lncRNA ZNF593-AS inhibits cardiac hypertrophy and myocardial remodeling by upregulating Mfn2 expression
Xiang Nie1,2, Jiahui Fan1,2, Yanwen Wang1,2, Rong Xie1,2, Chen Chen1,2, Huaping Li1,2(), Dao Wen Wang1,2()
1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2. Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload–induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.
M Nakamura, J Sadoshima. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387–407 https://doi.org/10.1038/s41569-018-0007-y
2
CJ Oldfield, TA Duhamel, NS Dhalla. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98(2): 74–84 https://doi.org/10.1139/cjpp-2019-0566
3
GW 2nd Dorn, RB Vega, DP Kelly. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 2015; 29(19): 1981–1991 https://doi.org/10.1101/gad.269894.115
4
BP Woodall, AB Gustafsson. Autophagy—a key pathway for cardiac health and longevity. Acta Physiol (Oxf) 2018; 223(4): e13074 https://doi.org/10.1111/apha.13074
5
L Chen, B Liu, Y Qin, A Li, M Gao, H Liu, G Gong. Mitochondrial fusion protein Mfn2 and its role in heart failure. Front Mol Biosci 2021; 8: 681237 https://doi.org/10.3389/fmolb.2021.681237
6
V Basso, E Marchesan, C Peggion, J Chakraborty, S von Stockum, M Giacomello, D Ottolini, V Debattisti, F Caicci, E Tasca, V Pegoraro, C Angelini, A Antonini, A Bertoli, M Brini, E Ziviani. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res 2018; 138: 43–56 https://doi.org/10.1016/j.phrs.2018.09.006
7
S Casellas-Díaz, R Larramona-Arcas, G Riqué-Pujol, P Tena-Morraja, C Müller-Sánchez, M Segarra-Mondejar, A Gavaldà-Navarro, F Villarroya, M Reina, OM Martínez-Estrada, FX Soriano. Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development. EMBO Rep 2021; 22(9): e51954 https://doi.org/10.15252/embr.202051954
8
L Hu, M Ding, D Tang, E Gao, C Li, K Wang, B Qi, J Qiu, H Zhao, P Chang, F Fu, Y Li. Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Theranostics 2019; 9(13): 3687–3706 https://doi.org/10.7150/thno.33684
9
S Givvimani, S Pushpakumar, S Veeranki, SC Tyagi. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 2014; 92(7): 583–591 https://doi.org/10.1139/cjpp-2014-0060
10
M Song, A Franco, JA Fleischer, L Zhang, GW 2nd Dorn. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab 2017; 26(6): 872–883.e5 https://doi.org/10.1016/j.cmet.2017.09.023
11
X Xu, YL Su, JY Shi, Q Lu, C Chen. MicroRNA-17-5p promotes cardiac hypertrophy by targeting Mfn2 to inhibit autophagy. Cardiovasc Toxicol 2021; 21(9): 759–771 https://doi.org/10.1007/s12012-021-09667-w
12
L Wang, D Qin, H Shi, Y Zhang, H Li, Q Han. MiR-195-5p promotes cardiomyocyte hypertrophy by targeting MFN2 and FBXW7. BioMed Res Int 2019; 2019: 1580982 https://doi.org/10.1155/2019/1580982
13
S Shen, H Jiang, Y Bei, J Xiao, X Li. Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem 2017; 41(5): 1830–1837 https://doi.org/10.1159/000471913
RA Boon, N Jaé, L Holdt, S Dimmeler. Long noncoding RNAs: from clinical genetics to therapeutic targets?. J Am Coll Cardiol 2016; 67(10): 1214–1226 https://doi.org/10.1016/j.jacc.2015.12.051
W Su, Q Huo, H Wu, L Wang, X Ding, L Liang, L Zhou, Y Zhao, J Dan, H Zhang. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci 2021; 11(1): 153 https://doi.org/10.1186/s13578-021-00668-4
18
J Viereck, A Bührke, A Foinquinos, S Chatterjee, JA Kleeberger, K Xiao, H Janssen-Peters, S Batkai, D Ramanujam, T Kraft, S Cebotari, F Gueler, AM Beyer, J Schmitz, JH Bräsen, JD Schmitto, M Gyöngyösi, A Löser, MN Hirt, T Eschenhagen, S Engelhardt, C Bär, T Thum. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 2020; 41(36): 3462–3474 https://doi.org/10.1093/eurheartj/ehaa519
19
J Viereck, R Kumarswamy, A Foinquinos, K Xiao, P Avramopoulos, M Kunz, M Dittrich, T Maetzig, K Zimmer, J Remke, A Just, J Fendrich, K Scherf, E Bolesani, A Schambach, F Weidemann, R Zweigerdt, LJ de Windt, S Engelhardt, T Dandekar, S Batkai, T Thum. Long noncoding RNA ChAST promotes cardiac remodeling. Sci Transl Med 2016; 8(326): 326ra22 https://doi.org/10.1126/scitranslmed.aaf1475
20
J Fan, H Li, R Xie, X Zhang, X Nie, X Shi, J Zhan, Z Yin, Y Zhao, B Dai, S Yuan, Z Wen, C Chen, DW Wang. LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res 2021; 128(11): 1708–1723 https://doi.org/10.1161/CIRCRESAHA.120.318437
21
B Wang, J Nie, L Wu, Y Hu, Z Wen, L Dong, MH Zou, C Chen, DW Wang. AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ Res 2018; 122(5): 712–729 https://doi.org/10.1161/CIRCRESAHA.117.312317
22
R Xie, J Fan, J Wen, K Jin, J Zhan, S Yuan, Y Tang, X Nie, Z Wen, H Li, C Chen, DW Wang. LncRNA ZNF593-AS alleviates diabetic cardiomyopathy via suppressing IRF3 signaling pathway. Mol Ther Nucleic Acids 2023; 32: 689–703 https://doi.org/10.1016/j.omtn.2023.04.025
23
AC deAlmeida, RJ van Oort, XH Wehrens. Transverse aortic constriction in mice. J Vis Exp 2010; (38): 1729
24
C Ye, DJ Ho, M Neri, C Yang, T Kulkarni, R Randhawa, M Henault, N Mostacci, P Farmer, S Renner, R Ihry, L Mansur, CG Keller, G McAllister, M Hild, J Jenkins, A Kaykas. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat Commun 2018; 9(1): 4307 https://doi.org/10.1038/s41467-018-06500-x
25
X Nie, J Fan, H Li, Z Yin, Y Zhao, B Dai, N Dong, C Chen, DW Wang. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther Nucleic Acids 2018; 12: 254–266 https://doi.org/10.1016/j.omtn.2018.05.013
CJA Ramachandra, S Cong, X Chan, EP Yap, F Yu, DJ Hausenloy. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. Free Radic Biol Med 2021; 166: 297–312 https://doi.org/10.1016/j.freeradbiomed.2021.02.040
28
J Ritterhoff, S Young, O Villet, D Shao, FC Neto, LF Bettcher, YA Hsu, SC Jr Kolwicz, D Raftery, R Tian. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res 2020; 126(2): 182–196 https://doi.org/10.1161/CIRCRESAHA.119.315483
M Tong, T Saito, P Zhai, SI Oka, W Mizushima, M Nakamura, S Ikeda, A Shirakabe, J Sadoshima. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 2019; 124(9): 1360–1371 https://doi.org/10.1161/CIRCRESAHA.118.314607
M Giacomello, A Pyakurel, C Glytsou, L Scorrano. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21(4): 204–224 https://doi.org/10.1038/s41580-020-0210-7
33
N Torrealba, P Aranguiz, C Alonso, BA Rothermel, S Lavandero. Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol 2017; 982: 277–306 https://doi.org/10.1007/978-3-319-55330-6_15
JY Jin, XX Wei, XL Zhi, XH Wang, D Meng. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 2021; 42(5): 655–664 https://doi.org/10.1038/s41401-020-00518-y
36
A Shirakabe, P Zhai, Y Ikeda, T Saito, Y Maejima, CP Hsu, M Nomura, K Egashira, B Levine, J Sadoshima. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 2016; 133(13): 1249–1263 https://doi.org/10.1161/CIRCULATIONAHA.115.020502
37
H Chen, SA Detmer, AJ Ewald, EE Griffin, SE Fraser, DC Chan. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003; 160(2): 189–200 https://doi.org/10.1083/jcb.200211046
38
T Zhao, X Huang, L Han, X Wang, H Cheng, Y Zhao, Q Chen, J Chen, H Cheng, R Xiao, M Zheng. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012; 287(28): 23615–23625 https://doi.org/10.1074/jbc.M112.379164
39
DW Hailey, AS Rambold, P Satpute-Krishnan, K Mitra, R Sougrat, PK Kim, J Lippincott-Schwartz. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141(4): 656–667 https://doi.org/10.1016/j.cell.2010.04.009
40
CH Yao, R Wang, Y Wang, CP Kung, JD Weber, GJ Patti. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife 2019; 8: e41351 https://doi.org/10.7554/eLife.41351
41
FX Soriano, M Liesa, D Bach, DC Chan, M Palacín, A Zorzano. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-γ coactivator-1 α, estrogen-related receptor-α, and mitofusin 2. Diabetes 2006; 55(6): 1783–1791 https://doi.org/10.2337/db05-0509
42
P Sulkshane, J Ram, A Thakur, N Reis, O Kleifeld, MH Glickman. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol 2021; 45: 102047 https://doi.org/10.1016/j.redox.2021.102047
43
Y Hu, H Chen, L Zhang, X Lin, X Li, H Zhuang, H Fan, T Meng, Z He, H Huang, Q Gong, D Zhu, Y Xu, P He, L Li, D Feng. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 2021; 17(5): 1142–1156 https://doi.org/10.1080/15548627.2020.1749490
44
S Feng, L Gao, D Zhang, X Tian, L Kong, H Shi, L Wu, Z Huang, B Du, C Liang, Y Zhang, R Yao. miR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci 2019; 15(12): 2615–2626 https://doi.org/10.7150/ijbs.36995
45
T Liu, B Wang, G Li, X Dong, G Yu, Q Qian, L Duan, H Li, Z Jia, J Bai. Disruption of microRNA-214 during general anaesthesia prevents brain injury and maintains mitochondrial fusion by promoting Mfn2 interaction with Pkm2. J Cell Mol Med 2020; 24(23): 13589–13599 https://doi.org/10.1111/jcmm.15222
46
R Gao, L Wang, Y Bei, X Wu, J Wang, Q Zhou, L Tao, S Das, X Li, J Xiao. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 2021; 144(4): 303–317 https://doi.org/10.1161/CIRCULATIONAHA.120.050446
47
H Li, LE Trager, X Liu, MH Hastings, C Xiao, J Guerra, S To, G Li, A Yeri, R Rodosthenous, MG Silverman, S Das, AV Ambardekar, MR Bristow, JM González-Rosa, A Rosenzweig. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 2022; 145(16): 1218–1233 https://doi.org/10.1161/CIRCULATIONAHA.121.056850
48
Z Wang, XJ Zhang, YX Ji, P Zhang, KQ Deng, J Gong, S Ren, X Wang, I Chen, H Wang, C Gao, T Yokota, YS Ang, S Li, A Cass, TM Vondriska, G Li, A Deb, D Srivastava, HT Yang, X Xiao, H Li, Y Wang. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 2016; 22(10): 1131–1139 https://doi.org/10.1038/nm.4179
D Levy, RJ Garrison, DD Savage, WB Kannel, WP Castelli. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322(22): 1561–1566 https://doi.org/10.1056/NEJM199005313222203
51
M Sano, T Minamino, H Toko, H Miyauchi, M Orimo, Y Qin, H Akazawa, K Tateno, Y Kayama, M Harada, I Shimizu, T Asahara, H Hamada, S Tomita, JD Molkentin, Y Zou, I Komuro. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007; 446(7134): 444–448 https://doi.org/10.1038/nature05602