Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (3): 359-387   https://doi.org/10.1007/s11684-023-1013-y
  本期目录
Base editors: development and applications in biomedicine
Yanhui Liang1,2,3, Fangbing Chen1,2,3,4, Kepin Wang1,2,3,4, Liangxue Lai1,2,3,4()
1. China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
2. Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
3. Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
4. Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
 全文: PDF(4341 KB)   HTML
Abstract

Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.

Key wordsbase editing    CBE    ABE    ADAR    DdCBE    disease model    therapeutic application
收稿日期: 2023-02-23      出版日期: 2023-07-28
Corresponding Author(s): Liangxue Lai   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(3): 359-387.
Yanhui Liang, Fangbing Chen, Kepin Wang, Liangxue Lai. Base editors: development and applications in biomedicine. Front. Med., 2023, 17(3): 359-387.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-1013-y
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I3/359
Classes Cas nucleases Base editors Prime editors
Typical structure
DSB Dependent Independent Independent
Principle NHEJ HDR BER, MMR Reverse transcription, MMR
Donor DNA template Independent Dependent Independent Independent
Precision Stochastic Precise Precise Precise
Editing types Indels, large deletions, chromosomal translocations Target insertions, target deletions, base substitutions, chromosomal translocations Base substitutions Target insertions, target deletions, target large insertions, target large deletions, base substitutions
Editing frequency High Low High Low
Off-target effect Cas-dependent Cas-dependent, Cas-independent Cas-dependent
Pipelines (examples) Exa-cel (TDT/SCD), EDIT-101 (LCA10), EDIT-301 (TDT/SCD), NTLA-2001 (ATTR), NTLA-2002 (HAE), nula-cel (SCD), EBT-101 (HIV-1) VERVE-101 (LDL-C), VERVE-201 (LDL-C/TRL), BEAM-101 (SCD/β-thalassemia), BEAM-102 (SCD) NA
Tab.1  
Fig.1  
Fig.2  
TypesNamesArchitecturesModificationsPurposesReference
Nuclear base editors, CBEBE3rAPOBEC1-nCas9-UGIEmployment of rat APOBEC1 cytosine deaminaseThe first active and widely used base editor[11]
HF-BE3rAPOBEC1-HF-nCas9-UGIIntroduction of additional mutations (N497A/R661A/Q695A/Q926A) into nCas9 for a high-fidelity versionReducing off-target DNA editing[122]
BE4rAPOBEC1-nCas9-2×UGIAn additional UGIImproving the efficiency and product purity[134]
BE4-GamGam-rAPOBEC1-nCas9-2×UGIIntroduction of a bacteriophage Mu protein Gam that binds DNA double stranded breaks (DSBs)Reducing insertions and deletions (indels)[134]
BE4maxrAPOBEC1-nCas9-2×UGICodon optimization and modification of nuclear-localization sequence (NLS)Improving the efficiency[103]
YE1-BE3rAPOBEC1(W90Y/R126E)-nCas9-UGIIntroduction of W90Y/R126E mutations into rAPOBEC1Reducing DNA and RNA off-target editing and narrowing the editing window[118,138,139]
SECURE-BE3rAPOBEC1(R33A/K34A)-nCas9-UGIIntroduction of single (R33A) or dual (R33A/K34A) mutations into rAPOBEC1Reducing RNA off-target editing and narrowing the editing window[119]
Target-AIDnCas9-PmCDA1-UGIEmployment of PmCDA1 cytosine deaminaseOne of the first-generation CBEs[12]
hA3A-BE3hAPOBEC3A-nCas9-UGIReplacement of rAPOBEC1 with hA3AEnhancing the efficiency, especially for GC motif and methylated cytidines[93,118,139]
BE3(hA3AR128A)hAPOBEC3A(R128A)-nCas9-UGIIntroduction of R128A mutation into hA3AReducing RNA off-target editing[118]
A3A(N57G)-BE3hAPOBEC3A(N57G)-nCas9-UGIIntroduction of N57G mutation into hA3AConferring preference for TCR motif to minimized bystander and reducing DNA and RNA off-target activities[142]
hA3A-eBE-Y130FhAPOBEC3A(Y130F)-nCas9-4×UGIIntroduction of Y130F mutation into hA3A and three additional UGIsNarrowing the editing window, reducing RNA off-target editing and indels, improving product purity, and reducing toxic effects[93,95,139]
A3Bctd-VHM-BE3 or A3Bctd-KKR-BE3hA3Bctd(T214V/D314H/Y315M)-nCas9-UGI or hA3Bctd (R211K/ R311K/D314R)-nCas9-UGIReplacement of hA3A with hA3Bctd variant harboring T214V/D314R/Y315M mutations or R211K/ R311K/D314R mutationsReducing DNA off-target editing and bystander effect to increase the specificity and precision[262]
SaBE4rAPOBEC1-nSaCas9-2×UGIReplacement of SpCas9 nickase with nSaCas9Reducing the size and changing targeting scope to NNGRRT[134]
dCpf1-BErAPOBEC1-dLbCas12a-UGIReplacement of SpCas9 nickase with dLbCas12aChanging targeting scope to T-rich PAM sequence[106]
nNme2-CBErAPOBEC1-nNme2Cas9-2×UGIReplacement of SpCas9 nickase with nNme2Cas9Changing targeting scope to N4CC PAM sequence[107]
cjCBEmaxrAPOBEC1-nCjCas9-2×UGIReplacement of SpCas9 nickase with nCjCas9Reducing the size of CBE[146]
VQR-BE3rAPOBEC1-VQR-nCas9-UGIReplacement of SpCas9 nickase with VQR-Cas9 nickase variantExpanding the targeting scope to NGA PAM sequence[138]
SaKKH-BE3rAPOBEC1-KKH-nSaCas9-UGIReplacement of SpCas9 nickase with KKH-SaCas9 nickase variantExpanding the targeting scope to NNNRRT PAM sequence and reducing the size[138]
xBE3rAPOBEC1-xCas9-UGIReplacement of SpCas9 with xCas9(3.7) variant harboring D10A and seven additional mutations (A262T/R324L/S409I/E480K/E543D/M694I/E1219V)Expanding the targeting scope to NG, GAA, and GAT PAM sequences[108,263]
Target-AID-NGnCas9-NG-PmCDA1-UGIReplacement of SpCas9 with SpCas9-NG variant harboring D10A and seven additional mutations (R1335V/L1111R/D1135V/G1218R/E1219F/A1322R/T1337R)Expanding the targeting scope to NG PAM sequence[109]
enAsBErAPOBEC1-denAsCas12a-UGIReplacement of dLbCas12a with denAsCas12a variant harboring D908A/E993A/D1235A and three additional E174R/S542R/K548R mutationsExpanding the targeting scope to NTTN, TYCN, and TRTV PAM sequences[112]
enCas12a-A3A-Y130FhAPOBEC3A(Y130F)-denLbCas12a-4×UGIReplacement of dLbCas12a with denLbCas12a variant harboring D832A/E1006A/D1125A and three additional D156R/G532R/K538R mutations, and replacement of rAPOBEC1 with hA3A-Y130F variantImproving the efficiency and expanding the targeting scope to NTTN, TYCN, and TRTV PAM sequences[101]
SpRY-CBErAPOBEC1-nSpRY-2×UGIReplacement of SpCas9 with SpRY variant harboring D10A and five additional mutations (A61R/L1111R/N1317R/A1322R/R1333P)Expanding the targeting scope to NRN > NYN PAM sequences[111]
hyeA3A-BE4maxrAPOBEC1-Rad51DBD-nCas9-2×UGIIntroduction of single-stranded DNA-binding domain from Rad51 proteinImproving the efficiency and widening the editing window[104]
TaC9-CBEYE1TALE-rAPOBEC1(W90Y/R126E); UGI-nCas9-UGIFusion of cytosine deaminase rAPOBEC1 to TALE array and UGI to nCas9, separately, and introduction of W90Y/R126E into rAPOBEC1Reducing DNA and RNA off-target editing[124]
ABE-P48R-UGITadA*7.10(P48R)-nCas9-2×UGIIntroduction of P48R mutation into TadA*7.10 and addition of two UGIsEngineering ABE to a TC-specific cytosine base editor and reducing bystander editing[128]
TadCBETadA-CD variant-nCas9Introduction of additional mutations into TadA*8e to confer cytidine deaminase- specific activityEngineering ABE to a cytosine base editor, reducing the size, and reducing DNA and RNA off-target editing[53]
Td-CBEmaxTadA*8e(E27R)-nCas9-2×UGIIntroduction of E27R mutation into TadA*8e and addition of two UGIsEngineering ABE to a CBE with reduced off-target and narrow editing window[48]
CBE-TTadC-nCas92×UGIIntroduction of mutations into TadA*8.20, resulting TadC variantsEngineering ABE8s to a compact CBE with reduced DNA off-target[54]
d12fCBEs-8e(GGATY)TadA*8e(GGATY)-dUn1Cas12f1Introduction of V28G/A48G/I49A/V82T/N108Y mutations into TadA*8e and employment of miniature Un1Cas12f1 ortholog with D326A/D510A mutationsEngineering a compact, precious and specific CBE with TadA variant[130]
Nuclear base editors, ABEABE7.10ecTadA-TadA*7.10-nCas9Employment of heterodimeric ecTadA-TadA*7.10 adenine deaminaseThe first active and widely used ABE[13]
ABEmaxecTadA-TadA*7.10-nCas9Codon optimization and modification of nuclear-localization sequence (NLS)Improving the efficiency[103]
ABEmaxAWecTadA(E59A)-TadA*7.10(V106W)-nCas9Introduction of E59A mutation into ecTadA and V106W mutation into TadA*7.10Reducing RNA off-target editing[120]
ABE7.10F148AecTadA(F148A)-TadA*7.10(F148A)-nCas9Introduction of F148A mutation both into ecTadA and TadA*7.10Reducing RNA off-target editing[118]
SECURE-ABETadA*7.10(K20A/R21A)-nCas9 or TadA*7.10(V82G)-nCas9Removal of the wild-type ecTadA domain and introduction of K20A/R21A or V82G mutations into TadA*7.10Reducing RNA off-target editing, self-editing, and the size[44]
SaKKH-ABEecTadA-TadA*7.10-KKH-nSaCas9Replacement of SpCas9 nickase with KKH-SaCas9 nickase variantReducing the size and expanding targeting scope to NNNRRT[173]
xABEecTadA-TadA*7.10-xCas9Replacement of SpCas9 with xCas9(3.7) variant harboring D10A and seven additional mutations (A262T/R324L/S409I/E480K/E543D/M694I/E1219V)Expanding the targeting scope to NG, GAA, and GAT PAM sequences[108,263]
VQR-ABEecTadA-TadA*7.10-VQR-nCas9Replacement of SpCas9 nickase with VQR-Cas9 nickase variantExpanding the targeting scope to NGA PAM sequence[173]
SpRY-ABEecTadA-TadA*7.10-nSpRYReplacement of SpCas9 with SpRY variant harboring D10A and five additional mutations (A61R/L1111R/N1317R/A1322R/R1333P)Expanding the targeting scope to NRN>NYN PAM sequences[111]
ABE8eTadA*8e-nCas9Removal of the wild type ecTadA domain and evolvement of TadA*7.10 to TadA*8eImproving the efficiency and reducing the size[99]
SaABE8eTadA*8e-nSaCas9Replacement of SpCas9 nickase with nSaCas9Reducing the size and changing targeting scope to NNGRRT[99]
LbABE8eTadA*8e-dLbCas12aReplacement of SpCas9 nickase with dLbCas12aChanging targeting scope to T-rich PAM sequence[99]
enCas12a-ABE8e-V106WTadA*8e(V106W)-denLbCas12aReplacement of SpCas9 nickase with denLbCas12a variant and introduction of V106W mutation into TadA*8eImproving the efficiency, expanding the targeting scope to NTTN, TYCN, and TRTV PAM sequences, and reducing RNA off-target editing[101]
cjABE8eTadA*8e-nCjCas9Replacement of SpCas9 nickase with nCjCas9Reducing the size of ABE[144146]
ABE8eWQTadA*8e(V106W/D108Q)-nCas9Introduction of V106W/D108Q mutations into TadA*8eReducing cytosine deamination activity of TadA and reducing RNA off-target editing[128]
d12fABE-8eTadA*8e-dUn1Cas12f1Replacement of SpCas9 with miniature Un1Cas12f1 ortholog with D326A/D510A mutationsReducing the size and changing targeting scope to TTTR PAM sequence[130]
TaC9-ABEecTadA-TadA*7.10-TALE; nCas9Fusion of heterodimeric ecTadA-TadA*7.10 to TALEEliminating Cas9-dependent off-target editing[123]
ABE9TadA*8e(N108Q/L145T)-nCas9Introduction of N108Q/L145T mutations into TadA*8eNarrowing the editing window[140]
Nuclear base editors, CGBECGBE1eUNG-rAPOBEC1(R33A)-nCas9Removal of UGI, introduction of eUNG, and introduction of R33A mutation into rAPOBEC1Engineering a C-to-G base editor[20,46]
GBErAPOBEC1-nCas9-UNGRemoval of UGI and introduction of eUNGEngineering a C-to-G base editor[19,46]
CGBE(XRCC1)rAPOBEC1-nCas9-XRRCC1Removal of UGI and introduction of DNA repair protein XRRCC1Engineering a C-to-G base editor[45]
SpRY-GBErAPOBEC1-nSpRY-UNGReplacement of SpCas9 with SpRY variant harboring D10A and five additional mutations (A61R/L1111R/N1317R/A1322R/R1333P)Expanding the targeting scope to NRN > NYN PAM sequences[47]
ABE-P48RTadA*7.10(P48R)-nCas9Introduction of P48R mutation into TadA*7.10Engineering ABE to a TC-specific GBE and reducing bystander editing[128]
Td-CGBETadA*8e(N46L)-nCas9Introduction of N46L mutation into TadA*8eEngineering ABE8e to a smaller CGBE with narrow editing window and reduced off-target[48]
Nuclear base editors, AYBEAYBETadA*8e-nCas9-MPGFusion of a human MPG protein to the C- terminus of nCas9Engineering ABE to new base editor for A-to-C and A-to-T transversion editing[21]
Nuclear base editors, dual-deaminase base editorSTEME-1hAPOBEC3A-ecTadA-TadA*7.10-nCas9-UGI-CaMV terminatorCombination of ABE and CBESimultaneous dual-base editing for targeted and random mutagenesis[22]
A&C-BEmaxrAPOBEC1-ecTadA-TadA*7.10-nCas9-2×UGICombination of ABE and CBESimultaneous C-to-T and A-to-G conversions at the same target site[41]
SPACETadA*7.10(V82G)-nCas9-PmCDA1-2×UGICombination of miniABE and CBESimultaneous C-to-T and A-to-G conversions at the same target site and reducing RNA off-target editing[42]
Target-ACEmaxTadA*7.10-nCas9-PmCDA1-UGICombination of miniABE and CBESimultaneous C-to-T and A-to-G conversions at the same target site[43]
ACBEecTadA-TadA*7.10-nCas9-PmCDA1-UGICombination of ABE and CBESimultaneous C-to-T and A-to-G conversions at the same target site[23]
CABE-RYhAPOBEC3A(Y130F)- TadA*8e(V106W)-nCas9-2×UGICombination of ABE and CBE, introduction of Y130F into hA3A and V106W into TadA*8e, and employment of SpRY variantImproving the dual-base editing efficiency, reducing RNA off-target editing, and expanding targeting scope[51]
TadDETadA-dual variant-nCas9Introduction of additional mutations into TadA*8e to confer both C-to-T and A-to-G editing activityEngineering ABE to a dual base editor and reducing the size[53]
CABE-TTadAC-nCas9-2×UGIIntroduction of mutations into TadA*8.20, resulting TadAC variants and addition of two UGIsEngineering ABE8s to a compact dual base editor with enhanced efficiency and reduced DNA off-target[54]
miniAGBE-4hAPOBEC3A-TadA*8e(V106W)-nCas9Combination of ABE and miniGBESimultaneous dual-base editing for saturated mutagenesis[24]
Mitochondrial DNA base editorsDdCBEMTS-TALE-Split-DddAtox half-UGI; MTS-TALE-Split-DddAtox half-UGIEmployment of double-strand DNA cytosine deaminase DddAtoxThe first active and widely used mitochondrial base editor[26]
ZFDMTS-ZFP-Split-DddAtox half-UGI; MTS-ZFP-Split-DddAtox half-UGIReplacement of TALE array with ZFP arrayReducing the size and immunogenicity[66,68]
mDdCBEMTS-TALE-DddAtox full variant-UGIFusion of the full-length DddAtox variant to a single TALE arrayReducing the size[67]
sTALEDMTS-TALE-Split-DddAtox half-TadA*8e; MTS-TALE-Split-DddAtox halfIntroduction of TadA*8e and removal of UGIThe first mitochondrial base editor for A-to-G editing[27]
dTALEDMTS-TALE- DddAtox full variant; MTS-TALE- TadA*8eEmployment of catalytically inactive full-length DddAtox variantReducing mitochondrial DNA off-target effect[27]
mTALEDMTS-TALE-TadA*8e-DddAtox full variantFusion of TadA*8e and catalytically inactive full-length DddAtox variant to a single TALE arrayReducing the size[27]
RNA base editorsREPAIRdCas13b-ADAR2DDFusion of dCas13b to ADAR2DDThe first CRISPR/Cas-based RNA base editor for A-to-I editing[14]
RESCUEdCas13b-evoADAR2DDEngineering the adenine deaminase domain of ADAR2 into a cytidine deaminaseThe first CRISPR/Cas-based RNA base editor for C-to-U editing, while retaining A-to-I activity[25]
CUREdCas13b-hAPOBEC3A(Y132D) or dCasRx-L-hAPOBEC3A(Y132D)-dCasRx-RFusion of hAPOBEC3A(Y132D) to the C-terminus of dCas13b or insertion of hAPOBEC3A(Y132D) into a flexible loop on dCasRxEngineering a C-to-U RNA base editor without A-to-I activity[78]
REWIREPUF-ADARDD or hAPOBEC3A-PUFFusion of PUF domain with the deaminase domain of ADAR or fusion of PUF domain with hA3AEngineering a guide-RNA-free A-to-I or C-to-U RNA base editor[79]
Prime editorsPE2nCas9(H840A)-M-MLV RT variant; pegRNAFusion of nCas9(H840A) with M-MLV RT variant harboring D200N/L603W/T330P/T306K/W313F mutations, and engineering a pegRNAEnabling all types of base editing, including substitute, short insertion, and deletion[28]
PE3nCas9(H840A)-M-MLV RT variant; pegRNA; nsgRNAIntroduction of an additional nsgRNA to nick the non-edited strandImproving the efficiency[28]
HOPEnCas9(H840A)-M-MLV RT variant; S-pegRNA; AS-pegRNAEmployment of paired pegRNAs to target both sense and antisense DNA strandImproving the efficiency and product purity[91,92,264267]
hyPE2nCas9(H840A)-Rad51DBD-M-MLV RT variant; pegRNAIntroduction of single-stranded DNA-binding domain from Rad51 proteinImproving the efficiency[87]
PE4nCas9(H840A)-M-MLV RT variant; MLH1dn; pegRNACo-expression of MLH1dn variant in PE2 systemImproving the efficiency[85]
PE5nCas9(H840A)-M-MLV RT variant; pegRNA; nsgRNACo-expression of MLH1dn variant in PE3 systemImproving the efficiency[85]
PE2-SpRYnSpRY(H840A)-M-MLV RT variant; pegRNAReplacement of SpCas9 nickase with SpRY nickase variantExpanding the targeting scope[268]
Split-intein-PE2nCas9(H840A)-N-intein-N; intein-C-nCas9(H840A)-C-RT variant; pegRNASplitting PE2 with inteinFacilitating delivery via viral vectors[86,269]
Split-PE2nCas9(H840A); M-MLV RT variant; pegRNASplit nCas9 and reverse transcriptaseFacilitating engineering and delivery via viral vectors[270]
Tab.2  
Fig.3  
OrganismTarget genesDiseasesBase editorsApproachesReference
ZebrafishtyrOA, OCABE3mRNA microinjection[168]
rps145q-SyndromeABE7.10mRNA microinjection[169]
muskCMSABE7.10mRNA microinjection[169]
MT-ND1LHONDdCBEmRNA microinjection[59]
MT-ND5MELAS or LSDdCBEmRNA microinjection[59]
Xenopus laevistyrOA, OCABE3RNP[170]
MouseDmdDMDBE3RNP[133]
Dnd1PGC deficiency & infertilityBE3mRNA microinjection[171]
ArAISABE7.10mRNA microinjection[136]
Hoxd13SyndactylyABE7.10mRNA microinjection[136]
TyrOA, OCAABE7.10mRNA microinjection[163]
FahHTIABE7.10mRNA microinjection[173]
Ctnnb1HCCBE3Hydrodynamic transfection[158]
Psen1fADBE3, Target-AIDmRNA microinjection[172]
Hsd17b3NRBEACONmRNA microinjection[96]
MT-ND1LHONDdCBEmRNA microinjection[180]
MT-ND5MELAS, LS, LHONDdCBEmRNA microinjection[58,65,180]
RatGaaGSDIIABE7.10mRNA microinjection[173]
TRNKMERRFDdCBEmRNA microinjection[60]
RabbitTYROA, OCABE3, YFE-BE4maxmRNA microinjection[174]
LMNAHGPSBE3, YFE-BE4maxmRNA microinjection[174]
DMDXLCMABE7.10mRNA microinjection[174]
DogGCKPNDMBE3mRNA microinjection[157]
PigLMNAHGPSBE3mRNA microinjection[176]
DMDDMDBE3SCNT[176]
RAG1/2 & IL2RGSCIDBE3SCNT[176]
TWIST2AMSBE3SCNT[175]
TYROCABE3SCNT[175]
P53MalignanciesBE3SCNT[271]
MonkeyLMNAHGPSBE4maxmRNA microinjection[177]
Tab.3  
PipelinesSponsorsModified mechanismConditions or diseasesDelivery strategiesDevelopment status
VERVE-101Verve Therapeutics Inc.Disrupting expression of PCSK9 gene in liverHeterozygous familial hypercholesterolemiaIn vivo LNPPhase 1b (safety and pharmacodynamic profile)
Atherosclerotic cardiovascular disease
VERVE-201Verve Therapeutics Inc.Disrupting expression of ANGPTL3 geneFamilial hypercholesterolemiaIn vivo LNPResearch/lead optimization
Atherosclerotic cardiovascular disease
BEAM-101Beam Therapeutics Inc.Activation of fetal hemoglobinSickle cell diseaseEx vivo HSCsPhase 1/2 (safety and efficacy of the administration)
Beta thalassemia
BEAM-102Beam Therapeutics Inc.Correction of HbS sickle mutationSickle cell diseaseEx vivo HSCsIND-enabling studies
ESCAPEBeam Therapeutics Inc.Multiplex CD117 edit-antibody pairBeta thalassemiaEx vivo HSCsResearch/lead optimization
Beta thalassemia
BEAM-201Beam Therapeutics Inc.Multiplexed silenced CD7 CAR-TCD7+ AMLEx vivo T cellsIND-enabling studies
CD7+ AML
BEAM-301Beam Therapeutics Inc.Correction of R83C mutationGlycogen storage disease 1aIn vivo LNPResearch/lead optimization
BEAM-302Beam Therapeutics Inc.Correction of E342K mutationα-1 Antitrypsin deficiencyIn vivo LNPResearch/lead optimization
Unnamed candidateBeam Therapeutics Inc.Correction of Q347X mutationGlycogen storage disease 1aIn vivo LNPResearch/lead optimization
Unnamed candidateBeam Therapeutics Inc.Multiplex silencingHepatitis B virusIn vivo LNPResearch/lead optimization
Unnamed candidateBeam Therapeutics Inc.Correction of G1961E mutationStargardt diseaseAAVResearch/lead optimization
BE CAR7+ T cells/BECAR7Great Ormond Street Hospital for Children NHS Foundation TrustMultiplexed silenced CD7 CAR-TRelapsed/refractory T-cell ALLEx vivo HSCsPhase 1 (safety and effectiveness)
WVE-006Wave Life SciencesCorrection SERPINA1 mRNA mutationα-1 antitrypsin deficiencySubcutaneousPreclinical
Tab.4  
1 M Jinek, K Chylinski, I Fonfara, M Hauer, JA Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816–821
https://doi.org/10.1126/science.1225829
2 L Cong, FA Ran, D Cox, S Lin, R Barretto, N Habib, PD Hsu, X Wu, W Jiang, LA Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819–823
https://doi.org/10.1126/science.1231143
3 G Gasiunas, R Barrangou, P Horvath, V Siksnys. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579–E2586
https://doi.org/10.1073/pnas.1208507109
4 AC Komor, AH Badran, DR Liu. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017; 169(3): 559
https://doi.org/10.1016/j.cell.2017.04.005
5 M Adli. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9(1): 1911
https://doi.org/10.1038/s41467-018-04252-2
6 A Pickar-Oliver, CA Gersbach. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 2019; 20(8): 490–507
https://doi.org/10.1038/s41580-019-0131-5
7 JY Wang, JA Doudna. CRISPR technology: a decade of genome editing is only the beginning. Science 2023; 379(6629): eadd8643
https://doi.org/10.1126/science.add8643
8 R Chaudhary, B Singh, M Kumar, SK Gakhar, AK Saini, VS Parmar, AK Chhillar. Role of single nucleotide polymorphisms in pharmacogenomics and their association with human diseases. Drug Metab Rev 2015; 47(3): 281–290
https://doi.org/10.3109/03602532.2015.1047027
9 MJ Landrum, JM Lee, M Benson, G Brown, C Chao, S Chitipiralla, B Gu, J Hart, D Hoffman, J Hoover, W Jang, K Katz, M Ovetsky, G Riley, A Sethi, R Tully, R Villamarin-Salomon, W Rubinstein, DR Maglott. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016; 44(D1): D862–D868
https://doi.org/10.1093/nar/gkv1222
10 HA Rees, DR Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19(12): 770–788
https://doi.org/10.1038/s41576-018-0059-1
11 AC Komor, YB Kim, MS Packer, JA Zuris, DR Liu. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420–424
https://doi.org/10.1038/nature17946
12 K Nishida, T Arazoe, N Yachie, S Banno, M Kakimoto, M Tabata, M Mochizuki, A Miyabe, M Araki, KY Hara, Z Shimatani, A Kondo. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016; 353(6305): aaf8729
https://doi.org/10.1126/science.aaf8729
13 NM Gaudelli, AC Komor, HA Rees, MS Packer, AH Badran, DI Bryson, DR Liu. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551(7681): 464–471
https://doi.org/10.1038/nature24644
14 DBT Cox, JS Gootenberg, OO Abudayyeh, B Franklin, MJ Kellner, J Joung, F Zhang. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019–1027
https://doi.org/10.1126/science.aaq0180
15 KA Molla, Y Yang. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 2019; 37(10): 1121–1142
https://doi.org/10.1016/j.tibtech.2019.03.008
16 EM Porto, AC Komor, IM Slaymaker, GW Yeo. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19(12): 839–859
https://doi.org/10.1038/s41573-020-0084-6
17 B Yang, L Yang, J Chen. Development and application of base editors. CRISPR J 2019; 2(2): 91–104
https://doi.org/10.1089/crispr.2019.0001
18 AV Anzalone, LW Koblan, DR Liu. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38(7): 824–844
https://doi.org/10.1038/s41587-020-0561-9
19 D Zhao, J Li, S Li, X Xin, M Hu, MA Price, SJ Rosser, C Bi, X Zhang. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 2021; 39(1): 35–40
https://doi.org/10.1038/s41587-020-0592-2
20 IC Kurt, R Zhou, S Iyer, SP Garcia, BR Miller, LM Langner, J Grünewald, JK Joung. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 2021; 39(1): 41–46
https://doi.org/10.1038/s41587-020-0609-x
21 H TongX WangY LiuN LiuY LiJ LuoQ MaD WuJ LiC XuH Yang. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol 2023; [Epub ahead of print] doi:10.1038/s41587-022-01595-6
pmid: 36624150
22 C Li, R Zhang, X Meng, S Chen, Y Zong, C Lu, JL Qiu, YH Chen, J Li, C Gao. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 2020; 38(7): 875–882
https://doi.org/10.1038/s41587-019-0393-7
23 J Xie, X Huang, X Wang, S Gou, Y Liang, F Chen, N Li, Z Ouyang, Q Zhang, W Ge, Q Jin, H Shi, Z Zhuang, X Zhao, M Lian, J Wang, Y Ye, L Quan, H Wu, K Wang, L Lai. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol 2020; 18(1): 131
https://doi.org/10.1186/s12915-020-00866-5
24 Y Liang, J Xie, Q Zhang, X Wang, S Gou, L Lin, T Chen, W Ge, Z Zhuang, M Lian, F Chen, N Li, Z Ouyang, C Lai, X Liu, L Li, Y Ye, H Wu, K Wang, L Lai. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res 2022; 50(9): 5384–5399
https://doi.org/10.1093/nar/gkac353
25 OO Abudayyeh, JS Gootenberg, B Franklin, J Koob, MJ Kellner, A Ladha, J Joung, P Kirchgatterer, DBT Cox, F Zhang. A cytosine deaminase for programmable single-base RNA editing. Science 2019; 365(6451): 382–386
https://doi.org/10.1126/science.aax7063
26 BY Mok, MH de Moraes, J Zeng, DE Bosch, AV Kotrys, A Raguram, F Hsu, MC Radey, SB Peterson, VK Mootha, JD Mougous, DR Liu. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020; 583(7817): 631–637
https://doi.org/10.1038/s41586-020-2477-4
27 SI Cho, S Lee, YG Mok, K Lim, J Lee, JM Lee, E Chung, JS Kim. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022; 185(10): 1764–1776.e12
https://doi.org/10.1016/j.cell.2022.03.039
28 AV Anzalone, PB Randolph, JR Davis, AA Sousa, LW Koblan, JM Levy, PJ Chen, C Wilson, GA Newby, A Raguram, DR Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4
29 C MA Zeballos, T Gaj. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol 2021; 39(7): 692–705
https://doi.org/10.1016/j.tibtech.2020.10.010
30 GT Hess, L Frésard, K Han, CH Lee, A Li, KA Cimprich, SB Montgomery, MC Bassik. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 2016; 13(12): 1036–1042
https://doi.org/10.1038/nmeth.4038
31 J Kweon, AH Jang, HR Shin, JE See, W Lee, JW Lee, S Chang, K Kim, Y Kim. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene 2020; 39(1): 30–35
https://doi.org/10.1038/s41388-019-0968-2
32 FJ Sánchez-Rivera, BJ Diaz, ER Kastenhuber, H Schmidt, A Katti, M Kennedy, V Tem, YJ Ho, J Leibold, SV Paffenholz, FM Barriga, K Chu, S Goswami, AN Wuest, JM Simon, KM Tsanov, D Chakravarty, H Zhang, CS Leslie, SW Lowe, LE Dow. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat Biotechnol 2022; 40(6): 862–873
https://doi.org/10.1038/s41587-021-01172-3
33 R Cuella-Martin, SB Hayward, X Fan, X Chen, JW Huang, A Taglialatela, G Leuzzi, J Zhao, R Rabadan, C Lu, Y Shen, A Ciccia. Functional interrogation of DNA damage response variants with base editing screens. Cell 2021; 184(4): 1081–1097.e19
https://doi.org/10.1016/j.cell.2021.01.041
34 RE Hanna, M Hegde, CR Fagre, PC DeWeirdt, AK Sangree, Z Szegletes, A Griffith, MN Feeley, KR Sanson, Y Baidi, LW Koblan, DR Liu, JT Neal, JG Doench. Massively parallel assessment of human variants with base editor screens. Cell 2021; 184(4): 1064–1080.e20
https://doi.org/10.1016/j.cell.2021.01.012
35 Y Ma, J Zhang, W Yin, Z Zhang, Y Song, X Chang. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 2016; 13(12): 1029–1035
https://doi.org/10.1038/nmeth.4027
36 B Hwang, W Lee, SY Yum, Y Jeon, N Cho, G Jang, D Bang. Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nat Commun 2019; 10(1): 1234
https://doi.org/10.1038/s41467-019-09203-z
37 K Liu, S Deng, C Ye, Z Yao, J Wang, H Gong, L Liu, X He. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods 2021; 18(12): 1506–1514
https://doi.org/10.1038/s41592-021-01325-x
38 A Kantor, ME McClements, RE MacLaren. CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 2020; 21(17): 6240
https://doi.org/10.3390/ijms21176240
39 GA Newby, DR Liu. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29(11): 3107–3124
https://doi.org/10.1016/j.ymthe.2021.09.002
40 J Tan, J Forner, D Karcher, R Bock. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38(11): 1147–1169
https://doi.org/10.1016/j.tig.2022.06.015
41 X Zhang, B Zhu, L Chen, L Xie, W Yu, Y Wang, L Li, S Yin, L Yang, H Hu, H Han, Y Li, L Wang, G Chen, X Ma, H Geng, W Huang, X Pang, Z Yang, Y Wu, S Siwko, R Kurita, Y Nakamura, L Yang, M Liu, D Li. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 2020; 38(7): 856–860
https://doi.org/10.1038/s41587-020-0527-y
42 J Grünewald, R Zhou, CA Lareau, SP Garcia, S Iyer, BR Miller, LM Langner, JY Hsu, MJ Aryee, JK Joung. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 2020; 38(7): 861–864
https://doi.org/10.1038/s41587-020-0535-y
43 RC Sakata, S Ishiguro, H Mori, M Tanaka, K Tatsuno, H Ueda, S Yamamoto, M Seki, N Masuyama, K Nishida, H Nishimasu, K Arakawa, A Kondo, O Nureki, M Tomita, H Aburatani, N Yachie. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 2020; 38(7): 865–869
https://doi.org/10.1038/s41587-020-0509-0
44 J Grünewald, R Zhou, S Iyer, CA Lareau, SP Garcia, MJ Aryee, JK Joung. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 2019; 37(9): 1041–1048
https://doi.org/10.1038/s41587-019-0236-6
45 L Chen, JE Park, P Paa, PD Rajakumar, HT Prekop, YT Chew, SN Manivannan, WL Chew. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun 2021; 12(1): 1384
https://doi.org/10.1038/s41467-021-21559-9
46 LW Koblan, M Arbab, MW Shen, JA Hussmann, AV Anzalone, JL Doman, GA Newby, D Yang, B Mok, JM Replogle, A Xu, TA Sisley, JS Weissman, B Adamson, DR Liu. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat Biotechnol 2021; 39(11): 1414–1425
https://doi.org/10.1038/s41587-021-00938-z
47 X Dong, C Yang, Z Ma, M Chen, X Zhang, C Bi. Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Rep 2022; 40(3): 111090
https://doi.org/10.1016/j.celrep.2022.111090
48 L Chen, B Zhu, G Ru, H Meng, Y Yan, M Hong, D Zhang, C Luan, S Zhang, H Wu, H Gao, S Bai, C Li, R Ding, N Xue, Z Lei, Y Chen, Y Guan, S Siwko, Y Cheng, G Song, L Wang, C Yi, M Liu, D Li. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol 2023; 41(5): 663–672
https://doi.org/10.1038/s41587-022-01532-7
49 D Zeng, Z Zheng, Y Liu, T Liu, T Li, J Liu, Q Luo, Y Xue, S Li, N Chai, S Yu, X Xie, YG Liu, Q Zhu. Exploring C-to-G and A-to-Y base editing in rice by using new vector tools. Int J Mol Sci 2022; 23(14): 7990
https://doi.org/10.3390/ijms23147990
50 Y Wang, L Zhou, R Tao, N Liu, J Long, F Qin, W Tang, Y Yang, Q Chen, S Yao. sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine. Genome Biol 2020; 21(1): 222
https://doi.org/10.1186/s13059-020-02137-6
51 W Tao, Q Liu, S Huang, X Wang, S Qu, J Guo, D Ou, G Li, Y Zhang, X Xu, X Huang. CABE-RY: a PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Mol Ther Nucleic Acids 2021; 26: 114–121
https://doi.org/10.1016/j.omtn.2021.07.016
52 Y Zhao, M Li, J Liu, X Xue, J Zhong, J Lin, B Ye, J Chen, Y Qiao. Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors. Comput Struct Biotechnol J 2023; 21: 856–868
https://doi.org/10.1016/j.csbj.2022.12.055
53 ME Neugebauer, A Hsu, M Arbab, NA Krasnow, AN McElroy, S Pandey, JL Doman, TP Huang, A Raguram, S Banskota, GA Newby, J Tolar, MJ Osborn, DR Liu. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol 2023; 41(5): 673–685
https://doi.org/10.1038/s41587-022-01533-6
54 DK Lam, PR Feliciano, A Arif, T Bohnuud, TP Fernandez, JM Gehrke, P Grayson, KD Lee, MA Ortega, C Sawyer, ND Schwaegerle, L Peraro, L Young, SJ Lee, G Ciaramella, NM Gaudelli. Improved cytosine base editors generated from TadA variants. Nat Biotechnol 2023; 41(5): 686–697
https://doi.org/10.1038/s41587-022-01611-9
55 P Silva-Pinheiro, M Minczuk. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23(4): 199–214
https://doi.org/10.1038/s41576-021-00432-x
56 PA Gammage, CT Moraes, M Minczuk. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet 2018; 34(2): 101–110
https://doi.org/10.1016/j.tig.2017.11.001
57 T Yin, J Luo, D Huang, H Li. Current progress of mitochondrial genome editing by CRISPR. Front Physiol 2022; 13: 883459
https://doi.org/10.3389/fphys.2022.883459
58 H Lee, S Lee, G Baek, A Kim, BC Kang, H Seo, JS Kim. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 2021; 12(1): 1190
https://doi.org/10.1038/s41467-021-21464-1
59 J Guo, X Zhang, X Chen, H Sun, Y Dai, J Wang, X Qian, L Tan, X Lou, B Shen. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov 2021; 7(1): 78
https://doi.org/10.1038/s41421-021-00307-9
60 X Qi, X Chen, J Guo, X Zhang, H Sun, J Wang, X Qian, B Li, L Tan, L Yu, W Chen, L Zhang, Y Ma, B Shen. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov 2021; 7(1): 95
https://doi.org/10.1038/s41421-021-00325-7
61 X Chen, D Liang, J Guo, J Zhang, H Sun, X Zhang, J Jin, Y Dai, Q Bao, X Qian, L Tan, P Hu, X Ling, B Shen, Z Xu. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov 2022; 8(1): 8
https://doi.org/10.1038/s41421-021-00358-y
62 Y Wei, C Xu, H Feng, K Xu, Z Li, J Hu, L Zhou, Y Wei, Z Zuo, E Zuo, W Li, H Yang, M Zhang. Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discov 2022; 8(1): 7
https://doi.org/10.1038/s41421-021-00372-0
63 P Silva-Pinheiro, PA Nash, L Van Haute, CD Mutti, K Turner, M Minczuk. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat Commun 2022; 13(1): 750
https://doi.org/10.1038/s41467-022-28358-w
64 BY Mok, AV Kotrys, A Raguram, TP Huang, VK Mootha, DR Liu. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 2022; 40(9): 1378–1387
https://doi.org/10.1038/s41587-022-01256-8
65 S Lee, H Lee, G Baek, E Namgung, JM Park, S Kim, S Hong, JS Kim. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol 2022; 23(1): 211
https://doi.org/10.1186/s13059-022-02782-z
66 K Lim, SI Cho, JS Kim. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat Commun 2022; 13(1): 366
https://doi.org/10.1038/s41467-022-27962-0
67 YG Mok, JM Lee, E Chung, J Lee, K Lim, SI Cho, JS Kim. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat Commun 2022; 13(1): 4038
https://doi.org/10.1038/s41467-022-31745-y
68 JCW Willis, P Silva-Pinheiro, L Widdup, M Minczuk, DR Liu. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 2022; 13(1): 7204
https://doi.org/10.1038/s41467-022-34784-7
69 Y Wei, Z Li, K Xu, H Feng, L Xie, D Li, Z Zuo, M Zhang, C Xu, H Yang, E Zuo. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov 2022; 8(1): 27
https://doi.org/10.1038/s41421-022-00391-5
70 Z Lei, H Meng, L Liu, H Zhao, X Rao, Y Yan, H Wu, M Liu, A He, C Yi. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 2022; 606(7915): 804–811
https://doi.org/10.1038/s41586-022-04836-5
71 S Lee, H Lee, G Baek, JS Kim. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat Biotechnol 2023; 41(3): 378–386
https://doi.org/10.1038/s41587-022-01486-w
72 L Mi, M Shi, YX Li, G Xie, X Rao, D Wu, A Cheng, M Niu, F Xu, Y Yu, N Gao, W Wei, X Wang, Y Wang. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat Commun 2023; 14(1): 874
https://doi.org/10.1038/s41467-023-36600-2
73 TM Woolf, JM Chase, DT Stinchcomb. Toward the therapeutic editing of mutated RNA sequences. Proc Natl Acad Sci USA 1995; 92(18): 8298–8302
https://doi.org/10.1073/pnas.92.18.8298
74 T Merkle, S Merz, P Reautschnig, A Blaha, Q Li, P Vogel, J Wettengel, JB Li, T Stafforst. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37(2): 133–138
https://doi.org/10.1038/s41587-019-0013-6
75 L Qu, Z Yi, S Zhu, C Wang, Z Cao, Z Zhou, P Yuan, Y Yu, F Tian, Z Liu, Y Bao, Y Zhao, W Wei. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol 2019; 37(9): 1059–1069
https://doi.org/10.1038/s41587-019-0178-z
76 Z Yi, L Qu, H Tang, Z Liu, Y Liu, F Tian, C Wang, X Zhang, Z Feng, Y Yu, P Yuan, Z Yi, Y Zhao, W Wei. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 2022; 40(6): 946–955
https://doi.org/10.1038/s41587-021-01180-3
77 S Kannan, H Altae-Tran, X Jin, VJ Madigan, R Oshiro, KS Makarova, EV Koonin, F Zhang. Compact RNA editors with small Cas13 proteins. Nat Biotechnol 2022; 40(2): 194–197
https://doi.org/10.1038/s41587-021-01030-2
78 X Huang, J Lv, Y Li, S Mao, Z Li, Z Jing, Y Sun, X Zhang, S Shen, X Wang, M Di, J Ge, X Huang, E Zuo, T Chi. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J 2020; 39(22): e104741
https://doi.org/10.15252/embj.2020104741
79 W Han, W Huang, T Wei, Y Ye, M Mao, Z Wang. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Res 2022; 50(16): 9580–9595
https://doi.org/10.1093/nar/gkac713
80 M Ichinose, M Kawabata, Y Akaiwa, Y Shimajiri, I Nakamura, T Tamai, T Nakamura, Y Yagi, B Gutmann. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun Biol 2022; 5(1): 968
https://doi.org/10.1038/s42003-022-03927-3
81 PJ Chen, DR Liu. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023; 24(3): 161–177
https://doi.org/10.1038/s41576-022-00541-1
82 Y Liu, X Li, S He, S Huang, C Li, Y Chen, Z Liu, X Huang, X Wang. Efficient generation of mouse models with the prime editing system. Cell Discov 2020; 6(1): 27
https://doi.org/10.1038/s41421-020-0165-z
83 Y Qian, D Zhao, T Sui, M Chen, Z Liu, H Liu, T Zhang, S Chen, L Lai, Z Li. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system. Cell Discov 2021; 7(1): 50
https://doi.org/10.1038/s41421-021-00276-z
84 K Petri, W Zhang, J Ma, A Schmidts, H Lee, JE Horng, DY Kim, IC Kurt, K Clement, JY Hsu, L Pinello, MV Maus, JK Joung, JJ Yeh. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat Biotechnol 2022; 40(2): 189–193
https://doi.org/10.1038/s41587-021-00901-y
85 PJ Chen, JA Hussmann, J Yan, F Knipping, P Ravisankar, PF Chen, C Chen, JW Nelson, GA Newby, M Sahin, MJ Osborn, JS Weissman, B Adamson, DR Liu. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021; 184(22): 5635–5652.e29
https://doi.org/10.1016/j.cell.2021.09.018
86 P Liu, SQ Liang, C Zheng, E Mintzer, YG Zhao, K Ponnienselvan, A Mir, EJ Sontheimer, G Gao, TR Flotte, SA Wolfe, W Xue. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 2021; 12(1): 2121
https://doi.org/10.1038/s41467-021-22295-w
87 M Song, JM Lim, S Min, JS Oh, DY Kim, JS Woo, H Nishimasu, SR Cho, S Yoon, HH Kim. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat Commun 2021; 12(1): 5617
https://doi.org/10.1038/s41467-021-25928-2
88 Y Liu, G Yang, S Huang, X Li, X Wang, G Li, T Chi, Y Chen, X Huang, X Wang. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res 2021; 31(10): 1134–1136
https://doi.org/10.1038/s41422-021-00520-x
89 JW Nelson, PB Randolph, SP Shen, KA Everette, PJ Chen, AV Anzalone, M An, GA Newby, JC Chen, A Hsu, DR Liu. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022; 40(3): 402–410
https://doi.org/10.1038/s41587-021-01039-7
90 SJ Park, TY Jeong, SK Shin, DE Yoon, SY Lim, SP Kim, J Choi, H Lee, JI Hong, J Ahn, JK Seong, K Kim. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 2021; 22(1): 170
https://doi.org/10.1186/s13059-021-02389-w
91 Y Zhuang, J Liu, H Wu, Q Zhu, Y Yan, H Meng, PR Chen, C Yi. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol 2022; 18(1): 29–37
https://doi.org/10.1038/s41589-021-00889-1
92 R Tao, Y Wang, Y Jiao, Y Hu, L Li, L Jiang, L Zhou, J Qu, Q Chen, S Yao. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res 2022; 50(11): 6423–6434
https://doi.org/10.1093/nar/gkac506
93 X Wang, J Li, Y Wang, B Yang, J Wei, J Wu, R Wang, X Huang, J Chen, L Yang. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 2018; 36(10): 946–949
https://doi.org/10.1038/nbt.4198
94 Y Zong, Q Song, C Li, S Jin, D Zhang, Y Wang, JL Qiu, C Gao. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 2018; 36(10): 950–953
https://doi.org/10.1038/nbt.4261
95 Z Liu, S Chen, H Shan, Q Zhang, M Chen, L Lai, Z Li. Efficient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discov 2019; 5(1): 31
https://doi.org/10.1038/s41421-019-0099-5
96 X Wang, C Ding, W Yu, Y Wang, S He, B Yang, YC Xiong, J Wei, J Li, J Liang, Z Lu, W Zhu, J Wu, Z Zhou, X Huang, Z Liu, L Yang, J Chen. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep 2020; 31(9): 107723
https://doi.org/10.1016/j.celrep.2020.107723
97 M Lian, F Chen, X Huang, X Zhao, S Gou, N Li, Q Jin, H Shi, Y Liang, J Xie, W Ge, Z Zhuang, J Wang, Y Ye, Y Yang, K Wang, L Lai, H Wu. Improving the Cpf1-mediated base editing system by combining dCas9/dead sgRNA with human APOBEC3A variants. J Genet Genomics 2021; 48(1): 92–95
https://doi.org/10.1016/j.jgg.2020.07.010
98 BW Thuronyi, LW Koblan, JM Levy, WH Yeh, C Zheng, GA Newby, C Wilson, M Bhaumik, O Shubina-Oleinik, JR Holt, DR Liu. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 2019; 37(9): 1070–1079
https://doi.org/10.1038/s41587-019-0193-0
99 MF Richter, KT Zhao, E Eton, A Lapinaite, GA Newby, BW Thuronyi, C Wilson, LW Koblan, J Zeng, DE Bauer, JA Doudna, DR Liu. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020; 38(7): 883–891
https://doi.org/10.1038/s41587-020-0453-z
100 NM Gaudelli, DK Lam, HA Rees, NM Solá-Esteves, LA Barrera, DA Born, A Edwards, JM Gehrke, SJ Lee, AJ Liquori, R Murray, MS Packer, C Rinaldi, IM Slaymaker, J Yen, LE Young, G Ciaramella. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 2020; 38(7): 892–900
https://doi.org/10.1038/s41587-020-0491-6
101 F Chen, M Lian, B Ma, S Gou, X Luo, K Yang, H Shi, J Xie, W Ge, Z Ouyang, C Lai, N Li, Q Zhang, Q Jin, Y Liang, T Chen, J Wang, X Zhao, L Li, M Yu, Y Ye, K Wang, H Wu, L Lai. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol 2022; 5(1): 1163
https://doi.org/10.1038/s42003-022-04152-8
102 MP Zafra, EM Schatoff, A Katti, M Foronda, M Breinig, AY Schweitzer, A Simon, T Han, S Goswami, E Montgomery, J Thibado, ER Kastenhuber, FJ Sánchez-Rivera, J Shi, CR Vakoc, SW Lowe, DF Tschaharganeh, LE Dow. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 2018; 36(9): 888–893
https://doi.org/10.1038/nbt.4194
103 LW Koblan, JL Doman, C Wilson, JM Levy, T Tay, GA Newby, JP Maianti, A Raguram, DR Liu. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 2018; 36(9): 843–846
https://doi.org/10.1038/nbt.4172
104 X Zhang, L Chen, B Zhu, L Wang, C Chen, M Hong, Y Huang, H Li, H Han, B Cai, W Yu, S Yin, L Yang, Z Yang, M Liu, Y Zhang, Z Mao, Y Wu, M Liu, D Li. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat Cell Biol 2020; 22(6): 740–750
https://doi.org/10.1038/s41556-020-0518-8
105 M Li, A Zhong, Y Wu, M Sidharta, M Beaury, X Zhao, L Studer, T Zhou. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nat Commun 2022; 13(1): 6354
https://doi.org/10.1038/s41467-022-34045-7
106 X Li, Y Wang, Y Liu, B Yang, X Wang, J Wei, Z Lu, Y Zhang, J Wu, X Huang, L Yang, J Chen. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 2018; 36(4): 324–327
https://doi.org/10.1038/nbt.4102
107 Z Liu, S Chen, Y Jia, H Shan, M Chen, Y Song, L Lai, Z Li. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci 2021; 64(8): 1355–1367
https://doi.org/10.1007/s11427-020-1775-2
108 JH Hu, SM Miller, MH Geurts, W Tang, L Chen, N Sun, CM Zeina, X Gao, HA Rees, Z Lin, DR Liu. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018; 556(7699): 57–63
https://doi.org/10.1038/nature26155
109 H Nishimasu, X Shi, S Ishiguro, L Gao, S Hirano, S Okazaki, T Noda, OO Abudayyeh, JS Gootenberg, H Mori, S Oura, B Holmes, M Tanaka, M Seki, H Hirano, H Aburatani, R Ishitani, M Ikawa, N Yachie, F Zhang, O Nureki. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018; 361(6408): 1259–1262
https://doi.org/10.1126/science.aas9129
110 SM Miller, T Wang, PB Randolph, M Arbab, MW Shen, TP Huang, Z Matuszek, GA Newby, HA Rees, DR Liu. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 2020; 38(4): 471–481
https://doi.org/10.1038/s41587-020-0412-8
111 RT Walton, KA Christie, MN Whittaker, BP Kleinstiver. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 2020; 368(6488): 290–296
https://doi.org/10.1126/science.aba8853
112 BP Kleinstiver, AA Sousa, RT Walton, YE Tak, JY Hsu, K Clement, MM Welch, JE Horng, J Malagon-Lopez, I Scarfò, MV Maus, L Pinello, MJ Aryee, JK Joung. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 2019; 37(3): 276–282
https://doi.org/10.1038/s41587-018-0011-0
113 E Tóth, É Varga, PI Kulcsár, V Kocsis-Jutka, SL Krausz, A Nyeste, Z Welker, K Huszár, Z Ligeti, A Tálas, E Welker. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res 2020; 48(7): 3722–3733
https://doi.org/10.1093/nar/gkaa110
114 TP Huang, KT Zhao, SM Miller, NM Gaudelli, BL Oakes, C Fellmann, DF Savage, DR Liu. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol 2019; 37(6): 626–631
https://doi.org/10.1038/s41587-019-0134-y
115 TL Cheng, S Li, B Yuan, X Wang, W Zhou, Z Qiu. Expanding C-T base editing toolkit with diversified cytidine deaminases. Nat Commun 2019; 10(1): 3612
https://doi.org/10.1038/s41467-019-11562-6
116 E Zuo, Y Sun, W Wei, T Yuan, W Ying, H Sun, L Yuan, LM Steinmetz, Y Li, H Yang. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 2019; 364(6437): 289–292
https://doi.org/10.1126/science.aav9973
117 S Jin, Y Zong, Q Gao, Z Zhu, Y Wang, P Qin, C Liang, D Wang, JL Qiu, F Zhang, C Gao. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 2019; 364(6437): 292–295
https://doi.org/10.1126/science.aaw7166
118 C Zhou, Y Sun, R Yan, Y Liu, E Zuo, C Gu, L Han, Y Wei, X Hu, R Zeng, Y Li, H Zhou, F Guo, H Yang. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 2019; 571(7764): 275–278
https://doi.org/10.1038/s41586-019-1314-0
119 J Grünewald, R Zhou, SP Garcia, S Iyer, CA Lareau, MJ Aryee, JK Joung. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 2019; 569(7756): 433–437
https://doi.org/10.1038/s41586-019-1161-z
120 HA Rees, C Wilson, JL Doman, DR Liu. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv 2019; 5(5): eaax5717
https://doi.org/10.1126/sciadv.aax5717
121 JL Doman, A Raguram, GA Newby, DR Liu. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol 2020; 38(5): 620–628
https://doi.org/10.1038/s41587-020-0414-6
122 HA Rees, AC Komor, WH Yeh, J Caetano-Lopes, M Warman, ASB Edge, DR Liu. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 2017; 8(1): 15790
https://doi.org/10.1038/ncomms15790
123 Y Liu, J Zhou, T Lan, X Zhou, Y Yang, C Li, Q Zhang, M Chen, S Wei, S Zheng, L Cheng, Y Zheng, L Lai, Q Zou. Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites. Cell Discov 2022; 8(1): 28
https://doi.org/10.1038/s41421-022-00384-4
124 J Zhou, Y Liu, Y Wei, S Zheng, S Gou, T Chen, Y Yang, T Lan, M Chen, Y Liao, Q Zhang, C Tang, Y Liu, Y Wu, X Peng, M Gao, J Wang, K Zhang, L Lai, Q Zou. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Mol Ther 2022; 30(7): 2443–2451
https://doi.org/10.1016/j.ymthe.2022.04.010
125 J Li, W Yu, S Huang, S Wu, L Li, J Zhou, Y Cao, X Huang, Y Qiao. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity. Nat Commun 2021; 12(1): 2287
https://doi.org/10.1038/s41467-021-22519-z
126 A Li, H Mitsunobu, S Yoshioka, T Suzuki, A Kondo, K Nishida. Cytosine base editing systems with minimized off-target effect and molecular size. Nat Commun 2022; 13(1): 4531
https://doi.org/10.1038/s41467-022-32157-8
127 L Wang, W Xue, H Zhang, R Gao, H Qiu, J Wei, L Zhou, YN Lei, X Wu, X Li, C Liu, J Wu, Q Chen, H Ma, X Huang, C Cai, Y Zhang, B Yang, H Yin, L Yang, J Chen. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat Cell Biol 2021; 23(5): 552–563
https://doi.org/10.1038/s41556-021-00671-4
128 YK Jeong, S Lee, GH Hwang, SA Hong, SE Park, JS Kim, JS Woo, S Bae. Adenine base editor engineering reduces editing of bystander cytosines. Nat Biotechnol 2021; 39(11): 1426–1433
https://doi.org/10.1038/s41587-021-00943-2
129 S Zhang, B Yuan, J Cao, L Song, J Chen, J Qiu, Z Qiu, XM Zhao, J Chen, TL Cheng. TadA orthologs enable both cytosine and adenine editing of base editors. Nat Commun 2023; 14(1): 414
https://doi.org/10.1038/s41467-023-36003-3
130 S Zhang, L Song, B Yuan, C Zhang, J Cao, J Chen, J Qiu, Y Tai, J Chen, Z Qiu, XM Zhao, TL Cheng. TadA reprogramming to generate potent miniature base editors with high precision. Nat Commun 2023; 14(1): 413
https://doi.org/10.1038/s41467-023-36004-2
131 HK Jang, DH Jo, SN Lee, CS Cho, YK Jeong, Y Jung, J Yu, JH Kim, JS Woo, S Bae. High-purity production and precise editing of DNA base editing ribonucleoproteins. Sci Adv 2021; 7(35): eabg2661
https://doi.org/10.1126/sciadv.abg2661
132 Z Liu, S Chen, L Lai, Z Li. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun 2022; 13(1): 597
https://doi.org/10.1038/s41467-022-28300-0
133 K Kim, SM Ryu, ST Kim, G Baek, D Kim, K Lim, E Chung, S Kim, JS Kim. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 2017; 35(5): 435–437
https://doi.org/10.1038/nbt.3816
134 AC Komor, KT Zhao, MS Packer, NM Gaudelli, AL Waterbury, LW Koblan, YB Kim, AH Badran, DR Liu. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 2017; 3(8): eaao4774
https://doi.org/10.1126/sciadv.aao4774
135 HS Kim, YK Jeong, JK Hur, JS Kim, S Bae. Adenine base editors catalyze cytosine conversions in human cells. Nat Biotechnol 2019; 37(10): 1145–1148
https://doi.org/10.1038/s41587-019-0254-4
136 Z Liu, Z Lu, G Yang, S Huang, G Li, S Feng, Y Liu, J Li, W Yu, Y Zhang, J Chen, Q Sun, X Huang. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 2018; 9(1): 2338
https://doi.org/10.1038/s41467-018-04768-7
137 HK Lee, M Willi, SM Miller, S Kim, C Liu, DR Liu, L Hennighausen. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 2018; 9(1): 4804
https://doi.org/10.1038/s41467-018-07322-7
138 YB Kim, AC Komor, JM Levy, MS Packer, KT Zhao, DR Liu. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 2017; 35(4): 371–376
https://doi.org/10.1038/nbt.3803
139 E Zuo, Y Sun, T Yuan, B He, C Zhou, W Ying, J Liu, W Wei, R Zeng, Y Li, H Yang. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat Methods 2020; 17(6): 600–604
https://doi.org/10.1038/s41592-020-0832-x
140 L Chen, S Zhang, N Xue, M Hong, X Zhang, D Zhang, J Yang, S Bai, Y Huang, H Meng, H Wu, C Luan, B Zhu, G Ru, H Gao, L Zhong, M Liu, M Liu, Y Cheng, C Yi, L Wang, Y Zhao, G Song, D Li. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol 2023; 19(1): 101–110
https://doi.org/10.1038/s41589-022-01163-8
141 J Tan, F Zhang, D Karcher, R Bock. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun 2019; 10(1): 439
https://doi.org/10.1038/s41467-018-08034-8
142 JM Gehrke, O Cervantes, MK Clement, Y Wu, J Zeng, DE Bauer, L Pinello, JK Joung. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 2018; 36(10): 977–982
https://doi.org/10.1038/nbt.4199
143 Z Wu, H Yang, P Colosi. Effect of genome size on AAV vector packaging. Mol Ther 2010; 18(1): 80–86
https://doi.org/10.1038/mt.2009.255
144 S Chen, Z Liu, W Xie, H Yu, L Lai, Z Li. Compact cje3Cas9 for efficient in vivo genome editing and adenine base editing. CRISPR J 2022; 5(3): 472–486
https://doi.org/10.1089/crispr.2021.0143
145 JR Davis, X Wang, IP Witte, TP Huang, JM Levy, A Raguram, S Banskota, NG Seidah, K Musunuru, DR Liu. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat Biomed Eng 2022; 6(11): 1272–1283
https://doi.org/10.1038/s41551-022-00911-4
146 J Kweon, AH Jang, E Kwon, U Kim, HR Shin, J See, G Jang, C Lee, T Koo, S Kim, Y Kim. Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Exp Mol Med 2023; 55(2): 377–384
https://doi.org/10.1038/s12276-023-00938-w
147 E Haapaniemi, S Botla, J Persson, B Schmierer, J Taipale. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 2018; 24(7): 927–930
https://doi.org/10.1038/s41591-018-0049-z
148 RJ Ihry, KA Worringer, MR Salick, E Frias, D Ho, K Theriault, S Kommineni, J Chen, M Sondey, C Ye, R Randhawa, T Kulkarni, Z Yang, G McAllister, C Russ, J Reece-Hoyes, W Forrester, GR Hoffman, R Dolmetsch, A Kaykas. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939–946
https://doi.org/10.1038/s41591-018-0050-6
149 M Kosicki, K Tomberg, A Bradley. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018; 36(8): 765–771
https://doi.org/10.1038/nbt.4192
150 HY Shin, C Wang, HK Lee, KH Yoo, X Zeng, T Kuhns, CM Yang, T Mohr, C Liu, L Hennighausen. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8(1): 15464
https://doi.org/10.1038/ncomms15464
151 C Kuscu, M Parlak, T Tufan, J Yang, K Szlachta, X Wei, R Mammadov, M Adli. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods 2017; 14(7): 710–712
https://doi.org/10.1038/nmeth.4327
152 P Billon, EE Bryant, SA Joseph, TS Nambiar, SB Hayward, R Rothstein, A Ciccia. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell 2017; 67(6): 1068–1079.e4
https://doi.org/10.1016/j.molcel.2017.08.008
153 X Wang, Z Liu, G Li, L Dang, S Huang, L He, Y Ma, C Li, M Liu, G Yang, X Huang, F Zhou, X Ma. Efficient gene silencing by adenine base editor-mediated start codon mutation. Mol Ther 2020; 28(2): 431–440
https://doi.org/10.1016/j.ymthe.2019.11.022
154 CKW Lim, M Gapinske, AK Brooks, WS Woods, JE Powell, C MA Zeballos, J Winter, P Perez-Pinera, T Gaj. Treatment of a mouse model of ALS by in vivo base editing. Mol Ther 2020; 28(4): 1177–1189
https://doi.org/10.1016/j.ymthe.2020.01.005
155 S Tanaka, S Yoshioka, K Nishida, H Hosokawa, A Kakizuka, S Maegawa. In vivo targeted single-nucleotide editing in zebrafish. Sci Rep 2018; 8(1): 11423
https://doi.org/10.1038/s41598-018-29794-9
156 L Ma, JI Boucher, J Paulsen, S Matuszewski, CA Eide, J Ou, G Eickelberg, RD Press, LJ Zhu, BJ Druker, S Branford, SA Wolfe, JD Jensen, CA Schiffer, MR Green, DN Bolon. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc Natl Acad Sci USA 2017; 114(44): 11751–11756
https://doi.org/10.1073/pnas.1708268114
157 X Wang, Y Liang, J Zhao, Y Li, S Gou, M Zheng, J Zhou, Q Zhang, J Mi, L Lai. Generation of permanent neonatal diabetes mellitus dogs with glucokinase point mutations through base editing. Cell Discov 2021; 7(1): 92
https://doi.org/10.1038/s41421-021-00304-y
158 L Cartegni, SL Chew, AR Krainer. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3(4): 285–298
https://doi.org/10.1038/nrg775
159 A Kalsotra, TA Cooper. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011; 12(10): 715–729
https://doi.org/10.1038/nrg3052
160 J Yuan, Y Ma, T Huang, Y Chen, Y Peng, B Li, J Li, Y Zhang, B Song, X Sun, Q Ding, Y Song, X Chang. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell 2018; 72(2): 380–394.e7
https://doi.org/10.1016/j.molcel.2018.09.002
161 J Winter, A Luu, M Gapinske, S Manandhar, S Shirguppe, WS Woods, JS Song, P Perez-Pinera. Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov 2019; 5(1): 41
https://doi.org/10.1038/s41421-019-0109-7
162 MG Kluesner, WS Lahr, CL Lonetree, BA Smeester, X Qiu, NJ Slipek, Vázquez PN Claudio, SP Pitzen, EJ Pomeroy, MJ Vignes, SC Lee, SP Bingea, AA Andrew, BR Webber, BS Moriarity. CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nat Commun 2021; 12(1): 2437
https://doi.org/10.1038/s41467-021-22009-2
163 SM Ryu, T Koo, K Kim, K Lim, G Baek, ST Kim, HS Kim, DE Kim, H Lee, E Chung, JS Kim. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 2018; 36(6): 536–539
https://doi.org/10.1038/nbt.4148
164 M Arbab, Z Matuszek, KM Kray, A Du, GA Newby, AJ Blatnik, A Raguram, MF Richter, KT Zhao, JM Levy, MW Shen, WD Arnold, D Wang, J Xie, G Gao, AHM Burghes, DR Liu. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380(6642): eadg6518
https://doi.org/10.1126/science.adg6518
165 M Gapinske, A Luu, J Winter, WS Woods, KA Kostan, N Shiva, JS Song, P Perez-Pinera. CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol 2018; 19(1): 107
https://doi.org/10.1186/s13059-018-1482-5
166 P Xu, Z Liu, Y Liu, H Ma, Y Xu, Y Bao, S Zhu, Z Cao, Z Wu, Z Zhou, W Wei. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat Biotechnol 2021; 39(11): 1403–1413
https://doi.org/10.1038/s41587-021-00944-1
167 AW Chan. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2013; 54(2): 211–223
https://doi.org/10.1093/ilar/ilt035
168 Y Zhang, W Qin, X Lu, J Xu, H Huang, H Bai, S Li, S Lin. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun 2017; 8(1): 118
https://doi.org/10.1038/s41467-017-00175-6
169 W Qin, X Lu, Y Liu, H Bai, S Li, S Lin. Precise A•T to G•C base editing in the zebrafish genome. BMC Biol 2018; 16(1): 139
https://doi.org/10.1186/s12915-018-0609-1
170 DS Park, M Yoon, J Kweon, AH Jang, Y Kim, SC Choi. Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos. Mol Cells 2017; 40(11): 823–827
171 Q Li, Y Li, S Yang, S Huang, M Yan, Y Ding, W Tang, X Lou, Q Yin, Z Sun, L Lu, H Shi, H Wang, Y Chen, J Li. CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat Cell Biol 2018; 20(11): 1315–1325
https://doi.org/10.1038/s41556-018-0202-4
172 H Sasaguri, K Nagata, M Sekiguchi, R Fujioka, Y Matsuba, S Hashimoto, K Sato, D Kurup, T Yokota, TC Saido. Introduction of pathogenic mutations into the mouse Psen1 gene by base editor and Target-AID. Nat Commun 2018; 9(1): 2892
https://doi.org/10.1038/s41467-018-05262-w
173 L Yang, X Zhang, L Wang, S Yin, B Zhu, L Xie, Q Duan, H Hu, R Zheng, Y Wei, L Peng, H Han, J Zhang, W Qiu, H Geng, S Siwko, X Zhang, M Liu, D Li. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 2018; 9(9): 814–819
https://doi.org/10.1007/s13238-018-0568-x
174 Z Liu, S Chen, H Shan, Y Jia, M Chen, Y Song, L Lai, Z Li. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death Dis 2020; 11(1): 36
https://doi.org/10.1038/s41419-020-2244-3
175 Z Li, X Duan, X An, T Feng, P Li, L Li, J Liu, P Wu, D Pan, X Du, S Wu. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discov 2018; 4(1): 64
https://doi.org/10.1038/s41421-018-0065-7
176 J Xie, W Ge, N Li, Q Liu, F Chen, X Yang, X Huang, Z Ouyang, Q Zhang, Y Zhao, Z Liu, S Gou, H Wu, C Lai, N Fan, Q Jin, H Shi, Y Liang, T Lan, L Quan, X Li, K Wang, L Lai. Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 2019; 10(1): 2852
https://doi.org/10.1038/s41467-019-10421-8
177 F Wang, W Zhang, Q Yang, Y Kang, Y Fan, J Wei, Z Liu, S Dai, H Li, Z Li, L Xu, C Chu, J Qu, C Si, W Ji, GH Liu, C Long, Y Niu. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 2020; 11(11): 809–824
https://doi.org/10.1007/s13238-020-00740-8
178 SB Vafai, VK Mootha. Mitochondrial disorders as windows into an ancient organelle. Nature 2012; 491(7424): 374–383
https://doi.org/10.1038/nature11707
179 RK Gopal, SE Calvo, AR Shih, FL Chaves, D McGuone, E Mick, KA Pierce, Y Li, A Garofalo, EM Van Allen, CB Clish, E Oliva, VK Mootha. Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc Natl Acad Sci USA 2018; 115(27): E6283–E6290
https://doi.org/10.1073/pnas.1711888115
180 J Guo, X Chen, Z Liu, H Sun, Y Zhou, Y Dai, Y Ma, L He, X Qian, J Wang, J Zhang, Y Zhu, J Zhang, B Shen, F Zhou. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol Ther Nucleic Acids 2022; 27: 73–80
https://doi.org/10.1016/j.omtn.2021.11.016
181 L Villiger, HM Grisch-Chan, H Lindsay, F Ringnalda, CB Pogliano, G Allegri, R Fingerhut, J Häberle, J Matos, MD Robinson, B Thöny, G Schwank. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 2018; 24(10): 1519–1525
https://doi.org/10.1038/s41591-018-0209-1
182 AC Chadwick, X Wang, K Musunuru. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol 2017; 37(9): 1741–1747
https://doi.org/10.1161/ATVBAHA.117.309881
183 K Musunuru, AC Chadwick, T Mizoguchi, SP Garcia, JE DeNizio, CW Reiss, K Wang, S Iyer, C Dutta, V Clendaniel, M Amaonye, A Beach, K Berth, S Biswas, MC Braun, HM Chen, TV Colace, JD Ganey, SA Gangopadhyay, R Garrity, LN Kasiewicz, J Lavoie, JA Madsen, Y Matsumoto, AM Mazzola, YS Nasrullah, J Nneji, H Ren, A Sanjeev, M Shay, MR Stahley, SHY Fan, YK Tam, NM Gaudelli, G Ciaramella, LE Stolz, P Malyala, CJ Cheng, KG Rajeev, E Rohde, AM Bellinger, S Kathiresan. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021; 593(7859): 429–434
https://doi.org/10.1038/s41586-021-03534-y
184 T Rothgangl, MK Dennis, PJC Lin, R Oka, D Witzigmann, L Villiger, W Qi, M Hruzova, L Kissling, D Lenggenhager, C Borrelli, S Egli, N Frey, N Bakker, JA 2nd Walker, AP Kadina, DV Victorov, M Pacesa, S Kreutzer, Z Kontarakis, A Moor, M Jinek, D Weissman, M Stoffel, Boxtel R van, K Holden, N Pardi, B Thöny, J Häberle, YK Tam, SC Semple, G Schwank. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021; 39(8): 949–957
https://doi.org/10.1038/s41587-021-00933-4
185 JM Levy, WH Yeh, N Pendse, JR Davis, E Hennessey, R Butcher, LW Koblan, J Comander, Q Liu, DR Liu. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020; 4(1): 97–110
https://doi.org/10.1038/s41551-019-0501-5
186 WH Yeh, O Shubina-Oleinik, JM Levy, B Pan, GA Newby, M Wornow, R Burt, JC Chen, JR Holt, DR Liu. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med 2020; 12(546): eaay9101
https://doi.org/10.1126/scitranslmed.aay9101
187 WH Yeh, H Chiang, HA Rees, ASB Edge, DR Liu. In vivo base editing of post-mitotic sensory cells. Nat Commun 2018; 9(1): 2184
https://doi.org/10.1038/s41467-018-04580-3
188 S Suh, EH Choi, H Leinonen, AT Foik, GA Newby, WH Yeh, Z Dong, PD Kiser, DC Lyon, DR Liu, K Palczewski. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng 2021; 5(2): 169–178
https://doi.org/10.1038/s41551-020-00632-6
189 LW Koblan, MR Erdos, C Wilson, WA Cabral, JM Levy, ZM Xiong, UL Tavarez, LM Davison, YG Gete, X Mao, GA Newby, SP Doherty, N Narisu, Q Sheng, C Krilow, CY Lin, LB Gordon, K Cao, FS Collins, JD Brown, DR Liu. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021; 589(7843): 608–614
https://doi.org/10.1038/s41586-020-03086-7
190 L Xu, C Zhang, H Li, P Wang, Y Gao, NA Mokadam, J Ma, WD Arnold, R Han. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun 2021; 12(1): 3719
https://doi.org/10.1038/s41467-021-23996-y
191 GA Newby, JS Yen, KJ Woodard, T Mayuranathan, CR Lazzarotto, Y Li, H Sheppard-Tillman, SN Porter, Y Yao, K Mayberry, KA Everette, Y Jang, CJ Podracky, E Thaman, C Lechauve, A Sharma, JM Henderson, MF Richter, KT Zhao, SM Miller, T Wang, LW Koblan, AP McCaffrey, JF Tisdale, TA Kalfa, SM Pruett-Miller, SQ Tsai, MJ Weiss, DR Liu. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021; 595(7866): 295–302
https://doi.org/10.1038/s41586-021-03609-w
192 B Wienert, GE Martyn, APW Funnell, KGR Quinlan, M Crossley. Wake-up sleepy gene: reactivating fetal globin forβ-hemoglobinopathies. Trends Genet 2018; 34(12): 927–940
https://doi.org/10.1016/j.tig.2018.09.004
193 J Zeng, Y Wu, C Ren, J Bonanno, AH Shen, D Shea, JM Gehrke, K Clement, K Luk, Q Yao, R Kim, SA Wolfe, JP Manis, L Pinello, JK Joung, DE Bauer. Therapeutic base editing of human hematopoietic stem cells. Nat Med 2020; 26(4): 535–541
https://doi.org/10.1038/s41591-020-0790-y
194 J Liao, S Chen, S Hsiao, Y Jiang, Y Yang, Y Zhang, X Wang, Y Lai, DE Bauer, Y Wu. Therapeutic adenine base editing of human hematopoietic stem cells. Nat Commun 2023; 14(1): 207
https://doi.org/10.1038/s41467-022-35508-7
195 T Nishiyama, Y Zhang, M Cui, H Li, E Sanchez-Ortiz, JR McAnally, W Tan, J Kim, K Chen, L Xu, R Bassel-Duby, EN Olson. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med 2022; 14(672): eade1633
https://doi.org/10.1126/scitranslmed.ade1633
196 S Lebek, F Chemello, XM Caravia, W Tan, H Li, K Chen, L Xu, N Liu, R Bassel-Duby, EN Olson. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 2023; 379(6628): 179–185
https://doi.org/10.1126/science.ade1105
197 AC Chai, M Cui, F Chemello, H Li, K Chen, W Tan, A Atmanli, JR McAnally, Y Zhang, L Xu, N Liu, R Bassel-Duby, EN Olson. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med 2023; 29(2): 401–411
https://doi.org/10.1038/s41591-022-02176-5
198 D Reichart, GA Newby, H Wakimoto, M Lun, JM Gorham, JJ Curran, A Raguram, DM DeLaughter, DA Conner, JDC Marsiglia, S Kohli, L Chmatal, DC Page, N Zabaleta, L Vandenberghe, DR Liu, JG Seidman, C Seidman. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 2023; 29(2): 412–421
https://doi.org/10.1038/s41591-022-02190-7
199 R Ceccaldi, B Rondinelli, AD D’Andrea. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2016; 26(1): 52–64
https://doi.org/10.1016/j.tcb.2015.07.009
200 N Hustedt, D Durocher. The control of DNA repair by the cell cycle. Nat Cell Biol 2017; 19(1): 1–9
https://doi.org/10.1038/ncb3452
201 M Abifadel, M Varret, JP Rabès, D Allard, K Ouguerram, M Devillers, C Cruaud, S Benjannet, L Wickham, D Erlich, A Derré, L Villéger, M Farnier, I Beucler, E Bruckert, J Chambaz, B Chanu, JM Lecerf, G Luc, P Moulin, J Weissenbach, A Prat, M Krempf, C Junien, NG Seidah, C Boileau. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154–156
https://doi.org/10.1038/ng1161
202 JC Cohen, E Boerwinkle, TH Jr Mosley, HH Hobbs. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264–1272
https://doi.org/10.1056/NEJMoa054013
203 AS Rao, D Lindholm, MA Rivas, JW Knowles, SB Montgomery, E Ingelsson. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ Genom Precis Med 2018; 11(7): e002162
https://doi.org/10.1161/CIRCGEN.118.002162
204 S Yin, M Zhang, Y Liu, X Sun, Y Guan, X Chen, L Yang, Y Huo, J Yang, X Zhang, H Han, J Zhang, MM Xiao, M Liu, J Hu, L Wang, D Li. Engineering of efficiency-enhanced Cas9 and base editors with improved gene therapy efficacies. Mol Ther 2023; 31(3): 744–759
https://doi.org/10.1016/j.ymthe.2022.11.014
205 RG Lee, AM Mazzola, MC Braun, C Platt, SB Vafai, S Kathiresan, E Rohde, AM Bellinger, AV Khera. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. Circulation 2023; 147(3): 242–253
https://doi.org/10.1161/CIRCULATIONAHA.122.062132
206 C Xu, Y Zhou, Q Xiao, B He, G Geng, Z Wang, B Cao, X Dong, W Bai, Y Wang, X Wang, D Zhou, T Yuan, X Huo, J Lai, H Yang. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 2021; 18(5): 499–506
https://doi.org/10.1038/s41592-021-01124-4
207 G Li, M Jin, Z Li, Q Xiao, J Lin, D Yang, Y Liu, X Wang, L Xie, W Ying, H Wang, E Zuo, L Shi, N Wang, W Chen, C Xu, H Yang. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J Clin Invest 2023; 133(3): e162809
https://doi.org/10.1172/JCI162809
208 X WangR ZhangD YangG LiZ FanH DuZ WangY LiuJ LinX WuL ShiH YangY Zhou. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv Sci (Weinh) 2023; [Epub ahead of print] doi:10.1002/advs.202206813
pmid: 37098587
209 P Reautschnig, N Wahn, J Wettengel, AE Schulz, N Latifi, P Vogel, TW Kang, LS Pfeiffer, C Zarges, U Naumann, L Zender, JB Li, T Stafforst. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat Biotechnol 2022; 40(5): 759–768
https://doi.org/10.1038/s41587-021-01105-0
210 P Monian, C Shivalila, G Lu, M Shimizu, D Boulay, K Bussow, M Byrne, A Bezigian, A Chatterjee, D Chew, J Desai, F Favaloro, J Godfrey, A Hoss, N Iwamoto, T Kawamoto, J Kumarasamy, A Lamattina, A Lindsey, F Liu, R Looby, S Marappan, J Metterville, R Murphy, J Rossi, T Pu, B Bhattarai, S Standley, S Tripathi, H Yang, Y Yin, H Yu, C Zhou, LH Apponi, P Kandasamy, C Vargeese. Endogenous ADAR-mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides. Nat Biotechnol 2022; 40(7): 1093–1102
https://doi.org/10.1038/s41587-022-01225-1
211 D Katrekar, J Yen, Y Xiang, A Saha, D Meluzzi, Y Savva, P Mali. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat Biotechnol 2022; 40(6): 938–945
https://doi.org/10.1038/s41587-021-01171-4
212 J Song, L Dong, H Sun, N Luo, Q Huang, K Li, X Shen, Z Jiang, Z Lv, L Peng, M Zhang, K Wang, K Liu, J Hong, C Yi. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol Cell 2023; 83(1): 139–155.e9
https://doi.org/10.1016/j.molcel.2022.11.011
213 GS Gorman, PF Chinnery, S DiMauro, M Hirano, Y Koga, R McFarland, A Suomalainen, DR Thorburn, M Zeviani, DM Turnbull. Mitochondrial diseases. Nat Rev Dis Primers 2016; 2(1): 16080
https://doi.org/10.1038/nrdp.2016.80
214 AK Reeve, KJ Krishnan, D Turnbull. Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 2008; 1147(1): 21–29
https://doi.org/10.1196/annals.1427.016
215 C Santos, M Martínez, M Lima, YJ Hao, N Simões, R Montiel, M Martinez, M Lima. Mitochondrial DNA mutations in cancer: a review. Curr Top Med Chem 2008; 8(15): 1351–1366
https://doi.org/10.2174/156802608786141151
216 JK Lunney, A Van Goor, KE Walker, T Hailstock, J Franklin, C Dai. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13(621): eabd5758
https://doi.org/10.1126/scitranslmed.abd5758
217 Y Lin, J Li, C Li, Z Tu, S Li, XJ Li, S Yan. Application of CRISPR/Cas9 system in establishing large animal models. Front Cell Dev Biol 2022; 10: 919155
https://doi.org/10.3389/fcell.2022.919155
218 P Yin, S Li, XJ Li, W Yang. New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell 2022; 13(10): 707–720
https://doi.org/10.1007/s13238-022-00912-8
219 S Tong, B Moyo, CM Lee, K Leong, G Bao. Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater 2019; 4(11): 726–737
https://doi.org/10.1038/s41578-019-0145-9
220 BH Yip. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 2020; 10(6): 839
https://doi.org/10.3390/biom10060839
221 A Raguram, S Banskota, DR Liu. Therapeutic in vivo delivery of gene editing agents. Cell 2022; 185(15): 2806–2827
https://doi.org/10.1016/j.cell.2022.03.045
222 J van Haasteren, J Li, OJ Scheideler, N Murthy, DV Schaffer. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38(7): 845–855
https://doi.org/10.1038/s41587-020-0565-5
223 P Liang, Y Xu, X Zhang, C Ding, R Huang, Z Zhang, J Lv, X Xie, Y Chen, Y Li, Y Sun, Y Bai, Z Songyang, W Ma, C Zhou, J Huang. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363–372
https://doi.org/10.1007/s13238-015-0153-5
224 X Kang, W He, Y Huang, Q Yu, Y Chen, X Gao, X Sun, Y Fan. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 2016; 33(5): 581–588
https://doi.org/10.1007/s10815-016-0710-8
225 G Li, Y Liu, Y Zeng, J Li, L Wang, G Yang, D Chen, X Shang, J Chen, X Huang, J Liu. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 2017; 8(10): 776–779
https://doi.org/10.1007/s13238-017-0458-7
226 L Tang, Y Zeng, H Du, M Gong, J Peng, B Zhang, M Lei, F Zhao, W Wang, X Li, J Liu. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 2017; 292(3): 525–533
https://doi.org/10.1007/s00438-017-1299-z
227 P Liang, C Ding, H Sun, X Xie, Y Xu, X Zhang, Y Sun, Y Xiong, W Ma, Y Liu, Y Wang, J Fang, D Liu, Z Songyang, C Zhou, J Huang. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 2017; 8(11): 811–822
https://doi.org/10.1007/s13238-017-0475-6
228 Y Zeng, J Li, G Li, S Huang, W Yu, Y Zhang, D Chen, J Chen, J Liu, X Huang. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther 2018; 26(11): 2631–2637
https://doi.org/10.1016/j.ymthe.2018.08.007
229 M Zhang, C Zhou, Y Wei, C Xu, H Pan, W Ying, Y Sun, Y Sun, Q Xiao, N Yao, W Zhong, Y Li, K Wu, G Yuan, S Mitalipov, ZJ Chen, H Yang. Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biol 2019; 20(1): 101
https://doi.org/10.1186/s13059-019-1703-6
230 YH Wei, ML Zhang, J Hu, YS Zhou, MX Xue, JH Yin, YH Liu, H Feng, L Zhou, ZF Li, DS Wang, ZG Zhang, Y Zhou, HB Liu, N Yao, ER Zuo, JZ Hu, YZ Du, W Li, CL Xu, H Yang. Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor. Protein Cell 2023; 14(6): 416–432
https://doi.org/10.1093/procel/pwac043
231 C Zincarelli, S Soltys, G Rengo, JE Rabinowitz. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16(6): 1073–1080
https://doi.org/10.1038/mt.2008.76
232 P Tornabene, I Trapani. Can adeno-associated viral vectors deliver effectively large genes?. Hum Gene Ther 2020; 31(1–2): 47–56
https://doi.org/10.1089/hum.2019.220
233 DL Wagner, L Peter, M Schmueck-Henneresse. Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy?. Gene Ther 2021; 28(9): 549–559
https://doi.org/10.1038/s41434-021-00232-2
234 DL Wagner, L Amini, DJ Wendering, LM Burkhardt, L Akyüz, P Reinke, HD Volk, M Schmueck-Henneresse. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 2019; 25(2): 242–248
https://doi.org/10.1038/s41591-018-0204-6
235 F Mingozzi, KA High. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122(1): 23–36
https://doi.org/10.1182/blood-2013-01-306647
236 K Paunovska, D Loughrey, JE Dahlman. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022; 23(5): 265–280
https://doi.org/10.1038/s41576-021-00439-4
237 PR Cullis, MJ Hope. Lipid nanoparticle systems for enabling gene therapies. Mol Ther 2017; 25(7): 1467–1475
https://doi.org/10.1016/j.ymthe.2017.03.013
238 L Li, S Hu, X Chen. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 2018; 171: 207–218
https://doi.org/10.1016/j.biomaterials.2018.04.031
239 CQ Song, T Jiang, M Richter, LH Rhym, LW Koblan, MP Zafra, EM Schatoff, JL Doman, Y Cao, LE Dow, LJ Zhu, DG Anderson, DR Liu, H Yin, W Xue. Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng 2020; 4(1): 125–130
https://doi.org/10.1038/s41551-019-0357-8
240 S Banskota, A Raguram, S Suh, SW Du, JR Davis, EH Choi, X Wang, SC Nielsen, GA Newby, PB Randolph, MJ Osborn, K Musunuru, K Palczewski, DR Liu. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022; 185(2): 250–265.e16
https://doi.org/10.1016/j.cell.2021.12.021
241 P Lyu, L Wang, B Lu. Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. Life (Basel) 2020; 10(12): 366
https://doi.org/10.3390/life10120366
242 S Ling, S Yang, X Hu, D Yin, Y Dai, X Qian, D Wang, X Pan, J Hong, X Sun, H Yang, SR Paludan, Y Cai. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 2021; 5(2): 144–156
https://doi.org/10.1038/s41551-020-00656-y
243 RJ Chandler, MS Sands, CP Venditti. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum Gene Ther 2017; 28(4): 314–322
https://doi.org/10.1089/hum.2017.009
244 J Kreitz, MJ Friedrich, A Guru, B Lash, M Saito, RK Macrae, F Zhang. Programmable protein delivery with a bacterial contractile injection system. Nature 2023; 616(7956): 357–364
https://doi.org/10.1038/s41586-023-05870-7
245 F Jiang, J Shen, J Cheng, X Wang, J Yang, N Li, N Gao, Q Jin. N-terminal signal peptides facilitate the engineering of PVC complex as a potent protein delivery system. Sci Adv 2022; 8(17): eabm2343
https://doi.org/10.1126/sciadv.abm2343
246 C Huang, G Li, J Wu, J Liang, X Wang. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biol 2021; 22(1): 80
https://doi.org/10.1186/s13059-021-02305-2
247 S Jun, H Lim, H Chun, JH Lee, D Bang. Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells. Commun Biol 2020; 3(1): 154
https://doi.org/10.1038/s42003-020-0888-2
248 C Chen, Y Liao, G Peng. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13(11): 790–807
https://doi.org/10.1007/s13238-022-00913-7
249 CS Baron, A van Oudenaarden. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol 2019; 20(12): 753–765
https://doi.org/10.1038/s41580-019-0186-3
250 JM Kebschull, AM Zador. Cellular barcoding: lineage tracing, screening and beyond. Nat Methods 2018; 15(11): 871–879
https://doi.org/10.1038/s41592-018-0185-x
251 C Ye, Z Chen, Z Liu, F Wang, X He. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. J Genet Genomics 2020; 47(2): 85–91
https://doi.org/10.1016/j.jgg.2019.11.012
252 J Cotterell, M Vila-Cejudo, L Batlle-Morera, J Sharpe. Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing. Development 2020; 147(9): dev184481
https://doi.org/10.1242/dev.184481
253 F Akram, IU Haq, H Ali, AT Laghari. Trends to store digital data in DNA: an overview. Mol Biol Rep 2018; 45(5): 1479–1490
https://doi.org/10.1007/s11033-018-4280-y
254 L Ceze, J Nivala, K Strauss. Molecular digital data storage using DNA. Nat Rev Genet 2019; 20(8): 456–466
https://doi.org/10.1038/s41576-019-0125-3
255 W Tang, DR Liu. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 2018; 360(6385): eaap8992
https://doi.org/10.1126/science.aap8992
256 F Farzadfard, N Gharaei, Y Higashikuni, G Jung, J Cao, TK Lu. Single-nucleotide-resolution computing and memory in living cells. Mol Cell 2019; 75(4): 769–780.e4
https://doi.org/10.1016/j.molcel.2019.07.011
257 K Kingwell. Base editors hit the clinic. Nat Rev Drug Discov 2022; 21(8): 545–547
https://doi.org/10.1038/d41573-022-00124-z
258 C Saha, P Mohanraju, A Stubbs, G Dugar, Y Hoogstrate, GJ Kremers, WA van Cappellen, D Horst-Kreft, C Laffeber, JHG Lebbink, S Bruens, D Gaskin, D Beerens, M Klunder, R Joosten, JAA Demmers, D van Gent, JW Mouton, PJ van der Spek, J van der Oost, P van Baarlen, R Louwen. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Sci Adv 2020; 6(25): eaaz4849
https://doi.org/10.1126/sciadv.aaz4849
259 S Xu, J Kim, Q Tang, Q Chen, J Liu, Y Xu, X Fu. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway. Protein Cell 2020; 11(5): 352–365
https://doi.org/10.1007/s13238-020-00699-6
260 OM Enache, V Rendo, M Abdusamad, D Lam, D Davison, S Pal, N Currimjee, J Hess, S Pantel, A Nag, AR Thorner, JG Doench, F Vazquez, R Beroukhim, TR Golub, U Ben-David. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 2020; 52(7): 662–668
https://doi.org/10.1038/s41588-020-0623-4
261 D Cyranoski, H Ledford. Genome-edited baby claim provokes international outcry. Nature 2018; 563(7733): 607–608
https://doi.org/10.1038/d41586-018-07545-0
262 S Jin, H Fei, Z Zhu, Y Luo, J Liu, S Gao, F Zhang, YH Chen, Y Wang, C Gao. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol Cell 2020; 79(5): 728–740.e6
https://doi.org/10.1016/j.molcel.2020.07.005
263 Z Liu, M Chen, H Shan, S Chen, Y Xu, Y Song, Q Zhang, H Yuan, H Ouyang, Z Li, L Lai. Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cell Mol Life Sci 2019; 76(20): 4155–4164
https://doi.org/10.1007/s00018-019-03110-8
264 Q Lin, S Jin, Y Zong, H Yu, Z Zhu, G Liu, L Kou, Y Wang, JL Qiu, J Li, C Gao. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 2021; 39(8): 923–927
https://doi.org/10.1038/s41587-021-00868-w
265 J Choi, W Chen, CC Suiter, C Lee, FM Chardon, W Yang, A Leith, RM Daza, B Martin, J Shendure. Precise genomic deletions using paired prime editing. Nat Biotechnol 2022; 40(2): 218–226
https://doi.org/10.1038/s41587-021-01025-z
266 T Jiang, XO Zhang, Z Weng, W Xue. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 2022; 40(2): 227–234
https://doi.org/10.1038/s41587-021-01026-y
267 AV Anzalone, XD Gao, CJ Podracky, AT Nelson, LW Koblan, A Raguram, JM Levy, JAM Mercer, DR Liu. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2022; 40(5): 731–740
https://doi.org/10.1038/s41587-021-01133-w
268 J Kweon, JK Yoon, AH Jang, HR Shin, JE See, G Jang, JI Kim, Y Kim. Engineered prime editors with PAM flexibility. Mol Ther 2021; 29(6): 2001–2007
https://doi.org/10.1016/j.ymthe.2021.02.022
269 S Zhi, Y Chen, G Wu, J Wen, J Wu, Q Liu, Y Li, R Kang, S Hu, J Wang, P Liang, J Huang. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther 2022; 30(1): 283–294
https://doi.org/10.1016/j.ymthe.2021.07.011
270 J Grünewald, BR Miller, RN Szalay, PK Cabeceiras, CJ Woodilla, EJB Holtz, K Petri, JK Joung. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nat Biotechnol 2023; 41(3): 337–343
https://doi.org/10.1038/s41587-022-01473-1
271 H Li, W Cheng, B Chen, S Pu, N Fan, X Zhang, D Jiao, D Shi, J Guo, Z Li, Y Qing, B Jia, HY Zhao, HJ Wei. Efficient generation of P53 biallelic mutations in diannan miniature pigs using RNA-guided base editing. Life (Basel) 2021; 11(12): 1417
https://doi.org/10.3390/life11121417
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed