Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (4): 649-674   https://doi.org/10.1007/s11684-023-1018-6
  本期目录
Minimal residual disease in solid tumors: an overview
Yarui Ma1, Jingbo Gan2, Yinlei Bai2, Dandan Cao2, Yuchen Jiao1()
1. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
2. Genetron Health (Beijing) Co. Ltd., Beijing 102206, China
 全文: PDF(2045 KB)   HTML
Abstract

Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.

Key wordsMRD    solid tumor    CTC    ctDNA
收稿日期: 2023-02-22      出版日期: 2023-10-12
Corresponding Author(s): Yuchen Jiao   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(4): 649-674.
Yarui Ma, Jingbo Gan, Yinlei Bai, Dandan Cao, Yuchen Jiao. Minimal residual disease in solid tumors: an overview. Front. Med., 2023, 17(4): 649-674.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-1018-6
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I4/649
Fig.1  
Methodology Study Technology Characteristic Advantages Limitations
BEAMing Deihl et al. [14] Digital droplet PCR Beads, emulsion, amplification, and magnetics High sensitivity; cost-effective; rapid For detection of a limited number of mutations
Safe-SeqS Kinde et al. [15] PCR amplicon-based NGS Each template molecule assigned with a UID High sensitivity; decreased error rates associated with sequencing process Dependent on the efficiency of amplification; the desired sequence needs to be previously characterized
Tam-Seq Forshew et al. [49] PCR amplicon-based NGS Using primers to tag High sensitivity and specificity; high efficiency; detection of abundant and rare mutations The desired sequence needs to be previously characterized
CAPP-Seq Newman et al. [96] Hybrid capture-based NGS Covering multiple classes of somatic alterations that identified mutations in > 95% of tumors High sensitivity and specificity; wide application; reduced the impact of stochastic noise and biological variability Sufficient cfDNA input; inefficient capture of fusions
PhasED-seq Kurtz et al. [102] Hybrid capture-based NGS Identification of phased variants Super sensitivity; decreased technical and biological error rates Need more studies to validate, particularly in solid tumors
MAESTRO Gydush et al. [103] Hybrid capture-based NGS Converted low-abundance mutations into high-abundance mutations Improved breadth, depth, accuracy and efficiency Costly; limited sensitivity with error-prone loci discarded
WGS Zviran et al. [58] WGS Identification of genome-wide mutational signals Comprehensive mutation profiling High cost; low sensitivity; limited sequencing depth
WGBS Lissa et al. [109] WGBS Bisulfite conversion-based Comprehensive methylation profiling Costly; low depth sequencing
cfMeDIP-seq Shen et al. [112] Immunoprecipitation based NGS Antibody enrichment-based; antibody specific to 5mC Sensitive; reduced the required DNA input amount to 1–10 ng Limited sensitivity; dependent on the quality of antibody
Tab.1  
Fig.2  
Fig.3  
Application Cancer Study & year Patient Stage Biomarker Technique & strategy Main conclusions
Prognosis prediction Colorectal cancer Diehl et al., 2008 [46] 20 CRC II–IV Mutation BEAMing; tumor-informed 1. Postoperative ctDNA was associated with RFS: 15 of the 16 ctDNA+ patients relapsed while 4 ctDNA patients did not relapse (P = 0.006)
Liu et al., 2022 [71] 60 CRC II–III Mutation/CNV Target NGS/sWGS; tumor-informed and tumor-naïve Three approaches were used to detect post-NAT ctDNA and all showed the association of post-NAT ctDNA and relapse:
1. Personalized mutation detection (N = 60): HR = 23.4, P≤ 0.0001; Sen = 76.5%, Spe = 97.7%
2. Universal panel (N = 57): HR = 5.18, P = 0.0086; Sen = 66.7%, Spe = 78.4%
3. Baseline specific CNV (N = 22): HR = 9.24, P = 0.00017
4. The combination of personalized assay and baseline-specific CNV had a better prediction of RFS: HR = 35.89; P < 0.0001; Sen = 82.35%, Spe = 97.67%
Breast cancer Radovich et al., 2020 [75] 196 TNBC I–III cfDNA/CTC Target NGS/CellResearch system; tumor-informed 1. Post-NAT ctDNA was associated with prognosis (ctDNA+ vs. ctDNA):DDFS: 32.5 months vs. not reached; HR = 2.99; P = 0.006DFS: HR = 2.67; P = 0.009OS: HR = 4.16; P = 0.002
2. Post-NAT increasing of CTC count was significantly associated with inferior prognosis:DDFS: HR = 1.07; P = 0.02DFS: HR = 1.11; P = 0.004OS: HR = 1.09; P = 0.01
3. The combination of ctDNA and CTC improved the sensitivity of DDFS, DFS and OS prediction (ctDNA+/CTC+ vs. ctDNA/CTC):DDFS: 32.5 months vs. not reached; HR = 5.29; P = 0.009DFS: HR = 3.15; P = 0.04OS: HR = 8.60; P = 0.007
Hrebien et al., 2019 [145] 58 ER + mBC Mutation ddPCR; tumor-informed The dynamics of ctDNA ratio from the start to the cycle 2 (CDR28) of treatment predict the PFS of patients
1. Part A (n = 16): CDR28 suppressed vs. CDR28 high: P = 0.0003
2. Part B (n = 42): CDR28 suppressed vs. CDR28 high: HR = 0.2, P < 0.0001
Lung cancer Yue et al., 2022 [132] 22 NSCLC IB–IIIA Mutation Target NGS; tumor-naïve 1. MRD detection after NAT predicts the treatment outcome
2. The sensitivity of MRD detection to predict recurrence at 1 week and 3 months after operation was 62.5% and 83.3%, and the specificity was 85.7% and 90%
Chaudhuri et al., 2017 [128] 40 LC IB–III Mutation CAPP-seq; tumor- naïve 1. An MRD detection was performed within 4 months after treatment, 100% of MRD-positive patients relapsed, which was significantly higher than that of MRD-negative relapsed patients
Chen et al., 2019 [182] 205 LC I–IIIA Mutation cSMART assay; tumor-naïve 1. ctDNA detection at 3 days or 1 month after surgery both predicts recurrence
Pancreatic cancer Lee et al., 2022 [184] 53 PDAC resectable Mutation iDES-CAPP-Seq; tumor-informed 1. Patients with postoperative ctDNA > 1 hGE/mL had shorter RFS at 1 year than patients with postoperative ctDNA ≤ 1 hGE/mL (P = 0.06)
Patel et al., 2019 [150] 94 PDAC advanced Mutation Target NGS; tumor-naïve Patients with lower levels of total %ctDNA (< 0.6%) had better survival:
1. OS: higher %ctDNA vs. lower %ctDNA: 11.7 vs. 6.3 months, P = 0.001
Wang et al., 2021 [153] 97 PDAC resectable CNV qPCR; tumor-naïve Postoperative copy number of cfDNA was significantly correlated with OS (P = 0.022):
1. 1-year OS: ≥ 7724 vs. < 7724 copies/mL: 70.2% vs. 93.9%
2. 5-year OS: ≥ 7724 vs. < 7724 copies/mL: 21.2% vs. 23.7%
Bernard et al., 2019 [154] 194 PDAC local and advanced Mutation ddPCR; tumor-naïve Postoperative ctDNA was associated with poorer prognosis:
1. RFS: ctDNA+ vs. ctDNA: 118 vs. 321 days, HR = 1.93, P = 0.012
2. OS: ctDNA+ vs. ctDNA: 258 vs. 440 days; HR = 2.36, P = 0.018
Other tumors Cai et al., 2019 [33] 34 HCC I–III Mutation/CNV PCR-NGS/lcWGS; tumor-informed 1. MRD detection after radical treatment effectively predicts OS and PFS
2. The predictive effect of ctDNA combined with cancer protein is better than ctDNA or protein alone
Szabados et al., 2022 [155] 94 MIUC Mutation mPCR-NGS; tumor-informed 1. Patients who turned to MRD after neoadjuvant therapy achieved pCR
2. The relapse probability of MRD patients after radical operation was significantly lower than MRD+ patients
Recurrence monitoring Colorectal cancer Wang et al., 2019 [166] 58 CRC I–III Mutation SafeSeqS; tumor-informed 1. Postoperative ctDNA was associated with RFS: 10 (77%) of the 13 ctDNA+ patients relapsed while 45 ctDNA patients did not relapse
2. ctDNA preceded radiologic and clinical evidence of relapse by a median of 3 months
Øgaard et al., 2022 [167] 96 CRC IV Mutation ddPCR; tumor-naïve 1. Postoperative was associated with RFS: n = 60, HR = 7.0, P < 0.0001
2. Post-ACT ctDNA was associated with RFS: n = 36, HR = 8.4, P < 0.0001
3. ctDNA monitoring detected relapse 3.1 months (median time) earlier than CT
Mo et al., 2023 [185] 299 CRC I–III Methylation qPCR; tumor-naïve 1. ctDNA detection at 1 month after surgery was associated with RFS: HR = 17.5, P < 0.0001; Sen = 78%, Spe = 90.2%
2. ctDNA detection after all therapy was associated with RFS: HR = 20.6, P < 0.0001
3. ctDNA preceded radiologically confirmed relapse by a median of 3.3 months
Henriksen et al., 2022 [164] 160 CRC III Mutation mPCR-NGS; tumor-informed 1. Postoperative was associated with RFS: n = 140, HR = 4.5, P < 0.001
2. Post-ACT ctDNA was associated with RFS: n = 93, HR = 50.76, P < 0.001
3. The ctDNA growth rate was prognostic of survival: HR = 2.7, P = 0.039
4. ctDNA preceded radiologic evidence of relapse by a median of 9.8 months
Breast cancer Coombes et al., 2019 [125] 49 BC I–III Mutation mPCR-NGS; tumor-informed 1. Predict RFS according to the detection of ctDNA in the first postoperative plasma sample: HR = 11.8, P < 0.001
2. Predict RFS according to the detection of ctDNA in any follow-up plasma sample after surgery: HR = 35.8, P < 0.001
3. Metastasis was predicted with a lead time of median 8.9 months
Lipsyc-Sharf et al., 2022 [171] 83 HR + BC Mutation mPCR-NGS; tumor-informed 1. Detection of ctDNA after treatment was associated with RFS (n = 101): HR = 5.8; P = 0.01
2. ctDNA detection had a median lead time of 12.4 months than clinical relapse
Garcia-Murillas et al., 2019 [146] 144 BC I–III Mutation ddPCR; tumor-informed 1. Detection of ctDNA before any treatment was associated with RFS (n = 101): HR = 5.8; P = 0.01
2. Detection of ctDNA during follow-up was associated with RFS (n = 101): HR = 25.2; P < 0.001
3. In all patients, ctDNA detection had a median lead time of 10.7 months than clinical relapse
Lung cancer Yue et al., 2022 [132] 22 LC IB–IIIA Mutation Target NGS; tumor-naïve 1. Plasmas were taken 2–3 months after surgery, and relapse was found 145 days earlier than imaging
Chaudhuri et al., 2017 [128] 40 LC IB–III Mutation CAPP-seq; tumor-naïve 1. 72% of the patients underwent MRD detection every 3–6 months after treatment, which indicated relapse 5.2 months earlier than imaging detection on average
Pancreatic cancer Pietrasz et al., 2016 [149] 135 PDAC local and advanced Mutation Target NGS & ddPCR; tumor-informed Advanced PDAC: 50/104 patients were ctDNA+
1. OS: ctDNA+ vs. ctDNA: 6.5 vs. 19.0 months; P < 0.001
Local PDAC: 6/31 patients were ctDNA+
1. DFS: ctDNA+ vs. ctDNA: 4.6 vs. 17.6 months; P = 0.03
2. OS: ctDNA+ vs. ctDNA: 19.3 vs. 32.3 months; P = 0.027
3. 4/6 patients with ctDNA+ relapsed
ctDNA preceded CT detection of progression (median 2.4 months vs. 4.0 months)
Groot et al., 2019 [152] 59 PDAC resectable Mutation ddPCR; tumor-informed Postoperative ctDNA was associated with poorer prognosis:
1. RFS: ctDNA+ vs. ctDNA: 5 vs. 15 months, P < 0.001
2. OS: ctDNA+ vs. ctDNA: 17 months vs. not reached, P = 0.011
3. ctDNA+ at any time point: predict recurrence at a sensitivity of 90% and a specificity of 88%, mean lead time of 84 days prior to imaging method
Sausen et al., 2015 [173] 20 PDAC II Mutation ddPCR; tumor-informed 10/20 patients were postoperative ctDNA+
1. Patients with ctDNA+ were more likely to relapse: 9.9 months vs. not reached; P = 0.02
2. Time of ctDNA detected relapse earlier than CT imaging: median 6.5 months, n = 9, P = 0.0004
Other tumors Cai et al., 2019 [33] 34 HCC I–III Mutation/CNV PCR-NGS/lcWGS; tumor-informed 1. MRD detection detected relapse 4.6 months earlier than imaging during the follow-up
Zhao et al., 2022 [76] 66 HCC I–IV ctDNA/CTC Target NGS; tumor-informed and tumor-naïve 1. Compared the performance of several MRD detection methods in predicting relapse
2. CTC and PPWES detected relapse 3 months earlier than imaging
Azad et al., 2020 [97] 45 ESCA IA–IIIB Mutation CAPP-seq; tumor-naïve 1. Progression detected by MRD detection 2.8 months earlier than imaging method
Therapy guidance Colorectal cancer Wang et al., 2021 [178] 119 CRC II–III Mutation Target NGS; tumor-naïve 1. ctDNA clearance during nCRT predicts pCR: AUC = 0.818
2. ctDNA clearance combined with mrTRG after nCRT predict pCR more accurately: AUC = 0.886
3. The detection of potential CRC driver genes in ctDNA after nCRT indicated worse RFS: HR = 9.29, P < 0.001
Tie et al., 2022 [186] 455 CRC II Mutation SafeSeqS; tumor-informed Demonstrated that de-escalation treatment of ctDNA patients does not affect the survival of patients
1. The 2-year RFS of the ctDNA-guided group and the standard treatment group were 93.5% and 92.4%, respectively
2. The 3-year RFS rates of ctDNA-guided group and the standard treatment group were 91.7% and 92.4%, respectively
Breast cancer Li et al., 2020 [144] 44 Early BC Mutation Target NGS; tumor-informed 1. Positive baseline ctDNA is significantly associated with worse disease-free survival (P = 0.011) and overall survival (P = 0.004)
2. The ctDNA level after 2 cycles of NAC was predictive of local tumor response after all cycles of NAC, with AUC = 0.81
Magbanua et al., 2020 [141] 84 Early BC Mutation mPCR-NGS; tumor-informed Blood was collected at 4 time point: pretreatment (T0), 3 weeks after initiation of paclitaxel (T1), between paclitaxel and anthracycline regimens (T2), and prior to surgery (T3):
1. At T1, ctDNA status was associated with pCR: ctDNA+ vs. ctDNA: 83% vs. 52% non-pCR, OR = 4.33, P = 0.012
2. After NAC, all patients who achieved pCR were ctDNA negative (n = 17, 100%)
3. For 43 patients who did not achieve pCR, ctDNA+ was associated with DRFS: ctDNA+ vs. ctDNA: HR = 10.4
4. Patients who were non-pCR/ctDNA (n = 37) had similar outcome to those who achieved pCR (n = 17): HR = 1.4
Lung cancer Moding et al., 2020 [185] 65 LC II–III Mutation CAPP-seq; tumor-naïve 1. Patients with MRD-negative after CRT have a good prognosis and may not benefit from immune checkpoint inhibitors (ICI) consolidation
2. After CRT, the survival of MRD-positive patients who received ICI treatment was significantly better than that of patients who did not receive it
3. Early ctDNA changes in ICI treatment identify patients who may benefit from ICI: patients with decreased ctDNA levels have a better prognosis
Pancreatic cancer Du et al., 2023 [187] 29 PADC resectable Mutation Target NGS; tumor-informed Patients with a > 50% decline in ctDNA maxVAF between 2-cycle therapy and pre-therapy had better prognosis and higher response rate:
1. PFS: decline vs. non-decline: 20.0 vs. 10.3 months; HR = 0.33; P = 0.024
2. OS: decline vs. non-decline: not reached vs. 13.5 months; HR = 0.21; P = 0.024
3. ORR: decline vs. non-decline: 90% vs. 35.7%; P = 0.013
Cheng et al., 2017 [188] 188 PDAC advanced Mutation ddPCR; tumor-naïve 1. In 188 metastatic PDAC patients, ERBB2 exon17 mutation and K-ras G12V mutation were significantly correlated with OS (P = 0.016 and 0.015)
2. In the 13 patients under longitudinal surveillance, ctDNA changes in 10 patients were coincident with CT detection under the ACT treatment
Lee et al., 2019 [148] 42 PDAC local Mutation SafeSeqS; tumor-informed 13/35 patients were postoperative ctDNA+
1. DFS: ctDNA+ vs. ctDNA: 5.4 vs. 17.1 months, HR 5.4, P < 0.0001
2. OS: ctDNA+ vs. ctDNA: 10.6 vs. not reached, HR 4.5, P < 0.0001
3. Recurrence occurred in 13/13 patients with ctDNA detected despite the fact that 7 patients received chemotherapy
Other tumors Powles et al., 2021 [176] 581 MIUC Mutation mPCR-NGS; tumor-informed 1. ctDNA+ patients benefits from adjuvant immunotherapy
2. Whether ctDNA-patients receive adjuvant immunotherapy does not affect the prognosis
Tab.2  
Fig.4  
1 EH Estey. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 2013; 88(4): 317–327
https://doi.org/10.1002/ajh.23404
2 DA Berry, S Zhou, H Higley, L Mukundan, S Fu, GH Reaman, BL Wood, GJ Kelloff, JM Jessup, JP Radich. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol 2017; 3(7): e170580
https://doi.org/10.1001/jamaoncol.2017.0580
3 R Pieters, H de Groot-Kruseman, V Van der Velden, M Fiocco, H van den Berg, E de Bont, RM Egeler, P Hoogerbrugge, G Kaspers, E Van der Schoot, V De Haas, J Van Dongen. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol 2016; 34(22): 2591–2601
https://doi.org/10.1200/JCO.2015.64.6364
4 HB Ommen. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol 2016; 7(1): 3–16
https://doi.org/10.1177/2040620715614529
5 A Hochhaus, M Baccarani, RT Silver, C Schiffer, JF Apperley, F Cervantes, RE Clark, JE Cortes, MW Deininger, F Guilhot, H Hjorth-Hansen, TP Hughes, JJWM Janssen, HM Kantarjian, DW Kim, RA Larson, JH Lipton, FX Mahon, J Mayer, F Nicolini, D Niederwieser, F Pane, JP Radich, D Rea, J Richter, G Rosti, P Rousselot, G Saglio, S Saußele, S Soverini, JL Steegmann, A Turkina, A Zaritskey, R Hehlmann. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34(4): 966–984
https://doi.org/10.1038/s41375-020-0776-2
6 MW Deininger, NP Shah, JK Altman, E Berman, R Bhatia, B Bhatnagar, DJ DeAngelo, J Gotlib, G Hobbs, L Maness, M Mead, L Metheny, S Mohan, JO Moore, K Naqvi, V Oehler, AM Pallera, M Patnaik, K Pratz, I Pusic, MG Rose, BD Smith, DS Snyder, KL Sweet, M Talpaz, J Thompson, DT Yang, KM Gregory, H Sundar. Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18(10): 1385–1415
https://doi.org/10.6004/jnccn.2020.0047
7 SK Kumar, NS Callander, M Alsina, D Atanackovic, JS Biermann, J Castillo, JC Chandler, C Costello, M Faiman, HC Fung, K Godby, C Hofmeister, L Holmberg, S Holstein, CA Huff, Y Kang, A Kassim, M Liedtke, E Malek, T Martin, VT Neppalli, J Omel, N Raje, S Singhal, G Somlo, K Stockerl-Goldstein, D Weber, J Yahalom, R Kumar, DA Shead. NCCN Guidelines Insights: Multiple Myeloma, Version 3.2018. J Natl Compr Canc Netw 2018; 16(1): 11–20
https://doi.org/10.6004/jnccn.2018.0002
8 AC BainesM Sarraf YazdyYL KasamonR ErshlerEY Jen B KanapuruNC RichardsonA LaneT CariotiMR Theoret R PazdurNJ Gormley. Minimal residual disease data in hematologic malignancy drug applications and labeling: an FDA perspective. Clin Cancer Res 2023; [Epub ahead of print] doi:
https://doi.org/10.1158/1078-0432.CCR-22-3579 pmid: 36892497
9 C Yang, BR Xia, WL Jin, G Lou. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19(1): 341
https://doi.org/10.1186/s12935-019-1067-8
10 J Zhang, X Hu, J Wang, AD Sahu, D Cohen, L Song, Z Ouyang, J Fan, B Wang, J Fu, S Gu, M Sade-Feldman, N Hacohen, W Li, X Ying, B Li, XS Liu. Immune receptor repertoires in pediatric and adult acute myeloid leukemia. Genome Med 2019; 11(1): 73
https://doi.org/10.1186/s13073-019-0681-3
11 AR Thierry, S El Messaoudi, PB Gahan, P Anker, M Stroun. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35(3): 347–376
https://doi.org/10.1007/s10555-016-9629-x
12 JCM Wan, C Massie, J Garcia-Corbacho, F Mouliere, JD Brenton, C Caldas, S Pacey, R Baird, N Rosenfeld. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17(4): 223–238
https://doi.org/10.1038/nrc.2017.7
13 M Ogawa, K Yokoyama, S Imoto, A Tojo. Role of circulating tumor DNA in hematological malignancy. Cancers (Basel) 2021; 13(9): 2078
https://doi.org/10.3390/cancers13092078
14 F Diehl, M Li, Y He, KW Kinzler, B Vogelstein, D Dressman. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 2006; 3(7): 551–559
https://doi.org/10.1038/nmeth898
15 I Kinde, J Wu, N Papadopoulos, KW Kinzler, B Vogelstein. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA 2011; 108(23): 9530–9535
https://doi.org/10.1073/pnas.1105422108
16 EJ Moding, BY Nabet, AA Alizadeh, M Diehn. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. Cancer Discov 2021; 11(12): 2968–2986
https://doi.org/10.1158/2159-8290.CD-21-0634
17 AB Benson, AP Venook, MM Al-Hawary, MA Arain, YJ Chen, KK Ciombor, S Cohen, HS Cooper, D Deming, I Garrido-Laguna, JL Grem, A Gunn, S Hoffe, J Hubbard, S Hunt, N Kirilcuk, S Krishnamurthi, WA Messersmith, J Meyerhardt, ED Miller, MF Mulcahy, S Nurkin, MJ Overman, A Parikh, H Patel, K Pedersen, L Saltz, C Schneider, D Shibata, JM Skibber, CT Sofocleous, EM Stoffel, E Stotsky-Himelfarb, CG Willett, A Johnson-Chilla, LA Gurski. NCCN Guidelines Insights: Rectal Cancer, Version 6.2020. J Natl Compr Canc Netw 2020; 18(7): 806–815
https://doi.org/10.6004/jnccn.2020.0032
18 DG Pfister, S Spencer, D Adelstein, D Adkins, Y Anzai, DM Brizel, JY Bruce, PM Busse, JJ Caudell, AJ Cmelak, AD Colevas, DW Eisele, M Fenton, RL Foote, T Galloway, ML Gillison, RI Haddad, WL Hicks, YJ Hitchcock, A Jimeno, D Leizman, E Maghami, LK Mell, BB Mittal, HA Pinto, JA Ridge, JW Rocco, CP Rodriguez, JP Shah, RS Weber, G Weinstein, M Witek, F Worden, SS Yom, W Zhen, JL Burns, SD Darlow. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18(7): 873–898
https://doi.org/10.6004/jnccn.2020.0031
19 EG Kikano, SH Tirumani, CH Suh, JM Gan, TT Bomberger, MT Bui, KR Laukamp, KW Kim, A Dowlati, NH Ramaiya. Trends in imaging utilization for small cell lung cancer: a decision tree analysis of the NCCN guidelines. Clin Imaging 2021; 75: 83–89
https://doi.org/10.1016/j.clinimag.2021.01.018
20 VL Chiou, M Burotto. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 2015; 33(31): 3541–3543
https://doi.org/10.1200/JCO.2015.61.6870
21 N Galldiks, M Kocher, G Ceccon, JM Werner, A Brunn, M Deckert, WB Pope, R Soffietti, E Le Rhun, M Weller, JC Tonn, GR Fink, KJ Langen. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro-oncol 2020; 22(1): 17–30
https://doi.org/10.1093/neuonc/noz147
22 JE Ryan, SK Warrier, AC Lynch, AG Heriot. Assessing pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis 2015; 17(10): 849–861
https://doi.org/10.1111/codi.13081
23 K Pantel, C Alix-Panabières. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol 2019; 16(7): 409–424
https://doi.org/10.1038/s41571-019-0187-3
24 A Dasari, VK Morris, CJ Allegra, C Atreya, AB 3rd Benson, P Boland, K Chung, MS Copur, RB Corcoran, DA Deming, A Dwyer, M Diehn, C Eng, TJ George, MJ Gollub, RA Goodwin, SR Hamilton, JF Hechtman, H Hochster, TS Hong, F Innocenti, A Iqbal, SA Jacobs, HF Kennecke, JJ Lee, CH Lieu, HJ Lenz, OW Lindwasser, C Montagut, B Odisio, FS Ou, L Porter, K Raghav, D Schrag, AJ Scott, Q Shi, JH Strickler, A Venook, R Yaeger, G Yothers, YN You, JA Zell, S Kopetz. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol 2020; 17(12): 757–770
https://doi.org/10.1038/s41571-020-0392-0
25 AP Venook. Colorectal cancer surveillance with circulating tumor DNA assay. JAMA Netw Open 2022; 5(3): e221100
https://doi.org/10.1001/jamanetworkopen.2022.1100
26 D Sargent, A Sobrero, A Grothey, MJ O’Connell, M Buyse, T Andre, Y Zheng, E Green, R Labianca, C O’Callaghan, JF Seitz, G Francini, D Haller, G Yothers, R Goldberg, Gramont A de. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2009; 27(6): 872–877
https://doi.org/10.1200/JCO.2008.19.5362
27 Breast Cancer Trialists' Collaborative Group (EBCTCG); Peto R Early, C Davies, J Godwin, R Gray, HC Pan, M Clarke, D Cutter, S Darby, P McGale, C Taylor, YC Wang, J Bergh, Leo A Di, K Albain, S Swain, M Piccart, K Pritchard. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012; 379(9814): 432–444
https://doi.org/10.1016/S0140-6736(11)61625-5
28 M Ignatiadis, GW Sledge, SS Jeffrey. Liquid biopsy enters the clinic—implementation issues and future challenges. Nat Rev Clin Oncol 2021; 18(5): 297–312
https://doi.org/10.1038/s41571-020-00457-x
29 K Pantel, MR Speicher. The biology of circulating tumor cells. Oncogene 2016; 35(10): 1216–1224
https://doi.org/10.1038/onc.2015.192
30 J Dai, Y Su, S Zhong, L Cong, B Liu, J Yang, Y Tao, Z He, C Chen, Y Jiang. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5(1): 145
https://doi.org/10.1038/s41392-020-00261-0
31 Y Su, Y Li, R Guo, J Zhao, W Chi, H Lai, J Wang, Z Wang, L Li, Y Sang, J Hou, J Xue, Z Shao, Y Chi, S Huang, J Wu. Plasma extracellular vesicle long RNA profiles in the diagnosis and prediction of treatment response for breast cancer. NPJ Breast Cancer 2021; 7(1): 154
https://doi.org/10.1038/s41523-021-00356-z
32 S Uemura, T Ishida, KKM Thwin, N Yamamoto, A Tamura, K Kishimoto, D Hasegawa, Y Kosaka, N Nino, KS Lin, S Takafuji, T Mori, K Iijima, N Nishimura. Dynamics of minimal residual disease in neuroblastoma patients. Front Oncol 2019; 9: 455
https://doi.org/10.3389/fonc.2019.00455
33 Z Cai, G Chen, Y Zeng, X Dong, Z Li, Y Huang, F Xin, L Qiu, H Xu, W Zhang, X Su, X Liu, J Liu. Comprehensive liquid profiling of circulating tumor DNA and protein biomarkers in long-term follow-up patients with hepatocellular carcinoma. Clin Cancer Res 2019; 25(17): 5284–5294
https://doi.org/10.1158/1078-0432.CCR-18-3477
34 J Massagué, AC Obenauf. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298–306
https://doi.org/10.1038/nature17038
35 M Mohme, S Riethdorf, K Pantel. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 2017; 14(3): 155–167
https://doi.org/10.1038/nrclinonc.2016.144
36 TR Ashworth. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australian Med J 1869; 14: 146
37 SH Seal. Silicone flotation: a simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer 1959; 12(3): 590–595
https://doi.org/10.1002/1097-0142(195905/06)12:3<590::AID-CNCR2820120318>3.0.CO;2-N
38 M Cristofanilli, GT Budd, MJ Ellis, A Stopeck, J Matera, MC Miller, JM Reuben, GV Doyle, WJ Allard, LW Terstappen, DF Hayes. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351(8): 781–791
https://doi.org/10.1056/NEJMoa040766
39 MC Liu, PG Shields, RD Warren, P Cohen, M Wilkinson, YL Ottaviano, SB Rao, J Eng-Wong, F Seillier-Moiseiwitsch, AM Noone, C Isaacs. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 2009; 27(31): 5153–5159
https://doi.org/10.1200/JCO.2008.20.6664
40 A Markiewicz, J Topa, A Nagel, J Skokowski, B Seroczynska, T Stokowy, M Welnicka-Jaskiewicz, AJ Zaczek. Spectrum of epithelial-mesenchymal transition phenotypes in circulating tumour cells from early breast cancer patients. Cancers (Basel) 2019; 11(1): 59
https://doi.org/10.3390/cancers11010059
41 HI Scher, RP Graf, NA Schreiber, A Jayaram, E Winquist, B McLaughlin, D Lu, M Fleisher, S Orr, L Lowes, A Anderson, Y Wang, R Dittamore, AL Allan, G Attard, G Heller. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 2018; 4(9): 1179–1186
https://doi.org/10.1001/jamaoncol.2018.1621
42 MA Khattak, A Reid, J Freeman, M Pereira, A McEvoy, J Lo, MH Frank, T Meniawy, A Didan, I Spencer, B Amanuel, M Millward, M Ziman, E Gray. PD-L1 expression on circulating tumor cells may be predictive of response to pembrolizumab in advanced melanoma: results from a pilot study. Oncologist 2020; 25(3): e520–e527
https://doi.org/10.1634/theoncologist.2019-0557
43 R Young, E Pailler, F Billiot, F Drusch, A Barthelemy, M Oulhen, B Besse, JC Soria, F Farace, P Vielh. Circulating tumor cells in lung cancer. Acta Cytol 2012; 56(6): 655–660
https://doi.org/10.1159/000345182
44 M Stroun, J Lyautey, C Lederrey, A Olson-Sand, P Anker. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313(1–2): 139–142
https://doi.org/10.1016/S0009-8981(01)00665-9
45 S Jahr, H Hentze, S Englisch, D Hardt, FO Fackelmayer, RD Hesch, R Knippers. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61(4): 1659–1665
46 F Diehl, K Schmidt, MA Choti, K Romans, S Goodman, M Li, K Thornton, N Agrawal, L Sokoll, SA Szabo, KW Kinzler, B Vogelstein, LA Jr Diaz. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14(9): 985–990
https://doi.org/10.1038/nm.1789
47 C Abbosh, NJ Birkbak, GA Wilson, M Jamal-Hanjani, T Constantin, R Salari, Quesne J Le, DA Moore, S Veeriah, R Rosenthal, T Marafioti, E Kirkizlar, TBK Watkins, N McGranahan, S Ward, L Martinson, J Riley, F Fraioli, Bakir M Al, E Grönroos, F Zambrana, R Endozo, WL Bi, FM Fennessy, N Sponer, D Johnson, J Laycock, S Shafi, J Czyzewska-Khan, A Rowan, T Chambers, N Matthews, S Turajlic, C Hiley, SM Lee, MD Forster, T Ahmad, M Falzon, E Borg, D Lawrence, M Hayward, S Kolvekar, N Panagiotopoulos, SM Janes, R Thakrar, A Ahmed, F Blackhall, Y Summers, D Hafez, A Naik, A Ganguly, S Kareht, R Shah, L Joseph, Quinn A Marie, PA Crosbie, B Naidu, G Middleton, G Langman, S Trotter, M Nicolson, H Remmen, K Kerr, M Chetty, L Gomersall, DA Fennell, A Nakas, S Rathinam, G Anand, S Khan, P Russell, V Ezhil, B Ismail, M Irvin-Sellers, V Prakash, JF Lester, M Kornaszewska, R Attanoos, H Adams, H Davies, D Oukrif, AU Akarca, JA Hartley, HL Lowe, S Lock, N Iles, H Bell, Y Ngai, G Elgar, Z Szallasi, RF Schwarz, J Herrero, A Stewart, SA Quezada, KS Peggs, Loo P Van, C Dive, CJ Lin, M Rabinowitz, HJWL Aerts, A Hackshaw, JA Shaw, BG; TRACERx consortium; PEACE consortium; Swanton C Zimmermann. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017; 545(7655): 446–451
https://doi.org/10.1038/nature22364
48 J Phallen, M Sausen, V Adleff, A Leal, C Hruban, J White, V Anagnostou, J Fiksel, S Cristiano, E Papp, S Speir, T Reinert, MW Orntoft, BD Woodward, D Murphy, S Parpart-Li, D Riley, M Nesselbush, N Sengamalay, A Georgiadis, QK Li, MR Madsen, FV Mortensen, J Huiskens, C Punt, Grieken N van, R Fijneman, G Meijer, H Husain, RB Scharpf, LA Jr Diaz, S Jones, S Angiuoli, T Ørntoft, HJ Nielsen, CL Andersen, VE Velculescu. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017; 9(403): eaan2415
https://doi.org/10.1126/scitranslmed.aan2415
49 T Forshew, M Murtaza, C Parkinson, D Gale, DW Tsui, F Kaper, SJ Dawson, AM Piskorz, M Jimenez-Linan, D Bentley, J Hadfield, AP May, C Caldas, JD Brenton, N Rosenfeld. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4(136): 136ra68
https://doi.org/10.1126/scitranslmed.3003726
50 K Sun, P Jiang, KC Chan, J Wong, YK Cheng, RH Liang, WK Chan, ES Ma, SL Chan, SH Cheng, RW Chan, YK Tong, SS Ng, RS Wong, DS Hui, TN Leung, TY Leung, PB Lai, RW Chiu, YM Lo. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 2015; 112(40): E5503–E5512
https://doi.org/10.1073/pnas.1508736112
51 RJ Leary, M Sausen, I Kinde, N Papadopoulos, JD Carpten, D Craig, J O’Shaughnessy, KW Kinzler, G Parmigiani, B Vogelstein, LA Jr Diaz, VE Velculescu. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 2012; 4(162): 162ra154
https://doi.org/10.1126/scitranslmed.3004742
52 F Mouliere, B Robert, E Arnau Peyrotte, M Del Rio, M Ychou, F Molina, C Gongora, AR Thierry. High fragmentation characterizes tumour-derived circulating DNA. PLoS One 2011; 6(9): e23418
https://doi.org/10.1371/journal.pone.0023418
53 S Cristiano, A Leal, J Phallen, J Fiksel, V Adleff, DC Bruhm, SØ Jensen, JE Medina, C Hruban, JR White, DN Palsgrove, N Niknafs, V Anagnostou, P Forde, J Naidoo, K Marrone, J Brahmer, BD Woodward, H Husain, Rooijen KL van, MW Ørntoft, AH Madsen, de Velde CJH van, M Verheij, A Cats, CJA Punt, GR Vink, Grieken NCT van, M Koopman, RJA Fijneman, JS Johansen, HJ Nielsen, GA Meijer, CL Andersen, RB Scharpf, VE Velculescu. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 2019; 570(7761): 385–389
https://doi.org/10.1038/s41586-019-1272-6
54 P Berlanga, G Pierron, L Lacroix, M Chicard, de Beaumais T Adam, A Marchais, AC Harttrampf, Y Iddir, A Larive, Fernandez A Soriano, I Hezam, C Chevassus, V Bernard, S Cotteret, JY Scoazec, A Gauthier, S Abbou, N Corradini, N André, I Aerts, E Thebaud, M Casanova, C Owens, R Hladun-Alvaro, S Michiels, O Delattre, G Vassal, G Schleiermacher, B Geoerger. The European MAPPYACTS Trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov 2022; 12(5): 1266–1281
https://doi.org/10.1158/2159-8290.CD-21-1136
55 WW Chen, L Balaj, LM Liau, ML Samuels, SK Kotsopoulos, CA Maguire, L Loguidice, H Soto, M Garrett, LD Zhu, S Sivaraman, C Chen, ET Wong, BS Carter, FH Hochberg, XO Breakefield, J Skog. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2013; 2(7): e109
https://doi.org/10.1038/mtna.2013.28
56 Y Peng, W Mei, K Ma, C Zeng. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: current horizons and future perspectives. Front Oncol 2021; 11: 763790
https://doi.org/10.3389/fonc.2021.763790
57 M Murtaza, SJ Dawson, DW Tsui, D Gale, T Forshew, AM Piskorz, C Parkinson, SF Chin, Z Kingsbury, AS Wong, F Marass, S Humphray, J Hadfield, D Bentley, TM Chin, JD Brenton, C Caldas, N Rosenfeld. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497(7447): 108–112
https://doi.org/10.1038/nature12065
58 A Zviran, RC Schulman, M Shah, STK Hill, S Deochand, CC Khamnei, D Maloney, K Patel, W Liao, AJ Widman, P Wong, MK Callahan, G Ha, S Reed, D Rotem, D Frederick, T Sharova, B Miao, T Kim, G Gydush, J Rhoades, KY Huang, ND Omans, PO Bolan, AH Lipsky, C Ang, M Malbari, CF Spinelli, S Kazancioglu, AM Runnels, S Fennessey, C Stolte, F Gaiti, GG Inghirami, V Adalsteinsson, B Houck-Loomis, J Ishii, JD Wolchok, G Boland, N Robine, NK Altorki, DA Landau. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat Med 2020; 26(7): 1114–1124
https://doi.org/10.1038/s41591-020-0915-3
59 M Klutstein, D Nejman, R Greenfield, H Cedar. DNA methylation in cancer and aging. Cancer Res 2016; 76(12): 3446–3450
https://doi.org/10.1158/0008-5472.CAN-15-3278
60 KA Hoadley, C Yau, T Hinoue, DM Wolf, AJ Lazar, E Drill, R Shen, AM Taylor, AD Cherniack, V Thorsson, R Akbani, R Bowlby, CK Wong, M Wiznerowicz, F Sanchez-Vega, AG Robertson, BG Schneider, MS Lawrence, H Noushmehr, TM; Cancer Genome Atlas Network; Stuart JM Malta, CC Benz, PW Laird. cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018; 173(2): 291–304.e6
https://doi.org/10.1016/j.cell.2018.03.022
61 E Lianidou. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15(6): 1683–1700
https://doi.org/10.1002/1878-0261.12978
62 Q Gao, Q Zeng, Z Wang, C Li, Y Xu, P Cui, X Zhu, H Lu, G Wang, S Cai, J Wang, J Fan. Circulating cell-free DNA for cancer early detection. Innovation (Camb) 2022; 3(4): 100259
https://doi.org/10.1016/j.xinn.2022.100259
63 J Moss, A Zick, A Grinshpun, E Carmon, M Maoz, BL Ochana, O Abraham, O Arieli, L Germansky, K Meir, B Glaser, R Shemer, B Uziely, Y Dor. Circulating breast-derived DNA allows universal detection and monitoring of localized breast cancer. Ann Oncol 2020; 31(3): 395–403
https://doi.org/10.1016/j.annonc.2019.11.014
64 C Haldrup, AL Pedersen, N Øgaard, SH Strand, S Høyer, M Borre, TF Ørntoft, KD Sørensen. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol Oncol 2018; 12(4): 545–560
https://doi.org/10.1002/1878-0261.12183
65 AR Parikh, EE Van Seventer, G Siravegna, AV Hartwig, A Jaimovich, Y He, K Kanter, MG Fish, KD Fosbenner, B Miao, S Phillips, JH Carmichael, N Sharma, J Jarnagin, I Baiev, YS Shah, IJ Fetter, HA Shahzade, JN Allen, LS Blaszkowsky, JW Clark, JS Dubois, JW Franses, BJ Giantonio, L Goyal, SJ Klempner, RD Nipp, EJ Roeland, DP Ryan, CD Weekes, JY Wo, TS Hong, L Bordeianou, CR Ferrone, M Qadan, H Kunitake, D Berger, R Ricciardi, JC Cusack, VM Raymond, A Talasaz, GM Boland, RB Corcoran. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res 2021; 27(20): 5586–5594
https://doi.org/10.1158/1078-0432.CCR-21-0410
66 J Vidal, D Casadevall, B Bellosillo, C Pericay, R Garcia-Carbonero, F Losa, L Layos, V Alonso, J Capdevila, J Gallego, R Vera, A Salud, M Martin-Richard, M Nogué, E Cillán, J Maurel, I Faull, V Raymond, C Fernández-Martos, C Montagut. Clinical impact of presurgery circulating tumor DNA after total neoadjuvant treatment in locally advanced rectal cancer: a biomarker study from the GEMCAD 1402 Trial. Clin Cancer Res 2021; 27(10): 2890–2898
https://doi.org/10.1158/1078-0432.CCR-20-4769
67 WH Lin, J Xiao, ZY Ye, DL Wei, XH Zhai, RH Xu, ZL Zeng, HY Luo. Circulating tumor DNA methylation marker MYO1-G for diagnosis and monitoring of colorectal cancer. Clin Epigenetics 2021; 13(1): 232
https://doi.org/10.1186/s13148-021-01216-0
68 K Ko, Y Kananazawa, T Yamada, D Kakinuma, K Matsuno, F Ando, S Kuriyama, A Matsuda, H Yoshida. Methylation status and long-fragment cell-free DNA are prognostic biomarkers for gastric cancer. Cancer Med 2021; 10(6): 2003–2012
https://doi.org/10.1002/cam4.3755
69 N Husain, A Husain, S Mishra, P Srivastava. Liquid biopsy in CNS tumors: current status & future perspectives. Indian J Pathol Microbiol 2022; 65(Supplement): S111–S121
70 H Luo, W Wei, Z Ye, J Zheng, RH Xu. Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol Med 2021; 27(5): 482–500
https://doi.org/10.1016/j.molmed.2020.12.011
71 W Liu, Y Li, Y Tang, Q Song, J Wang, N Li, S Chen, J Shi, S Wang, Y Li, Y Jiao, Y Zeng, J Jin. Response prediction and risk stratification of patients with rectal cancer after neoadjuvant therapy through an analysis of circulating tumour DNA. EBioMedicine 2022; 78: 103945
https://doi.org/10.1016/j.ebiom.2022.103945
72 APY Liu, KS Smith, R Kumar, L Paul, L Bihannic, T Lin, KK Maass, KW Pajtler, M Chintagumpala, JM Su, E Bouffet, MJ Fisher, S Gururangan, R Cohn, T Hassall, JR Hansford, P Jr Klimo, FA Boop, CF Stewart, JH Harreld, TE Merchant, RG Tatevossian, G Neale, M Lear, JM Klco, BA Orr, DW Ellison, RJ Gilbertson, A Onar-Thomas, A Gajjar, GW Robinson, PA Northcott. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell 2021; 39(11): 1519–1530.e4
https://doi.org/10.1016/j.ccell.2021.09.012
73 E Heitzer, M Auer, EM Hoffmann, M Pichler, C Gasch, P Ulz, S Lax, J Waldispuehl-Geigl, O Mauermann, S Mohan, G Pristauz, C Lackner, G Höfler, F Eisner, E Petru, H Sill, H Samonigg, K Pantel, S Riethdorf, T Bauernhofer, JB Geigl, MR Speicher. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 2013; 133(2): 346–356
https://doi.org/10.1002/ijc.28030
74 Y Wang, X Fan, H Bao, F Xia, J Wan, L Shen, Y Wang, H Zhang, Y Wei, X Wu, Y Shao, X Li, Y Xu, S Cai, Z Zhang. Utility of circulating free DNA fragmentomics in the prediction of pathological response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Chem 2023; 69(1): 88–99
https://doi.org/10.1093/clinchem/hvac173
75 M Radovich, G Jiang, BA Hancock, C Chitambar, R Nanda, C Falkson, FC Lynce, C Gallagher, C Isaacs, M Blaya, E Paplomata, R Walling, K Daily, R Mahtani, MA Thompson, R Graham, ME Cooper, DC Pavlick, LA Albacker, J Gregg, JP Solzak, YH Chen, CL Bales, E Cantor, F Shen, AMV Storniolo, S Badve, TJ Ballinger, CL Chang, Y Zhong, C Savran, KD Miller, BP Schneider. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol 2020; 6(9): 1410–1415
https://doi.org/10.1001/jamaoncol.2020.2295
76 L Zhao, L Jiang, Y Liu, X Wang, J Song, Y Sun, Y Bai, X Dong, L Sun, J Wu, Y Jiao, X Zhao. Integrated analysis of circulating tumour cells and circulating tumour DNA to detect minimal residual disease in hepatocellular carcinoma. Clin Transl Med 2022; 12(4): e793
https://doi.org/10.1002/ctm2.793
77 P Bankó, SY Lee, V Nagygyörgy, M Zrínyi, CH Chae, DH Cho, A Telekes. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 2019; 12(1): 48
https://doi.org/10.1186/s13045-019-0735-4
78 SJ Cohen, CJ Punt, N Iannotti, BH Saidman, KD Sabbath, NY Gabrail, J Picus, M Morse, E Mitchell, MC Miller, GV Doyle, H Tissing, LW Terstappen, NJ Meropol. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(19): 3213–3221
https://doi.org/10.1200/JCO.2007.15.8923
79 M Nikanjam, S Kato, R Kurzrock. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022; 15(1): 131
https://doi.org/10.1186/s13045-022-01351-y
80 Y Wu, KJ Park, C Deighan, P Amaya, B Miller, Q Pan, M Zborowski, M Lustberg, J Chalmers. Multiparameter evaluation of the heterogeneity of circulating tumor cells using integrated RNA in situ hybridization and immunocytochemical analysis. Front Oncol 2016; 6: 234
https://doi.org/10.3389/fonc.2016.00234
81 C Alix-Panabières, K Pantel. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016; 6(5): 479–491
https://doi.org/10.1158/2159-8290.CD-15-1483
82 L Tong, N Ding, X Tong, J Li, Y Zhang, X Wang, X Xu, M Ye, C Li, X Wu, H Bao, X Zhang, Q Hong, Y Song, YW Shao, C Bai, J Zhou, J Hu. Tumor-derived DNA from pleural effusion supernatant as a promising alternative to tumor tissue in genomic profiling of advanced lung cancer. Theranostics 2019; 9(19): 5532–5541
https://doi.org/10.7150/thno.34070
83 MR Han, SH Lee, JY Park, H Hong, JY Ho, SY Hur, YJ Choi. Clinical implications of circulating tumor DNA from ascites and serial plasma in ovarian cancer. Cancer Res Treat 2020; 52(3): 779–788
https://doi.org/10.4143/crt.2019.700
84 B Vanova, M Kalman, K Jasek, I Kasubova, T Burjanivova, A Farkasova, P Kruzliak, D Busselberg, L Plank, Z Lasabova. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med 2019; 19(2): 219–224
https://doi.org/10.1007/s10238-019-00545-y
85 Y Zhu, D Lu, ME Lira, Q Xu, Y Du, J Xiong, M Mao, HC Chung, G Zheng. Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples. Exp Mol Pathol 2016; 100(2): 287–293
https://doi.org/10.1016/j.yexmp.2015.11.027
86 JA Denis, E Guillerm, F Coulet, AK Larsen, JM Lacorte. The role of BEAMing and digital PCR for multiplexed analysis in molecular oncology in the era of next-generation sequencing. Mol Diagn Ther 2017; 21(6): 587–600
https://doi.org/10.1007/s40291-017-0287-7
87 D Dressman, H Yan, G Traverso, KW Kinzler, B Vogelstein. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003; 100(15): 8817–8822
https://doi.org/10.1073/pnas.1133470100
88 J García-Foncillas, E Alba, E Aranda, E Díaz-Rubio, R López-López, J Tabernero, A Vivancos. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review. Ann Oncol 2017; 28(12): 2943–2949
https://doi.org/10.1093/annonc/mdx501
89 S Olmedillas-López, R Olivera-Salazar, M García-Arranz, D García-Olmo. Current and emerging applications of droplet digital PCR in oncology: an updated review. Mol Diagn Ther 2022; 26(1): 61–87
https://doi.org/10.1007/s40291-021-00562-2
90 CP Paweletz, GA Heavey, Y Kuang, E Durlacher, T Kheoh, RC Chao, AI Spira, K Leventakos, ML Johnson, SI Ou, GJ Riely, K Anderes, W Yang, JG Christensen, PA Jänne. Early changes in circulating cell-free KRAS G12C predict response to Adagrasib in KRAS mutant non-small cell lung cancer patients. Clin Cancer Res 2023; 29(16): 3074–3080
https://doi.org/10.1158/1078-0432.CCR-23-0795
91 P Garrido, L Paz-Ares, M Majem, T Morán, JM Trigo, J Bosch-Barrera, R Garcίa-Campelo, JL González-Larriba, JM Sánchez-Torres, D Isla, N Viñolas, C Camps, A Insa, Ó Juan, B Massuti, A Paredes, Á Artal, M López-Brea, J Palacios, E Felip. LungBEAM: a prospective multicenter study to monitor stage IV NSCLC patients with EGFR mutations using BEAMing technology. Cancer Med 2021; 10(17): 5878–5888
https://doi.org/10.1002/cam4.4135
92 MA Quail, I Kozarewa, F Smith, A Scally, PJ Stephens, R Durbin, H Swerdlow, DJ Turner. A large genome center’s improvements to the Illumina sequencing system. Nat Methods 2008; 5(12): 1005–1010
https://doi.org/10.1038/nmeth.1270
93 A Gore, Z Li, HL Fung, JE Young, S Agarwal, J Antosiewicz-Bourget, I Canto, A Giorgetti, MA Israel, E Kiskinis, JH Lee, YH Loh, PD Manos, N Montserrat, AD Panopoulos, S Ruiz, ML Wilbert, J Yu, EF Kirkness, JC Izpisua Belmonte, DJ Rossi, JA Thomson, K Eggan, GQ Daley, LS Goldstein, K Zhang. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471(7336): 63–67
https://doi.org/10.1038/nature09805
94 J Tie, Y Wang, J Cohen, L Li, W Hong, M Christie, HL Wong, S Kosmider, R Wong, B Thomson, J Choi, A Fox, K Field, M Burge, J Shannon, D Kotasek, NC Tebbutt, C Karapetis, C Underhill, A Haydon, J Schaeffer, J Ptak, C Tomasetti, N Papadopoulos, KW Kinzler, B Vogelstein, P Gibbs. Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: a prospective cohort study. PLoS Med 2021; 18(5): e1003620
https://doi.org/10.1371/journal.pmed.1003620
95 J Tie, I Kinde, Y Wang, HL Wong, J Roebert, M Christie, M Tacey, R Wong, M Singh, CS Karapetis, J Desai, B Tran, RL Strausberg, LA Jr Diaz, N Papadopoulos, KW Kinzler, B Vogelstein, P Gibbs. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 2015; 26(8): 1715–1722
https://doi.org/10.1093/annonc/mdv177
96 AM Newman, SV Bratman, J To, JF Wynne, NC Eclov, LA Modlin, CL Liu, JW Neal, HA Wakelee, RE Merritt, JB Shrager, BW Jr Loo, AA Alizadeh, M Diehn. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20(5): 548–554
https://doi.org/10.1038/nm.3519
97 TD Azad, AA Chaudhuri, P Fang, Y Qiao, MS Esfahani, JJ Chabon, EG Hamilton, YD Yang, A Lovejoy, AM Newman, DM Kurtz, M Jin, J Schroers-Martin, H Stehr, CL Liu, AB Hui, V Patel, D Maru, SH Lin, AA Alizadeh, M Diehn. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology 2020; 158(3): 494–505.e6
https://doi.org/10.1053/j.gastro.2019.10.039
98 R Phillips, WY Shi, M Deek, N Radwan, SJ Lim, ES Antonarakis, SP Rowe, AE Ross, MA Gorin, C Deville, SC Greco, H Wang, SR Denmeade, CJ Paller, S Dipasquale, TL DeWeese, DY Song, H Wang, MA Carducci, KJ Pienta, MG Pomper, AP Dicker, MA Eisenberger, AA Alizadeh, M Diehn, PT Tran. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol 2020; 6(5): 650–659
https://doi.org/10.1001/jamaoncol.2020.0147
99 A Kaneko, H Kanemaru, I Kajihara, T Mijiddorj, H Miyauchi, H Kuriyama, T Kimura, S Sawamura, K Makino, A Miyashita, J Aoi, T Makino, S Masuguchi, S Fukushima, H Ihn. Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients. J Dermatol Sci 2021; 102(3): 158–166
https://doi.org/10.1016/j.jdermsci.2021.04.006
100 PS Chauhan, K Chen, RK Babbra, W Feng, N Pejovic, A Nallicheri, PK Harris, K Dienstbach, A Atkocius, L Maguire, F Qaium, JJ Szymanski, BC Baumann, L Ding, D Cao, MA Reimers, EH Kim, ZL Smith, VK Arora, AA Chaudhuri. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: a cohort study. PLoS Med 2021; 18(8): e1003732
https://doi.org/10.1371/journal.pmed.1003732
101 JC Dudley, J Schroers-Martin, DV Lazzareschi, WY Shi, SB Chen, MS Esfahani, D Trivedi, JJ Chabon, AA Chaudhuri, H Stehr, CL Liu, H Lim, HA Costa, BY Nabet, MLY Sin, JC Liao, AA Alizadeh, M Diehn. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov 2019; 9(4): 500–509
https://doi.org/10.1158/2159-8290.CD-18-0825
102 DM Kurtz, J Soo, Ting Keh L Co, S Alig, JJ Chabon, BJ Sworder, A Schultz, MC Jin, F Scherer, A Garofalo, CW Macaulay, EG Hamilton, B Chen, M Olsen, JG Schroers-Martin, AFM Craig, EJ Moding, MS Esfahani, CL Liu, U Dührsen, A Hüttmann, RO Casasnovas, JR Westin, M Roschewski, WH Wilson, G Gaidano, D Rossi, M Diehn, AA Alizadeh. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol 2021; 39(12): 1537–1547
https://doi.org/10.1038/s41587-021-00981-w
103 G Gydush, E Nguyen, JH Bae, T Blewett, J Rhoades, SC Reed, D Shea, K Xiong, R Liu, F Yu, KW Leong, AD Choudhury, DG Stover, SM Tolaney, IE Krop, J Christopher Love, HA Parsons, G Mike Makrigiorgos, TR Golub, VA Adalsteinsson. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat Biomed Eng 2022; 6(3): 257–266
https://doi.org/10.1038/s41551-022-00855-9
104 PS Chauhan, A Shiang, I Alahi, RT Sundby, W Feng, B Gungoren, C Nawaf, K Chen, RK Babbra, PK Harris, F Qaium, C Hatscher, A Antiporda, L Brunt, LR Mayer, JF Shern, BC Baumann, EH Kim, MA Reimers, ZL Smith, AA Chaudhuri. Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. NPJ Precis Oncol 2023; 7(1): 6
https://doi.org/10.1038/s41698-022-00345-w
105 AL McGuire, T Caulfield, MK Cho. Research ethics and the challenge of whole-genome sequencing. Nat Rev Genet 2008; 9(2): 152–156
https://doi.org/10.1038/nrg2302
106 JJ Szymanski, RT Sundby, PA Jones, D Srihari, N Earland, PK Harris, W Feng, F Qaium, H Lei, D Roberts, M Landeau, J Bell, Y Huang, L Hoffman, M Spencer, MB Spraker, L Ding, BC Widemann, JF Shern, AC Hirbe, AA Chaudhuri. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: a cross-sectional study. PLoS Med 2021; 18(8): e1003734
https://doi.org/10.1371/journal.pmed.1003734
107 S Zeng, Y Ying, N Xing, B Wang, Z Qian, Z Zhou, Z Zhang, W Xu, H Wang, L Dai, L Gao, T Zhou, J Ji, C Xu. Noninvasive detection of urothelial carcinoma by cost-effective low-coverage whole-genome sequencing from urine-exfoliated cell DNA. Clin Cancer Res 2020; 26(21): 5646–5654
https://doi.org/10.1158/1078-0432.CCR-20-0401
108 A Zivanovic Bujak, CF Weng, MJ Silva, M Yeung, L Lo, S Ftouni, C Litchfield, YA Ko, K Kuykhoven, C Van Geelen, S Chandrashekar, MA Dawson, S Loi, SQ Wong, SJ Dawson. Circulating tumour DNA in metastatic breast cancer to guide clinical trial enrolment and precision oncology: a cohort study. PLoS Med 2020; 17(10): e1003363
https://doi.org/10.1371/journal.pmed.1003363
109 D Lissa, AI Robles. Methylation analyses in liquid biopsy. Transl Lung Cancer Res 2016; 5(5): 492–504
https://doi.org/10.21037/tlcr.2016.10.03
110 C Legendre, GC Gooden, K Johnson, RA Martinez, WS Liang, B Salhia. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin Epigenetics 2015; 7(1): 100
https://doi.org/10.1186/s13148-015-0135-8
111 L Liu, JM Toung, AF Jassowicz, R Vijayaraghavan, H Kang, R Zhang, KM Kruglyak, HJ Huang, T Hinoue, H Shen, NS Salathia, DS Hong, A Naing, V Subbiah, SA Piha-Paul, M Bibikova, G Granger, B Barnes, R Shen, K Gutekunst, S Fu, AM Tsimberidou, C Lu, C Eng, SL Moulder, ES Kopetz, RN Amaria, F Meric-Bernstam, PW Laird, JB Fan, F Janku. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann Oncol 2018; 29(6): 1445–1453
https://doi.org/10.1093/annonc/mdy119
112 SY Shen, R Singhania, G Fehringer, A Chakravarthy, MHA Roehrl, D Chadwick, PC Zuzarte, A Borgida, TT Wang, T Li, O Kis, Z Zhao, A Spreafico, TDS Medina, Y Wang, D Roulois, I Ettayebi, Z Chen, S Chow, T Murphy, A Arruda, GM O’Kane, J Liu, M Mansour, JD McPherson, C O’Brien, N Leighl, PL Bedard, N Fleshner, G Liu, MD Minden, S Gallinger, A Goldenberg, TJ Pugh, MM Hoffman, SV Bratman, RJ Hung, Carvalho DD De. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018; 563(7732): 579–583
https://doi.org/10.1038/s41586-018-0703-0
113 D Han, X Lu, AH Shih, J Nie, Q You, MM Xu, AM Melnick, RL Levine, C He. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol Cell 2016; 63(4): 711–719
https://doi.org/10.1016/j.molcel.2016.06.028
114 F Janke, AK Angeles, AL Riediger, S Bauer, M Reck, A Stenzinger, MA Schneider, T Muley, M Thomas, P Christopoulos, H Sültmann. Longitudinal monitoring of cell-free DNA methylation in ALK-positive non-small cell lung cancer patients. Clin Epigenetics 2022; 14(1): 163
https://doi.org/10.1186/s13148-022-01387-4
115 SV Bratman, SYC Yang, MAJ Iafolla, Z Liu, AR Hansen, PL Bedard, S Lheureux, A Spreafico, AA Razak, S Shchegrova, M Louie, P Billings, B Zimmermann, H Sethi, A Aleshin, D Torti, K Marsh, J Eagles, I Cirlan, Y Hanna, DL Clouthier, SC Lien, PS Ohashi, W Xu, LL Siu, TJ Pugh. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Can 2020; 1(9): 873–881
https://doi.org/10.1038/s43018-020-0096-5
116 K Chen, MD Shields, PS Chauhan, RJ Ramirez, PK Harris, MA Reimers, JP Zevallos, AA Davis, B Pellini, AA Chaudhuri. Commercial ctDNA assays for minimal residual disease detection of solid tumors. Mol Diagn Ther 2021; 25(6): 757–774
https://doi.org/10.1007/s40291-021-00559-x
117 B Pellini, AA Chaudhuri. Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent. J Clin Oncol 2022; 40(6): 567–575
https://doi.org/10.1200/JCO.21.01929
118 SJ Yaung, C Woestmann, C Ju, XM Ma, S Gattam, Y Zhou, L Xi, S Pal, A Balasubramanyam, N Tikoo, CP Heussel, M Thomas, M Kriegsmann, M Meister, MA Schneider, FJ Herth, B Wehnl, M Diehn, AA Alizadeh, JF Palma, T Muley. Early assessment of chemotherapy response in advanced non-small cell lung cancer with circulating tumor DNA. Cancers (Basel) 2022; 14(10): 2479
https://doi.org/10.3390/cancers14102479
119 AM Newman, AF Lovejoy, DM Klass, DM Kurtz, JJ Chabon, F Scherer, H Stehr, CL Liu, SV Bratman, C Say, L Zhou, JN Carter, RB West, GW Jr Sledge, JB Shrager, BW Jr Loo, JW Neal, HA Wakelee, M Diehn, AA Alizadeh. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 2016; 34(5): 547–555
https://doi.org/10.1038/nbt.3520
120 RA Risques, SR Kennedy. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 2018; 14(1): e1007108
https://doi.org/10.1371/journal.pgen.1007108
121 JM Burgener, J Zou, Z Zhao, Y Zheng, SY Shen, SH Huang, S Keshavarzi, W Xu, FF Liu, G Liu, JN Waldron, I Weinreb, A Spreafico, LL Siu, JR de Almeida, DP Goldstein, MM Hoffman, DD De Carvalho, SV Bratman. Tumor-naïve multimodal profiling of circulating tumor DNA in head and neck squamous cell carcinoma. Clin Cancer Res 2021; 27(15): 4230–4244
https://doi.org/10.1158/1078-0432.CCR-21-0110
122 JD Cohen, L Li, Y Wang, C Thoburn, B Afsari, L Danilova, C Douville, AA Javed, F Wong, A Mattox, RH Hruban, CL Wolfgang, MG Goggins, Molin M Dal, TL Wang, R Roden, AP Klein, J Ptak, L Dobbyn, J Schaefer, N Silliman, M Popoli, JT Vogelstein, JD Browne, RE Schoen, RE Brand, J Tie, P Gibbs, HL Wong, AS Mansfield, J Jen, SM Hanash, M Falconi, PJ Allen, S Zhou, C Bettegowda, LA Jr Diaz, C Tomasetti, KW Kinzler, B Vogelstein, AM Lennon, N Papadopoulos. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359(6378): 926–930
https://doi.org/10.1126/science.aar3247
123 H SethiR SalariS NavarroP NatarajanR SrinivasanS DashnerT TinM BalciogluR SwenertonB Zimmermann. Analytical validation of the SignateraTM RUO assay, a highly sensitive patient-specific multiplex PCR NGS-based noninvasive cancer recurrence detection and therapy monitoring assay. Cancer Res 2018; 78(13 Supplement): 4542 doi:10.1158/1538–7445.AM1538–7445
124 E Christensen, K Birkenkamp-Demtröder, H Sethi, S Shchegrova, R Salari, I Nordentoft, HT Wu, M Knudsen, P Lamy, SV Lindskrog, A Taber, M Balcioglu, S Vang, Z Assaf, S Sharma, AS Tin, R Srinivasan, D Hafez, T Reinert, S Navarro, A Olson, R Ram, S Dashner, M Rabinowitz, P Billings, S Sigurjonsson, CL Andersen, R Swenerton, A Aleshin, B Zimmermann, M Agerbæk, CJ Lin, JB Jensen, L Dyrskjøt. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol 2019; 37(18): 1547–1557
https://doi.org/10.1200/JCO.18.02052
125 RC Coombes, K Page, R Salari, RK Hastings, A Armstrong, S Ahmed, S Ali, S Cleator, L Kenny, J Stebbing, M Rutherford, H Sethi, A Boydell, R Swenerton, D Fernandez-Garcia, KLT Gleason, K Goddard, DS Guttery, ZJ Assaf, HT Wu, P Natarajan, DA Moore, L Primrose, S Dashner, AS Tin, M Balcioglu, R Srinivasan, SV Shchegrova, A Olson, D Hafez, P Billings, A Aleshin, F Rehman, BJ Toghill, A Hills, MC Louie, CJ Lin, BG Zimmermann, JA Shaw. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res 2019; 25(14): 4255–4263
https://doi.org/10.1158/1078-0432.CCR-18-3663
126 M Jamal-Hanjani, GA Wilson, S Horswell, R Mitter, O Sakarya, T Constantin, R Salari, E Kirkizlar, S Sigurjonsson, R Pelham, S Kareht, B Zimmermann, C Swanton. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol 2016; 27(5): 862–867
https://doi.org/10.1093/annonc/mdw037
127 D Zhao, P Yue, T Wang, P Wang, Q Song, J Wang, Y Jiao. Personalized analysis of minimal residual cancer cells in peritoneal lavage fluid predicts peritoneal dissemination of gastric cancer. J Hematol Oncol 2021; 14(1): 164
https://doi.org/10.1186/s13045-021-01175-2
128 AA Chaudhuri, JJ Chabon, AF Lovejoy, AM Newman, H Stehr, TD Azad, MS Khodadoust, MS Esfahani, CL Liu, L Zhou, F Scherer, DM Kurtz, C Say, JN Carter, DJ Merriott, JC Dudley, MS Binkley, L Modlin, SK Padda, MF Gensheimer, RB West, JB Shrager, JW Neal, HA Wakelee, BW Jr Loo, AA Alizadeh, M Diehn. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017; 7(12): 1394–1403
https://doi.org/10.1158/2159-8290.CD-17-0716
129 E Ococks, AM Frankell, Soler N Masque, N Grehan, A Northrop, H Coles, AM Redmond, G Devonshire, JMJ Weaver, C Hughes, K Lehovsky, A Blasko, B; OCCAMS Consortium; Fitzgerald RC Nutzinger, E Smyth. Longitudinal tracking of 97 esophageal adenocarcinomas using liquid biopsy sampling. Ann Oncol 2021; 32(4): 522–532
https://doi.org/10.1016/j.annonc.2020.12.010
130 B Qiu, W Guo, F Zhang, F Lv, Y Ji, Y Peng, X Chen, H Bao, Y Xu, Y Shao, F Tan, Q Xue, S Gao, J He. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun 2021; 12(1): 6770
https://doi.org/10.1038/s41467-021-27022-z
131 D Gale, K Heider, A Ruiz-Valdepenas, S Hackinger, M Perry, G Marsico, V Rundell, J Wulff, G Sharma, H Knock, J Castedo, W Cooper, H Zhao, CG Smith, S Garg, S Anand, K Howarth, D Gilligan, SV Harden, DM Rassl, RC Rintoul, N Rosenfeld. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol 2022; 33(5): 500–510
https://doi.org/10.1016/j.annonc.2022.02.007
132 D Yue, W Liu, C Chen, T Zhang, Y Ma, L Cui, Y Gu, T Bei, X Zhao, B Zhang, Y Bai, A Romero, M Xu-Welliver, C Wang, Z Zhang, B Zhang. Circulating tumor DNA predicts neoadjuvant immunotherapy efficacy and recurrence-free survival in surgical non-small cell lung cancer patients. Transl Lung Cancer Res 2022; 11(2): 263–276
https://doi.org/10.21037/tlcr-22-106
133 L Xia, J Mei, R Kang, S Deng, Y Chen, Y Yang, G Feng, Y Deng, F Gan, Y Lin, Q Pu, L Ma, F Lin, Y Yuan, Y Hu, C Guo, H Liao, C Liu, Y Zhu, W Wang, Z Liu, Y Xu, K Li, C Li, Q Li, J He, W Chen, X Zhang, Y Kou, Y Wang, Z Wu, G Che, L Chen, L Liu. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: a prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res 2022; 28(15): 3308–3317
https://doi.org/10.1158/1078-0432.CCR-21-3044
134 J Tie, Y Wang, C Tomasetti, L Li, S Springer, I Kinde, N Silliman, M Tacey, HL Wong, M Christie, S Kosmider, I Skinner, R Wong, M Steel, B Tran, J Desai, I Jones, A Haydon, T Hayes, TJ Price, RL Strausberg, LA Jr Diaz, N Papadopoulos, KW Kinzler, B Vogelstein, P Gibbs. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8(346): 346ra92
https://doi.org/10.1126/scitranslmed.aaf6219
135 J Tie, JD Cohen, Y Wang, M Christie, K Simons, M Lee, R Wong, S Kosmider, S Ananda, J McKendrick, B Lee, JH Cho, I Faragher, IT Jones, J Ptak, MJ Schaeffer, N Silliman, L Dobbyn, L Li, C Tomasetti, N Papadopoulos, KW Kinzler, B Vogelstein, P Gibbs. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol 2019; 5(12): 1710–1717
https://doi.org/10.1001/jamaoncol.2019.3616
136 J Tie, JD Cohen, Y Wang, L Li, M Christie, K Simons, H Elsaleh, S Kosmider, R Wong, D Yip, M Lee, B Tran, D Rangiah, M Burge, D Goldstein, M Singh, I Skinner, I Faragher, M Croxford, C Bampton, A Haydon, IT Jones, C S Karapetis, T Price, MJ Schaefer, J Ptak, L Dobbyn, N Silliman, I Kinde, C Tomasetti, N Papadopoulos, K Kinzler, B Volgestein, P Gibbs. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 2019; 68(4): 663–671
https://doi.org/10.1136/gutjnl-2017-315852
137 G Anandappa, N Starling, R Begum, A Bryant, S Sharma, D Renner, M Aresu, C Peckitt, H Sethi, A Feber, VA Potter, M Paraoan, M Abulafi, N George, G Branagan, S Duff, N West, A Aleshin, I Chau, D; UK Colorectal Cancer TRACC Study Group Cunningham. Minimal residual disease (MRD) detection with circulating tumor DNA (ctDNA) from personalized assays in stage II–III colorectal cancer patients in a UK multicenter prospective study (TRACC). J Clin Oncol 2021; 39(3_suppl): 102
https://doi.org/10.1200/JCO.2021.39.3_suppl.102
138 J Tie, JD Cohen, K Lahouel, SN Lo, Y Wang, S Kosmider, R Wong, J Shapiro, M Lee, S Harris, A Khattak, M Burge, M Harris, J Lynam, L Nott, F Day, T Hayes, SA McLachlan, B Lee, J Ptak, N Silliman, L Dobbyn, M Popoli, R Hruban, AM Lennon, N Papadopoulos, KW Kinzler, B Vogelstein, C Tomasetti, P; DYNAMIC Investigators Gibbs. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022; 386(24): 2261–2272
https://doi.org/10.1056/NEJMoa2200075
139 M Diehn, AA Alizadeh, H-P Adams, JJ Lee, S Klassen, JF Palma, B Hinzman, AF Lovejoy, AM Newman, LJ Yao, S Yaung, A Balasubramanyam, UP Rohr, A Rosenthal, R Kube, T Steinmüller, F Marusch, R Mantke, M Heise, M Pross. Early prediction of clinical outcomes in resected stage II and III colorectal cancer (CRC) through deep sequencing of circulating tumor DNA (ctDNA). J Clin Oncol 2017; 35(15_suppl): 3591
https://doi.org/10.1200/JCO.2017.35.15_suppl.3591
140 LV Schøler, T Reinert, MW Ørntoft, CG Kassentoft, SS Árnadóttir, S Vang, I Nordentoft, M Knudsen, P Lamy, D Andreasen, FV Mortensen, AR Knudsen, K Stribolt, K Sivesgaard, P Mouritzen, HJ Nielsen, S Laurberg, TF Ørntoft, CL Andersen. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin Cancer Res 2017; 23(18): 5437–5445
https://doi.org/10.1158/1078-0432.CCR-17-0510
141 MJM Magbanua, LB Swigart, HT Wu, GL Hirst, C Yau, DM Wolf, A Tin, R Salari, S Shchegrova, H Pawar, AL Delson, A DeMichele, MC Liu, AJ Chien, D Tripathy, S Asare, CJ Lin, P Billings, A Aleshin, H Sethi, M Louie, B Zimmermann, LJ Esserman, Veer LJ van’t. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 2021; 32(2): 229–239
https://doi.org/10.1016/j.annonc.2020.11.007
142 F Rothé, MJ Silva, D Venet, C Campbell, I Bradburry, G Rouas, Azambuja E de, M Maetens, D Fumagalli, V Rodrik-Outmezguine, Cosimo S Di, D Rosa, S Chia, A Wardley, T Ueno, W Janni, J Huober, J Baselga, M Piccart, S Loi, C Sotiriou, SJ Dawson, M Ignatiadis. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial. Clin Cancer Res 2019; 25(12): 3581–3588
https://doi.org/10.1158/1078-0432.CCR-18-2521
143 Q Zhou, SP Gampenrieder, S Frantal, G Rinnerthaler, CF Singer, D Egle, G Pfeiler, R Bartsch, V Wette, A Pichler, E Petru, PC Dubsky, Z Bago-Horvath, C Fesl, M Rudas, A Ståhlberg, R Graf, S Weber, N Dandachi, M Filipits, M Gnant, M Balic, E Heitzer. Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a significant predictor of poor tumor response. Clin Cancer Res 2022; 28(4): 697–707
https://doi.org/10.1158/1078-0432.CCR-21-3231
144 S Li, H Lai, J Liu, Y Liu, L Jin, Y Li, F Liu, Y Gong, Y Guan, X Yi, Q Shi, Z Cai, Q Li, Y Li, M Zhu, J Wang, Y Yang, W Wei, D Yin, E Song, Q Liu. Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy. JCO Precis Oncol 2020; 4: PO.19.00292
https://doi.org/10.1200/PO.19.00292
145 S Hrebien, V Citi, I Garcia-Murillas, R Cutts, K Fenwick, I Kozarewa, R McEwen, J Ratnayake, R Maudsley, TH Carr, EC de Bruin, G Schiavon, M Oliveira, N Turner. Early ctDNA dynamics as a surrogate for progression-free survival in advanced breast cancer in the BEECH trial. Ann Oncol 2019; 30(6): 945–952
https://doi.org/10.1093/annonc/mdz085
146 I Garcia-Murillas, N Chopra, I Comino-Méndez, M Beaney, H Tovey, RJ Cutts, C Swift, D Kriplani, M Afentakis, S Hrebien, G Walsh-Crestani, P Barry, SRD Johnston, A Ring, J Bliss, S Russell, A Evans, A Skene, D Wheatley, M Dowsett, IE Smith, NC Turner. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol 2019; 5(10): 1473–1478
https://doi.org/10.1001/jamaoncol.2019.1838
147 S Wang, M Li, J Zhang, P Xing, M Wu, F Meng, F Jiang, J Wang, H Bao, J Huang, B Ren, M Yu, N Qiu, H Li, F Yuan, Z Zhang, H Jia, X Lu, S Zhang, X Wang, Y Xu, W Xia, T Liu, W Xu, X Xu, M Sun, X Wu, Y Shao, Q Wang, J Dai, M Qiu, J Wang, Q Zhang, L Xu, H Shen, R Yin. Circulating tumor DNA integrating tissue clonality detects minimal residual disease in resectable non-small-cell lung cancer. J Hematol Oncol 2022; 15(1): 137
https://doi.org/10.1186/s13045-022-01355-8
148 B Lee, L Lipton, J Cohen, J Tie, AA Javed, L Li, D Goldstein, M Burge, P Cooray, A Nagrial, NC Tebbutt, B Thomson, M Nikfarjam, M Harris, A Haydon, B Lawrence, DWM Tai, K Simons, AM Lennon, CL Wolfgang, C Tomasetti, N Papadopoulos, KW Kinzler, B Vogelstein, P Gibbs. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann Oncol 2019; 30(9): 1472–1478
https://doi.org/10.1093/annonc/mdz200
149 D Pietrasz, N Pécuchet, F Garlan, A Didelot, O Dubreuil, S Doat, F Imbert-Bismut, M Karoui, JC Vaillant, V Taly, P Laurent-Puig, JB Bachet. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin Cancer Res 2017; 23(1): 116–123
https://doi.org/10.1158/1078-0432.CCR-16-0806
150 H Patel, R Okamura, P Fanta, C Patel, RB Lanman, VM Raymond, S Kato, R Kurzrock. Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer. J Hematol Oncol 2019; 12(1): 130
https://doi.org/10.1186/s13045-019-0824-4
151 S Hussung, D Akhoundova, J Hipp, M Follo, RFU Klar, U Philipp, F Scherer, N von Bubnoff, J Duyster, M Boerries, U Wittel, RM Fritsch. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer 2021; 21(1): 49
https://doi.org/10.1186/s12885-020-07736-x
152 VP Groot, S Mosier, AA Javed, JA Teinor, G Gemenetzis, D Ding, LM Haley, J Yu, RA Burkhart, A Hasanain, M Debeljak, H Kamiyama, A Narang, DA Laheru, L Zheng, MT Lin, CD Gocke, EK Fishman, RH Hruban, MG Goggins, IQ Molenaar, JL Cameron, MJ Weiss, VE Velculescu, J He, CL Wolfgang, JR Eshleman. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res 2019; 25(16): 4973–4984
https://doi.org/10.1158/1078-0432.CCR-19-0197
153 SE Wang, BU Shyr, BS Shyr, SC Chen, SC Chang, YM Shyr. Circulating cell-free DNA in pancreatic head adenocarcinoma undergoing pancreaticoduodenectomy. Pancreas 2021; 50(2): 214–218
https://doi.org/10.1097/MPA.0000000000001730
154 V Bernard, DU Kim, FA San Lucas, J Castillo, K Allenson, FC Mulu, BM Stephens, J Huang, A Semaan, PA Guerrero, N Kamyabi, J Zhao, MW Hurd, EJ Koay, CM Taniguchi, JM Herman, M Javle, R Wolff, M Katz, G Varadhachary, A Maitra, HA Alvarez. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology 2019; 156(1): 108–118.e4
https://doi.org/10.1053/j.gastro.2018.09.022
155 B Szabados, M Kockx, ZJ Assaf, PJ van Dam, A Rodriguez-Vida, I Duran, SJ Crabb, MS Van Der Heijden, AF Pous, G Gravis, UA Herranz, A Protheroe, A Ravaud, D Maillet, MJ Mendez, C Suarez, M Linch, A Prendergast, C Tyson, D Stanoeva, S Daelemans, M Rombouts, S Mariathasan, JS Tea, K Mousa, S Sharma, A Aleshin, R Banchereau, D Castellano, T Powles. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur Urol 2022; 82(2): 212–222
https://doi.org/10.1016/j.eururo.2022.04.013
156 JJ Yu, W Xiao, SL Dong, HF Liang, ZW Zhang, BX Zhang, ZY Huang, YF Chen, WG Zhang, HP Luo, Q Chen, XP Chen. Effect of surgical liver resection on circulating tumor cells in patients with hepatocellular carcinoma. BMC Cancer 2018; 18(1): 835
https://doi.org/10.1186/s12885-018-4744-4
157 W Zhao, L Qiu, H Liu, Y Xu, M Zhan, W Zhang, Y Xin, X He, X Yang, J Bai, J Xiao, Y Guan, Q Li, L Chang, X Yi, Y Li, X Chen, L Lu. Circulating tumor DNA as a potential prognostic and predictive biomarker during interventional therapy of unresectable primary liver cancer. J Gastrointest Oncol 2020; 11(5): 1065–1077
https://doi.org/10.21037/jgo-20-409
158 J Yang, Y Gong, VK Lam, Y Shi, Y Guan, Y Zhang, L Ji, Y Chen, Y Zhao, F Qian, J Chen, P Li, F Zhang, J Wang, X Zhang, L Yang, S Kopetz, PA Futreal, J Zhang, X Yi, X Xia, P Yu. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis 2020; 11(5): 346
https://doi.org/10.1038/s41419-020-2531-z
159 A Leal, NCT van Grieken, DN Palsgrove, J Phallen, JE Medina, C Hruban, MAM Broeckaert, V Anagnostou, V Adleff, DC Bruhm, JV Canzoniero, J Fiksel, M Nordsmark, FARM Warmerdam, HMW Verheul, DJ van Spronsen, LV Beerepoot, MM Geenen, JEA Portielje, EPM Jansen, J van Sandick, E Meershoek-Klein Kranenbarg, HWM van Laarhoven, DL van der Peet, CJH van de Velde, M Verheij, R Fijneman, RB Scharpf, GA Meijer, A Cats, VE Velculescu. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat Commun 2020; 11(1): 525
https://doi.org/10.1038/s41467-020-14310-3
160 BM Huffman, VN Aushev, GL Budde, J Chao, F Dayyani, D Hanna, GP Botta, DVT Catenacci, SB Maron, S Krinshpun, S Sharma, GV George, M Malhotra, A Jurdi, S Moshkevich, A Aleshin, PM Kasi, SJ Klempner. Analysis of circulating tumor DNA to predict risk of recurrence in patients with esophageal and gastric cancers. JCO Precis Oncol 2022; 6(6): e2200420
https://doi.org/10.1200/PO.22.00420
161 L Escudero, F Martínez-Ricarte, J Seoane. ctDNA-based liquid biopsy of cerebrospinal fluid in brain cancer. Cancers (Basel) 2021; 13(9): 1989
https://doi.org/10.3390/cancers13091989
162 JY Hou, JS Chapman, E Kalashnikova, W Pierson, K Smith-McCune, G Pineda, RM Vattakalam, A Ross, M Mills, CJ Suarez, T Davis, R Edwards, M Boisen, S Sawyer, HT Wu, S Dashner, VN Aushev, GV George, M Malhotra, B Zimmermann, H Sethi, AC ElNaggar, A Aleshin, JM Ford. Circulating tumor DNA monitoring for early recurrence detection in epithelial ovarian cancer. Gynecol Oncol 2022; 167(2): 334–341
https://doi.org/10.1016/j.ygyno.2022.09.004
163 Z Eroglu, S Krinshpun, E Kalashnikova, S Sudhaman, T Ozturk Topcu, M Nichols, J Martin, KM Bui, CC Palsuledesai, M Malhotra, P Olshan, J Markowitz, NI Khushalani, AA Tarhini, JL Messina, A Aleshin. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer 2023; 129(11): 1723–1734
https://doi.org/10.1002/cncr.34716
164 TV Henriksen, N Tarazona, A Frydendahl, T Reinert, F Gimeno-Valiente, JA Carbonell-Asins, S Sharma, D Renner, D Hafez, D Roda, M Huerta, S Roselló, AH Madsen, US Løve, PV Andersen, O Thorlacius-Ussing, LH Iversen, KA Gotschalck, H Sethi, A Aleshin, A Cervantes, CL Andersen. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin Cancer Res 2022; 28(3): 507–517
https://doi.org/10.1158/1078-0432.CCR-21-2404
165 KS Shohdy, DM Villamar, Y Cao, J Trieu, KS Price, R Nagy, ST Tagawa, AM Molina, CN Sternberg, DM Nanus, JM Mosquera, O Elemento, GP Sonpavde, P Grivas, NJ Vogelzang, BM Faltas. Serial ctDNA analysis predicts clinical progression in patients with advanced urothelial carcinoma. Br J Cancer 2022; 126(3): 430–439
https://doi.org/10.1038/s41416-021-01648-8
166 Y Wang, L Li, JD Cohen, I Kinde, J Ptak, M Popoli, J Schaefer, N Silliman, L Dobbyn, J Tie, P Gibbs, C Tomasetti, KW Kinzler, N Papadopoulos, B Vogelstein, L Olsson. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol 2019; 5(8): 1118–1123
https://doi.org/10.1001/jamaoncol.2019.0512
167 N Øgaard, T Reinert, TV Henriksen, A Frydendahl, E Aagaard, MW Ørntoft, MØ Larsen, AR Knudsen, FV Mortensen, CL Andersen. Tumour-agnostic circulating tumour DNA analysis for improved recurrence surveillance after resection of colorectal liver metastases: a prospective cohort study. Eur J Cancer 2022; 163: 163–176
https://doi.org/10.1016/j.ejca.2021.12.026
168 N Tarazona, F Gimeno-Valiente, V Gambardella, S Zuñiga, P Rentero-Garrido, M Huerta, S Roselló, C Martinez-Ciarpaglini, JA Carbonell-Asins, F Carrasco, A Ferrer-Martínez, G Bruixola, T Fleitas, J Martín, R Tébar-Martínez, D Moro, J Castillo, A Espí, D Roda, A Cervantes. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 2019; 30(11): 1804–1812
https://doi.org/10.1093/annonc/mdz390
169 T Reinert, TV Henriksen, E Christensen, S Sharma, R Salari, H Sethi, M Knudsen, I Nordentoft, HT Wu, AS Tin, Rasmussen M Heilskov, S Vang, S Shchegrova, Boll Johansen A Frydendahl, R Srinivasan, Z Assaf, M Balcioglu, A Olson, S Dashner, D Hafez, S Navarro, S Goel, M Rabinowitz, P Billings, S Sigurjonsson, L Dyrskjøt, R Swenerton, A Aleshin, S Laurberg, Madsen A Husted, AS Kannerup, K Stribolt, Krag S Palmelund, LH Iversen, Sunesen K Gotschalck, CJ Lin, BG Zimmermann, Andersen C Lindbjerg. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol 2019; 5(8): 1124–1131
https://doi.org/10.1001/jamaoncol.2019.0528
170 I Garcia-Murillas, G Schiavon, B Weigelt, C Ng, S Hrebien, RJ Cutts, M Cheang, P Osin, A Nerurkar, I Kozarewa, JA Garrido, M Dowsett, JS Reis-Filho, IE Smith, NC Turner. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 2015; 7(302): 302ra133
https://doi.org/10.1126/scitranslmed.aab0021
171 M Lipsyc-Sharf, EC de Bruin, K Santos, R McEwen, D Stetson, A Patel, GJ Kirkner, ME Hughes, SM Tolaney, AH Partridge, IE Krop, C Knape, U Feger, G Marsico, K Howarth, EP Winer, NU Lin, HA Parsons. Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. J Clin Oncol 2022; 40(22): 2408–2419
https://doi.org/10.1200/JCO.22.00908
172 E Olsson, C Winter, A George, Y Chen, J Howlin, MH Tang, M Dahlgren, R Schulz, D Grabau, Westen D van, M Fernö, C Ingvar, C Rose, PO Bendahl, L Rydén, Å Borg, SK Gruvberger-Saal, H Jernström, LH Saal. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med 2015; 7(8): 1034–1047
https://doi.org/10.15252/emmm.201404913
173 M Sausen, J Phallen, V Adleff, S Jones, RJ Leary, MT Barrett, V Anagnostou, S Parpart-Li, D Murphy, Li Q Kay, CA Hruban, R Scharpf, JR White, PJ O’Dwyer, PJ Allen, JR Eshleman, CB Thompson, DS Klimstra, DC Linehan, A Maitra, RH Hruban, LA Jr Diaz, Hoff DD Von, JS Johansen, JA Drebin, VE Velculescu. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 2015; 6(1): 7686
https://doi.org/10.1038/ncomms8686
174 EJ Moding, Y Liu, BY Nabet, JJ Chabon, AA Chaudhuri, AB Hui, RF Bonilla, RB Ko, CH Yoo, L Gojenola, CD Jones, J He, Y Qiao, T Xu, JV Heymach, A Tsao, Z Liao, DR Gomez, M Das, SK Padda, KJ Ramchandran, JW Neal, HA Wakelee, BW Jr Loo, SH Lin, AA Alizadeh, M Diehn. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small cell lung cancer. Nat Can 2020; 1(2): 176–183
https://doi.org/10.1038/s43018-019-0011-0
175 J Bellmunt, M Hussain, JE Gschwend, P Albers, S Oudard, D Castellano, S Daneshmand, H Nishiyama, M Majchrowicz, V Degaonkar, Y Shi, S Mariathasan, P Grivas, A Drakaki, PH O’Donnell, JE Rosenberg, DM Geynisman, DP Petrylak, J Hoffman-Censits, J Bedke, AR Kalebasty, Y Zakharia, der Heijden MS van, CN Sternberg, NN Davarpanah, T; IMvigor010 Study Group Powles. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2021; 22(4): 525–537
https://doi.org/10.1016/S1470-2045(21)00004-8
176 T Powles, ZJ Assaf, N Davarpanah, R Banchereau, BE Szabados, KC Yuen, P Grivas, M Hussain, S Oudard, JE Gschwend, P Albers, D Castellano, H Nishiyama, S Daneshmand, S Sharma, BG Zimmermann, H Sethi, A Aleshin, M Perdicchio, J Zhang, DS Shames, V Degaonkar, X Shen, C Carter, C Bais, J Bellmunt, S Mariathasan. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021; 595(7867): 432–437
https://doi.org/10.1038/s41586-021-03642-9
177 JJ Smith, P Strombom, OS Chow, CS Roxburgh, P Lynn, A Eaton, M Widmar, K Ganesh, R Yaeger, A Cercek, MR Weiser, GM Nash, JG Guillem, LKF Temple, SB Chalasani, JL Fuqua, I Petkovska, AJ Wu, M Reyngold, E Vakiani, J Shia, NH Segal, JD Smith, C Crane, MJ Gollub, M Gonen, LB Saltz, J Garcia-Aguilar, PB Paty. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy. JAMA Oncol 2019; 5(4): e185896
https://doi.org/10.1001/jamaoncol.2018.5896
178 Y Wang, L Yang, H Bao, X Fan, F Xia, J Wan, L Shen, Y Guan, H Bao, X Wu, Y Xu, Y Shao, Y Sun, T Tong, X Li, Y Xu, S Cai, J Zhu, Z Zhang. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: a prospective cohort study. PLoS Med 2021; 18(8): e1003741
https://doi.org/10.1371/journal.pmed.1003741
179 DP Steensma, R Bejar, S Jaiswal, RC Lindsley, MA Sekeres, RP Hasserjian, BL Ebert. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126(1): 9–16
https://doi.org/10.1182/blood-2015-03-631747
180 M Xie, C Lu, J Wang, MD McLellan, KJ Johnson, MC Wendl, JF McMichael, HK Schmidt, V Yellapantula, CA Miller, BA Ozenberger, JS Welch, DC Link, MJ Walter, ER Mardis, JF Dipersio, F Chen, RK Wilson, TJ Ley, L Ding. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014; 20(12): 1472–1478
https://doi.org/10.1038/nm.3733
181 E Yong. Cancer biomarkers: written in blood. Nature 2014; 511(7511): 524–526
https://doi.org/10.1038/511524a
182 K Chen, H Zhao, Y Shi, F Yang, LT Wang, G Kang, Y Nie, J Wang. Perioperative dynamic changes in circulating tumor dna in patients with lung cancer (DYNAMIC). Clin Cancer Res 2019; 25(23): 7058–7067
https://doi.org/10.1158/1078-0432.CCR-19-1213
183 AE Giuliano, SB Edge, GN Hortobagyi. Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer. Ann Surg Oncol 2018; 25(7): 1783–1785
https://doi.org/10.1245/s10434-018-6486-6
184 JS Lee, Y Han, WG Yun, W Kwon, H Kim, H Jeong, MS Seo, Y Park, SI Cho, H Kim, JY Kim, MW Seong, JY Jang, SS Park. Parallel analysis of pre- and postoperative circulating tumor DNA and matched tumor tissues in resectable pancreatic ductal adenocarcinoma: a prospective cohort study. Clin Chem 2022; 68(12): 1509–1518
https://doi.org/10.1093/clinchem/hvac153
185 S Mo, L Ye, D Wang, L Han, S Zhou, H Wang, W Dai, Y Wang, W Luo, R Wang, Y Xu, S Cai, R Liu, Z Wang, G Cai. Early detection of molecular residual disease and risk stratification for stage I to III colorectal cancer via circulating tumor dna methylation. JAMA Oncol 2023; 9(6): 770–778
https://doi.org/10.1001/jamaoncol.2023.0425
186 J Tie, JD Cohen, K Lahouel, SN Lo, Y Wang, S Kosmider, R Wong, J Shapiro, M Lee, S Harris, A Khattak, M Burge, M Harris, J Lynam, L Nott, F Day, T Hayes, SA McLachlan, B Lee, J Ptak, N Silliman, L Dobbyn, M Popoli, R Hruban, AM Lennon, N Papadopoulos, KW Kinzler, B Vogelstein, C Tomasetti, P; DYNAMIC Investigators Gibbs. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022; 386(24): 2261–2272
https://doi.org/10.1056/NEJMoa2200075
187 J Du, C Lu, L Mao, Y Zhu, W Kong, S Shen, M Tang, S Bao, H Cheng, G Li, J Chen, Q Li, J He, A Li, X Qiu, Q Gu, D Chen, C Qi, Y Song, X Qian, L Wang, Y Qiu, B Liu. PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: a biomolecular exploratory, phase II trial. Cell Rep Med 2023; 4(3): 100972
https://doi.org/10.1016/j.xcrm.2023.100972
188 H Cheng, C Liu, J Jiang, G Luo, Y Lu, K Jin, M Guo, Z Zhang, J Xu, L Liu, Q Ni, X Yu. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int J Cancer 2017; 140(10): 2344–2350
https://doi.org/10.1002/ijc.30650
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed