass. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B-cell identities. Mol Cell 2010; 38(4): 576–589
https://doi.org/10.1016/j.molcel.2010.05.004
37 XS Wu, F Wang, HF Li, YP Hu, L Jiang, F Zhang, ML Li, XA Wang, YP Jin, YJ Zhang, W Lu, WG Wu, YJ Shu, H Weng, Y Cao, RF Bao, HB Liang, Z Wang, YC Zhang, W Gong, L Zheng, SH Sun, YB Liu. LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep 2017; 18(10): 1837–1853
https://doi.org/10.15252/embr.201744147
38 FA Ran, PD Hsu, J Wright, V Agarwala, DA Scott, F Zhang. Genome engineering using the CRISPR‒Cas9 system. Nat Protoc 2013; 8(11): 2281–2308
https://doi.org/10.1038/nprot.2013.143
39 B Ortiz, AW Fabius, WH Wu, A Pedraza, CW Brennan, N Schultz, KL Pitter, JF Bromberg, JT Huse, EC Holland, TA Chan. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc Natl Acad Sci USA 2014; 111(22): 8149–8154
https://doi.org/10.1073/pnas.1401952111
40 L Harder, AC Puller, MA Horstmann. ZNF423: transcriptional modulation in development and cancer. Mol Cell Oncol 2014; 1(3): e969655
https://doi.org/10.4161/23723548.2014.969655
41 D Hnisz, DS Day, RA Young. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 2016; 167(5): 1188–1200
https://doi.org/10.1016/j.cell.2016.10.024
42 G Wutz, C Várnai, K Nagasaka, DA Cisneros, RR Stocsits, W Tang, S Schoenfelder, G Jessberger, M Muhar, MJ Hossain, N Walther, B Koch, M Kueblbeck, J Ellenberg, J Zuber, P Fraser, JM Peters. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 2017; 36(24): 3573–3599
https://doi.org/10.15252/embj.201798004
43 J Song, S Nabeel-Shah, S Pu, H Lee, U Braunschweig, Z Ni, N Ahmed, E Marcon, G Zhong, D Ray, KCH Ha, X Guo, Z Zhang, TR Hughes, BJ Blencowe, JF Greenblatt. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell 2022; 82(17): 3135–3150.e9
https://doi.org/10.1016/j.molcel.2022.06.031
44 B Mayr, M Montminy. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2(8): 599–609
https://doi.org/10.1038/35085068
45 A Dongre, RA Weinberg. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2): 69–84
https://doi.org/10.1038/s41580-018-0080-4
46 M Burotto, VL Chiou, JM Lee, EC Kohn. The MAPK pathway across different malignancies: a new perspective. Cancer 2014; 120(22): 3446–3456
https://doi.org/10.1002/cncr.28864
47 MA Dawson, T Kouzarides. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150(1): 12–27
https://doi.org/10.1016/j.cell.2012.06.013
48 SSP Rao, SC Huang, B Glenn St Hilaire, JM Engreitz, EM Perez, KR Kieffer-Kwon, AL Sanborn, SE Johnstone, GD Bascom, ID Bochkov, X Huang, MS Shamim, J Shin, D Turner, Z Ye, AD Omer, JT Robinson, T Schlick, BE Bernstein, R Casellas, ES Lander, EL Aiden. Cohesin loss eliminates all loop domains. Cell 2017; 171(2): 305–320.e24
https://doi.org/10.1016/j.cell.2017.09.026
49 EP Nora, L Caccianini, G Fudenberg, K So, V Kameswaran, A Nagle, A Uebersohn, B Hajj, AL Saux, A Coulon, LA Mirny, KS Pollard, M Dahan, BG Bruneau. Molecular basis of CTCF binding polarity in genome folding. Nat Commun 2020; 11(1): 5612
https://doi.org/10.1038/s41467-020-19283-x
50 VG Martínez, C Rubio, M Martínez-Fernández, C Segovia, F López-Calderón, MI Garín, A Teijeira, E Munera-Maravilla, A Varas, R Sacedón, F Guerrero, F Villacampa, la Rosa F de, D Castellano, E López-Collazo, JM Paramio, Á Vicente, M Dueñas. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer. Clin Cancer Res 2017; 23(23): 7388–7399
https://doi.org/10.1158/1078-0432.CCR-17-1004
51 X Yuan, M Yi, B Dong, Q Chu, K Wu. Prognostic significance of KRT19 in lung squamous cancer. J Cancer 2021; 12(4): 1240–1248
https://doi.org/10.7150/jca.51179
52 DH Wang, A Tiwari, ME Kim, NJ Clemons, NL Regmi, WA Hodges, DM Berman, EA Montgomery, DN Watkins, X Zhang, Q Zhang, C Jie, SJ Spechler, RF Souza. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia. J Clin Invest 2014; 124(9): 3767–3780
https://doi.org/10.1172/JCI66603
53 Transcriptome Core Group; Calabrese C PCAWG, NR Davidson, D Demircioğlu, NA Fonseca, Y He, A Kahles, KV Lehmann, F Liu, Y Shiraishi, CM Soulette, L Urban, L Greger, S Li, D Liu, MD Perry, Q Xiang, F Zhang, J Zhang, P Bailey, S Erkek, KA Hoadley, Y Hou, MR Huska, H Kilpinen, JO Korbel, MG Marin, J Markowski, T Nandi, Q Pan-Hammarström, CS Pedamallu, R Siebert, SG Stark, H Su, P Tan, SM Waszak, C Yung, S Zhu, P Awadalla, CJ Creighton, M Meyerson, BFF Ouellette, K Wu, H; PCAWG Transcriptome Working Group; Brazma A Yang, AN Brooks, J Göke, G Rätsch, RF Schwarz, O Stegle, Z; PCAWG Consortium Zhang. Genomic basis for RNA alterations in cancer. Nature 2020; 578(7793): 129–136
https://doi.org/10.1038/s41586-020-1970-0
54 DA Quigley, HX Dang, SG Zhao, P Lloyd, R Aggarwal, JJ Alumkal, A Foye, V Kothari, MD Perry, AM Bailey, D Playdle, TJ Barnard, L Zhang, J Zhang, JF Youngren, MP Cieslik, A Parolia, TM Beer, G Thomas, KN Chi, M Gleave, NA Lack, A Zoubeidi, RE Reiter, MB Rettig, O Witte, CJ Ryan, L Fong, W Kim, T Friedlander, J Chou, H Li, R Das, H Li, R Moussavi-Baygi, H Goodarzi, LA Gilbert, PN Jr Lara, CP Evans, TC Goldstein, JM Stuart, SA Tomlins, DE Spratt, RK Cheetham, DT Cheng, K Farh, JS Gehring, J Hakenberg, A Liao, PG Febbo, J Shon, B Sickler, S Batzoglou, KE Knudsen, HH He, J Huang, AW Wyatt, SM Dehm, A Ashworth, AM Chinnaiyan, CA Maher, EJ Small, FY Feng. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 2018; 174(3): 758–769.e9
https://doi.org/10.1016/j.cell.2018.06.039
55 T Misteli. Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2010; 2(8): a000794
https://doi.org/10.1101/cshperspect.a000794
56 J Zuin, JR Dixon, MI van der Reijden, Z Ye, P Kolovos, RW Brouwer, MP van de Corput, HJ van de Werken, TA Knoch, WF van IJcken, FG Grosveld, B Ren, KS Wendt. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA 2014; 111(3): 996–1001
https://doi.org/10.1073/pnas.1317788111
57 M Vietri Rudan, C Barrington, S Henderson, C Ernst, DT Odom, A Tanay, S Hadjur. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 2015; 10(8): 1297–1309
https://doi.org/10.1016/j.celrep.2015.02.004
58 CT Ong, VG Corces. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15(4): 234–246
https://doi.org/10.1038/nrg3663
59 JR Dixon, S Selvaraj, F Yue, A Kim, Y Li, Y Shen, M Hu, JS Liu, B Ren. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485(7398): 376–380
https://doi.org/10.1038/nature11082
60 JP Fortin, KD Hansen. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol 2015; 16(1): 180
https://doi.org/10.1186/s13059-015-0741-y
61 MJ Rowley, MH Nichols, X Lyu, M Ando-Kuri, ISM Rivera, K Hermetz, P Wang, Y Ruan, VG Corces. Evolutionarily conserved principles predict 3D chromatin organization. Mol Cell 2017; 67(5): 837–852.e7
https://doi.org/10.1016/j.molcel.2017.07.022
62 M Rosa-Garrido, DJ Chapski, AD Schmitt, TH Kimball, E Karbassi, E Monte, E Balderas, M Pellegrini, TT Shih, E Soehalim, D Liem, P Ping, NJ Galjart, S Ren, Y Wang, B Ren, TM Vondriska. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 2017; 136(17): 1613–1625
https://doi.org/10.1161/CIRCULATIONAHA.117.029430
63 T Li, R Li, X Dong, L Shi, M Lin, T Peng, P Wu, Y Liu, X Li, X He, X Han, B Kang, Y Wang, Z Liu, Q Chen, Y Shen, M Feng, X Wang, D Wu, J Wang, C Li. Integrative analysis of genome, 3D genome, and transcriptome alterations of clinical lung cancer samples. Genom Proteom Bioinfor 2021; 19(5): 741–753
https://doi.org/10.1016/j.gpb.2020.05.007
64 B Ren, J Yang, C Wang, G Yang, H Wang, Y Chen, R Xu, X Fan, L You, T Zhang, Y Zhao. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis. J Hematol Oncol 2021; 14(1): 120
https://doi.org/10.1186/s13045-021-01131-0
65 Z Luo, SK Rhie, FD Lay, PJ Farnham. A prostate cancer risk element functions as a repressive loop that regulates HOXA13. Cell Rep 2017; 21(6): 1411–1417
https://doi.org/10.1016/j.celrep.2017.10.048
66 JF Xiang, QF Yin, T Chen, Y Zhang, XO Zhang, Z Wu, S Zhang, HB Wang, J Ge, X Lu, L Yang, LL Chen. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 2014; 24(5): 513–531
https://doi.org/10.1038/cr.2014.35
67 MM Pomerantz, N Ahmadiyeh, L Jia, P Herman, MP Verzi, H Doddapaneni, CA Beckwith, JA Chan, A Hills, M Davis, K Yao, SM Kehoe, HJ Lenz, CA Haiman, C Yan, BE Henderson, B Frenkel, J Barretina, A Bass, J Tabernero, J Baselga, MM Regan, JR Manak, R Shivdasani, GA Coetzee, ML Freedman. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41(8): 882–884
https://doi.org/10.1038/ng.403
68 S Oh, J Shao, J Mitra, F Xiong, M D’Antonio, R Wang, I Garcia-Bassets, Q Ma, X Zhu, JH Lee, SJ Nair, F Yang, K Ohgi, KA Frazer, ZD Zhang, W Li, MG Rosenfeld. Enhancer release and retargeting activates disease-susceptibility genes. Nature 2021; 595(7869): 735–740
https://doi.org/10.1038/s41586-021-03577-1
69 V Nanavaty, EW Abrash, C Hong, S Park, EE Fink, Z Li, TJ Sweet, JM Bhasin, S Singuri, BH Lee, TH Hwang, AH Ting. DNA methylation regulates alternative polyadenylation via CTCF and the cohesin complex. Mol Cell 2020; 78(4): 752–764.e6
https://doi.org/10.1016/j.molcel.2020.03.024
[1] FMD-23027-OF-LYB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed