Min Zhang1, Ting Hu1, Tianyu Ma1,2, Wei Huang2(), Yan Wang1,2()
1. Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 2. Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer’s disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body’s health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
AP Feinberg. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 2018; 378(14): 1323–1334 https://doi.org/10.1056/NEJMra1402513
3
I Loughland, A Little, F Seebacher. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biol 2021; 19(1): 11 https://doi.org/10.1186/s12915-020-00942-w
K Skvortsova, N Iovino, O Bogdanović. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 2018; 19(12): 774–790 https://doi.org/10.1038/s41580-018-0074-2
PA Jones. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484–492 https://doi.org/10.1038/nrg3230
8
K Skvortsova, C Stirzaker, P Taberlay. The DNA methylation landscape in cancer. Essays Biochem 2019; 63(6): 797–811 https://doi.org/10.1042/EBC20190037
9
L Fontana, S Tabano, S Maitz, P Colapietro, E Garzia, AG Gerli, SM Sirchia, M Miozzo. Clinical and molecular diagnosis of Beckwith–Wiedemann syndrome with single- or multi-locus imprinting disturbance. Int J Mol Sci 2021; 22(7): 3445 https://doi.org/10.3390/ijms22073445
10
L Wu, Y Zhang, J Ren. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: from pathophysiology to therapeutic opportunities. Metabolism 2021; 125: 154909 https://doi.org/10.1016/j.metabol.2021.154909
11
ZZ Zhang, EE Lee, J Sudderth, Y Yue, A Zia, D Glass, RJ Deberardinis, RC Wang. Glutathione depletion, pentose phosphate pathway activation, and hemolysis in erythrocytes protecting cancer cells from vitamin C-induced oxidative stress. J Biol Chem 2016; 291(44): 22861–22867 https://doi.org/10.1074/jbc.C116.748848
12
S Li, FE Garrett-Bakelman, SS Chung, MA Sanders, T Hricik, F Rapaport, J Patel, R Dillon, P Vijay, AL Brown, AE Perl, J Cannon, L Bullinger, S Luger, M Becker, ID Lewis, LB To, R Delwel, B Löwenberg, H Döhner, K Döhner, ML Guzman, DC Hassane, GJ Roboz, D Grimwade, PJ Valk, RJ D’Andrea, M Carroll, CY Park, D Neuberg, R Levine, AM Melnick, CE Mason. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 2016; 22(7): 792–799 https://doi.org/10.1038/nm.4125
13
H Pan, Y Jiang, M Boi, F Tabbò, D Redmond, K Nie, M Ladetto, A Chiappella, L Cerchietti, R Shaknovich, AM Melnick, GG Inghirami, W Tam, O Elemento. Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6(1): 6921 https://doi.org/10.1038/ncomms7921
KI Tong, S Yoon, K Isaev, M Bakhtiari, T Lackraj, MY He, J Joynt, A Silva, MC Xu, GG Privé, HH He, RE Tiedemann, EA Chavez, LC Chong, M Boyle, DW Scott, C Steidl, R Kridel. Combined EZH2 inhibition and IKAROS degradation leads to enhanced antitumor activity in diffuse large B-cell lymphoma. Clin Cancer Res 2021; 27(19): 5401–5414 https://doi.org/10.1158/1078-0432.CCR-20-4027
K Bajbouj, A Al-Ali, RK Ramakrishnan, M Saber-Ayad, Q Hamid. Histone modification in NSCLC: molecular mechanisms and therapeutic targets. Int J Mol Sci 2021; 22(21): 11701 https://doi.org/10.3390/ijms222111701
18
JC Pardo, de Porras V Ruiz, J Gil, A Font, M Puig-Domingo, M Jordà. Lipid metabolism and epigenetics crosstalk in prostate cancer. Nutrients 2022; 14(4): 851 https://doi.org/10.3390/nu14040851
19
P Nombela, B Miguel-López, S Blanco. The role of m6A, m5C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer 2021; 20(1): 18 https://doi.org/10.1186/s12943-020-01263-w
I Barbieri, K Tzelepis, L Pandolfini, J Shi, G Millán-Zambrano, SC Robson, D Aspris, V Migliori, AJ Bannister, N Han, Braekeleer E De, H Ponstingl, A Hendrick, CR Vakoc, GS Vassiliou, T Kouzarides. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 2017; 552(7683): 126–131 https://doi.org/10.1038/nature24678
22
LP Vu, BF Pickering, Y Cheng, S Zaccara, D Nguyen, G Minuesa, T Chou, A Chow, Y Saletore, M MacKay, J Schulman, C Famulare, M Patel, VM Klimek, FE Garrett-Bakelman, A Melnick, M Carroll, CE Mason, SR Jaffrey, MG Kharas. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 2017; 23(11): 1369–1376 https://doi.org/10.1038/nm.4416
23
JZ Ma, F Yang, CC Zhou, F Liu, JH Yuan, F Wang, TT Wang, QG Xu, WP Zhou, SH Sun. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology 2017; 65(2): 529–543 https://doi.org/10.1002/hep.28885
24
J Liu, MA Eckert, BT Harada, SM Liu, Z Lu, K Yu, SM Tienda, A Chryplewicz, AC Zhu, Y Yang, JT Huang, SM Chen, ZG Xu, XH Leng, XC Yu, J Cao, Z Zhang, J Liu, E Lengyel, C He. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 2018; 20(9): 1074–1083 https://doi.org/10.1038/s41556-018-0174-4
Y Zhang, H Yang, Y Long, Y Zhang, R Chen, J Shi, J Chen. circRNA N6-methyladenosine methylation in preeclampsia and the potential role of N6-methyladenosine-modified circPAPPA2 in trophoblast invasion. Sci Rep 2021; 11(1): 24357 https://doi.org/10.1038/s41598-021-03662-5
27
L Qiu, GF Zhang, L Yu, HY Wang, XJ Jia, TJ Wang. Novel oncogenic and chemoresistance-inducing functions of resistin in ovarian cancer cells require miRNAs-mediated induction of epithelial-to-mesenchymal transition. Sci Rep 2018; 8(1): 12522 https://doi.org/10.1038/s41598-018-30978-6
28
X Lin, S Zuo, R Luo, Y Li, G Yu, Y Zou, Y Zhou, Z Liu, Y Liu, Y Hu, Y Xie, W Fang, Z Liu. HBX-induced miR-5188 impairs FOXO1 to stimulate β-catenin nuclear translocation and promotes tumor stemness in hepatocellular carcinoma. Theranostics 2019; 9(25): 7583–7598 https://doi.org/10.7150/thno.37717
29
Y Zou, X Lin, J Bu, Z Lin, Y Chen, Y Qiu, H Mo, Y Tang, W Fang, Z Wu. Timeless-stimulated miR-5188-FOXO1/β-catenin-c-Jun feedback loop promotes stemness via ubiquitination of β-catenin in breast cancer. Mol Ther 2020; 28(1): 313–327 https://doi.org/10.1016/j.ymthe.2019.08.015
30
A Weisbeck, RJ Jansen. Nutrients and the pancreas: an epigenetic perspective. Nutrients 2017; 9(3): 283 https://doi.org/10.3390/nu9030283
31
L Garcia-Martinez, Y Zhang, Y Nakata, HL Chan, L Morey. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun 2021; 12(1): 1786 https://doi.org/10.1038/s41467-021-22024-3
C Schiano, G Benincasa, M Franzese, N Della Mura, K Pane, M Salvatore, C Napoli. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210: 107514 https://doi.org/10.1016/j.pharmthera.2020.107514
34
H Tang, Z Zeng, C Shang, Q Li, J Liu. Epigenetic regulation in pathology of atherosclerosis: a novel perspective. Front Genet 2021; 12: 810689 https://doi.org/10.3389/fgene.2021.810689
35
MS Chen, RT Lee, JC Garbern. Senescence mechanisms and targets in the heart. Cardiovasc Res 2022; 118(5): 1173–1187 https://doi.org/10.1093/cvr/cvab161
36
A Schober, M Nazari-Jahantigh, Y Wei, K Bidzhekov, F Gremse, J Grommes, RT Megens, K Heyll, H Noels, M Hristov, S Wang, F Kiessling, EN Olson, C Weber. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20(4): 368–376 https://doi.org/10.1038/nm.3487
37
L Renaud, LG Harris, SK Mani, H Kasiganesan, JC Chou, CF Baicu, A Van Laer, AW Akerman, RE Stroud, JA Jones, MR Zile, DR Menick. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ Heart Fail 2015; 8(6): 1094–1104 https://doi.org/10.1161/CIRCHEARTFAILURE.114.001781
38
C López-Otín, F Pietrocola, D Roiz-Valle, L Galluzzi, G Kroemer. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35(1): 12–35 https://doi.org/10.1016/j.cmet.2022.11.001
39
W Zhang, J Qu, GH Liu, JCI Belmonte. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21(3): 137–150 https://doi.org/10.1038/s41580-019-0204-5
40
C Soto-Palma, LJ Niedernhofer, CD Faulk, X Dong. Epigenetics, DNA damage, and aging. J Clin Invest 2022; 132(16): e158446 https://doi.org/10.1172/JCI158446
41
S Horvath, K Raj. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018; 19(6): 371–384 https://doi.org/10.1038/s41576-018-0004-3
42
A Jambhekar, A Dhall, Y Shi. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20(10): 625–641 https://doi.org/10.1038/s41580-019-0151-1
43
Q Tan, BT Heijmans, JV Hjelmborg, M Soerensen, K Christensen, L Christiansen. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort. Int J Epidemiol 2016; 45(4): 1146–1158 https://doi.org/10.1093/ije/dyw132
44
M Kitada, Y Ogura, I Monno, D Koya. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Front Endocrinol (Lausanne) 2019; 10: 187 https://doi.org/10.3389/fendo.2019.00187
S Maegawa, G Hinkal, HS Kim, L Shen, L Zhang, J Zhang, N Zhang, S Liang, LA Donehower, JP Issa. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 2010; 20(3): 332–340 https://doi.org/10.1101/gr.096826.109
47
W Zhou, HQ Dinh, Z Ramjan, DJ Weisenberger, CM Nicolet, H Shen, PW Laird, BP Berman. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018; 50(4): 591–602 https://doi.org/10.1038/s41588-018-0073-4
48
A Unnikrishnan, WM Freeman, J Jackson, JD Wren, H Porter, A Richardson. The role of DNA methylation in epigenetics of aging. Pharmacol Ther 2019; 195: 172–185 https://doi.org/10.1016/j.pharmthera.2018.11.001
49
A Moskalev, Z Guvatova, IA Lopes, CW Beckett, BK Kennedy, JP De Magalhaes, AA Makarov. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022; 33(4): 266–280 https://doi.org/10.1016/j.tem.2022.01.007
50
Y Liu, MJ Aryee, L Padyukov, MD Fallin, E Hesselberg, A Runarsson, L Reinius, N Acevedo, M Taub, M Ronninger, K Shchetynsky, A Scheynius, J Kere, L Alfredsson, L Klareskog, TJ Ekström, AP Feinberg. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013; 31(2): 142–147 https://doi.org/10.1038/nbt.2487
51
D Wu, D Hu, H Chen, G Shi, IS Fetahu, F Wu, K Rabidou, R Fang, L Tan, S Xu, H Liu, C Argueta, L Zhang, F Mao, G Yan, J Chen, Z Dong, R Lv, Y Xu, M Wang, Y Ye, S Zhang, D Duquette, S Geng, C Yin, CG Lian, GF Murphy, GK Adler, R Garg, L Lynch, P Yang, Y Li, F Lan, J Fan, Y Shi, YG Shi. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 2018; 559(7715): 637–641 https://doi.org/10.1038/s41586-018-0350-5
52
R Nativio, Y Lan, G Donahue, S Sidoli, A Berson, AR Srinivasan, O Shcherbakova, A Amlie-Wolf, J Nie, X Cui, C He, LS Wang, BA Garcia, JQ Trojanowski, NM Bonini, SL Berger. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat Genet 2020; 52(10): 1024–1035 https://doi.org/10.1038/s41588-020-0696-0
53
J Gräff, D Rei, JS Guan, WY Wang, J Seo, KM Hennig, TJ Nieland, DM Fass, PF Kao, M Kahn, SC Su, A Samiei, N Joseph, SJ Haggarty, I Delalle, LH Tsai. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012; 483(7388): 222–226 https://doi.org/10.1038/nature10849
54
L Li, A Zhou, Y Wei, F Liu, P Li, R Fang, L Ma, S Zhang, L Wang, J Liu, HT Richard, Y Chen, H Wang, S Huang. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. Sci Adv 2022; 8(40): eabn2571 https://doi.org/10.1126/sciadv.abn2571
55
Q Liu, H Li, L Guo, Q Chen, X Gao, PH Li, N Tang, X Guo, F Deng, S Wu. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. J Hazard Mater 2021; 417: 125963 https://doi.org/10.1016/j.jhazmat.2021.125963
56
C Wang, R Chen, J Cai, J Shi, C Yang, LA Tse, H Li, Z Lin, X Meng, C Liu, Y Niu, Y Xia, Z Zhao, H Kan. Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environ Int 2016; 94: 661–666 https://doi.org/10.1016/j.envint.2016.07.001
57
E Abraham, S Rousseaux, L Agier, L Giorgis-Allemand, J Tost, J Galineau, A Hulin, V Siroux, D Vaiman, MA Charles, B Heude, A Forhan, J Schwartz, F Chuffart, E Bourova-Flin, S Khochbin, R Slama, J; EDEN Mother-Child Cohort Study Group Lepeule. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int 2018; 118: 334–347 https://doi.org/10.1016/j.envint.2018.05.007
58
D Wang, W Ruan, L Fan, H Xu, Q Song, H Diao, R He, Y Jin, A Zhang. Hypermethylation of Mig-6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite-induced hepatic stellate cells activation and extracellular matrix deposition. J Hazard Mater 2022; 439: 129577 https://doi.org/10.1016/j.jhazmat.2022.129577
59
S Virani, KM Rentschler, M Nishijo, W Ruangyuttikarn, W Swaddiwudhipong, N Basu, LS Rozek. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere 2016; 145: 284–290 https://doi.org/10.1016/j.chemosphere.2015.10.123
60
J Park, J Kim, E Kim, S Won, WJ Kim. Association between prenatal cadmium exposure and cord blood DNA methylation. Environ Res 2022; 212(Pt B): 113268 https://doi.org/10.1016/j.envres.2022.113268
61
F Hu, L Yin, F Dong, M Zheng, Y Zhao, S Fu, W Zhang, X Chen. Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). Aquat Toxicol 2021; 241: 106014 https://doi.org/10.1016/j.aquatox.2021.106014
62
SMM Nakayama, H Nakata, Y Ikenaka, J Yabe, B Oroszlany, YB Yohannes, N Bortey-Sam, K Muzandu, K Choongo, T Kuritani, M Nakagawa, M Ishizuka. One year exposure to Cd- and Pb-contaminated soil causes metal accumulation and alteration of global DNA methylation in rats. Environ Pollut 2019; 252(Pt B): 1267–1276 https://doi.org/10.1016/j.envpol.2019.05.038
63
AK Bozack, SL Rifas-Shiman, BA Coull, AA Baccarelli, RO Wright, C Amarasiriwardena, DR Gold, E Oken, MF Hivert, A Cardenas. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics 2021; 13(1): 208 https://doi.org/10.1186/s13148-021-01198-z
64
J Zhang, J Zhang, M Li, Y Wu, Y Fan, Y Zhou, L Tan, Z Shao, H Shi. Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci 2011; 24(2): 163–171
65
J Yang, W Chen, X Li, J Sun, Q Guo, Z Wang. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J Occup Environ Med 2014; 56(5): 489–492 https://doi.org/10.1097/JOM.0000000000000168
66
I Ansari, G Raddatz, J Gutekunst, M Ridnik, D Cohen, M Abu-Remaileh, T Tuganbaev, H Shapiro, E Pikarsky, E Elinav, F Lyko, Y Bergman. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol 2020; 5(4): 610–619 https://doi.org/10.1038/s41564-019-0659-3
67
P Xu, S Berto, A Kulkarni, B Jeong, C Joseph, KH Cox, ME Greenberg, TK Kim, G Konopka, JS Takahashi. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109(20): 3268–3282.e6 https://doi.org/10.1016/j.neuron.2021.07.026
68
X Ji, H Yue, T Ku, Y Zhang, Y Yun, G Li, N Sang. Histone modification in the lung injury and recovery of mice in response to PM2.5 exposure. Chemosphere 2019; 220: 127–136 https://doi.org/10.1016/j.chemosphere.2018.12.079
69
M Luo, Y Xu, R Cai, Y Tang, MM Ge, ZH Liu, L Xu, F Hu, DY Ruan, HL Wang. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett 2014; 225(1): 78–85 https://doi.org/10.1016/j.toxlet.2013.11.025
70
X Han, MN Alam, M Cao, X Wang, M Cen, M Tian, Y Lu, Q Huang. Low levels of perfluorooctanoic acid exposure activates steroid hormone biosynthesis through repressing histone methylation in rats. Environ Sci Technol 2022; 56(9): 5664–5672 https://doi.org/10.1021/acs.est.1c08885
71
KA Krautkramer, JH Kreznar, KA Romano, EI Vivas, GA Barrett-Wilt, ME Rabaglia, MP Keller, AD Attie, FE Rey, JM Denu. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 2016; 64(5): 982–992 https://doi.org/10.1016/j.molcel.2016.10.025
72
L Migliore, F Coppedè. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18(11): 643–660 https://doi.org/10.1038/s41582-022-00714-w
S Rajagopalan, B Park, R Palanivel, V Vinayachandran, JA Deiuliis, RS Gangwar, L Das, J Yin, Y Choi, S Al-Kindi, MK Jain, KD Hansen, S Biswal. Metabolic effects of air pollution exposure and reversibility. J Clin Invest 2020; 130(11): 6034–6040 https://doi.org/10.1172/JCI137315
76
D Chen, L Fang, S Mei, H Li, X Xu, TL Des Marais, K Lu, XS Liu, C Jin. Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect 2017; 125(9): 097019 https://doi.org/10.1289/EHP1275
77
IK Sundar, H Yao, I Rahman. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 2013; 18(15): 1956–1971 https://doi.org/10.1089/ars.2012.4863
78
A Öst, A Lempradl, E Casas, M Weigert, T Tiko, M Deniz, L Pantano, U Boenisch, PM Itskov, M Stoeckius, M Ruf, N Rajewsky, G Reuter, N Iovino, C Ribeiro, M Alenius, S Heyne, T Vavouri, JA Pospisilik. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 2014; 159(6): 1352–1364 https://doi.org/10.1016/j.cell.2014.11.005
H Huang, H Weng, J Chen. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 2020; 37(3): 270–288 https://doi.org/10.1016/j.ccell.2020.02.004
81
X Zhu, H Fu, J Sun, Q Xu. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373: 110376 https://doi.org/10.1016/j.cbi.2023.110376
82
X Guo, Y Lin, Y Lin, Y Zhong, H Yu, Y Huang, J Yang, Y Cai, F Liu, Y Li, QQ Zhang, J Dai. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut 2022; 303: 119115 https://doi.org/10.1016/j.envpol.2022.119115
83
L Li, M Zhou, B Chen, Q Wang, S Pan, Y Hou, J Xia, X Zhou. ALKBH5 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating PTEN expression in an m6A-dependent manner. Ecotoxicol Environ Saf 2021; 224: 112686 https://doi.org/10.1016/j.ecoenv.2021.112686
S Gu, D Sun, H Dai, Z Zhang. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicol Lett 2018; 292: 1–11 https://doi.org/10.1016/j.toxlet.2018.04.018
86
X Zhu, H Fu, J Sun, Q Xu. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373: 110376 https://doi.org/10.1016/j.cbi.2023.110376
87
F Yang, H Jin, B Que, Y Chao, H Zhang, X Ying, Z Zhou, Z Yuan, J Su, B Wu, W Zhang, D Qi, D Chen, W Min, S Lin, W Ji. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019; 38(24): 4755–4772 https://doi.org/10.1038/s41388-019-0755-0
88
H Du, Y Zhao, J He, Y Zhang, H Xi, M Liu, J Ma, L Wu. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016; 7(1): 12626 https://doi.org/10.1038/ncomms12626
89
B He, Z Zhao, Q Cai, Y Zhang, P Zhang, S Shi, H Xie, X Peng, W Yin, Y Tao, X Wang. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020; 16(14): 2628–2647 https://doi.org/10.7150/ijbs.47203
90
J Zhang, R Bai, M Li, H Ye, C Wu, C Wang, S Li, L Tan, D Mai, G Li, L Pan, Y Zheng, J Su, Y Ye, Z Fu, S Zheng, Z Zuo, Z Liu, Q Zhao, X Che, D Xie, W Jia, MS Zeng, W Tan, R Chen, RH Xu, J Zheng, D Lin. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun 2019; 10(1): 1858 https://doi.org/10.1038/s41467-019-09712-x
91
T Yu, F Guo, Y Yu, T Sun, D Ma, J Han, Y Qian, I Kryczek, D Sun, N Nagarsheth, Y Chen, H Chen, J Hong, W Zou, JY Fang. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548–563.e16 https://doi.org/10.1016/j.cell.2017.07.008
92
N Liu, M Parisien, Q Dai, G Zheng, C He, T Pan. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 2013; 19(12): 1848–1856 https://doi.org/10.1261/rna.041178.113
93
S Zhang, BS Zhao, A Zhou, K Lin, S Zheng, Z Lu, Y Chen, EP Sulman, K Xie, O Bögler, S Majumder, C He, S Huang. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591–606.e6 https://doi.org/10.1016/j.ccell.2017.02.013
94
J Zhang, L Huang, G Ge, K Hu. Emerging epigenetic-based nanotechnology for cancer therapy: modulating the tumor microenvironment. Adv Sci (Weinh) 2023; 10(7): 2206169 https://doi.org/10.1002/advs.202206169
95
D Dixit, BC Prager, RC Gimple, TE Miller, Q Wu, S Yomtoubian, RL Kidwell, D Lv, L Zhao, Z Qiu, G Zhang, D Lee, DE Park, RJ Wechsler-Reya, X Wang, S Bao, JN Rich. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med 2022; 14(626): eabf3917 https://doi.org/10.1126/scitranslmed.abf3917
96
Z Lu, J Zou, S Li, MJ Topper, Y Tao, H Zhang, X Jiao, W Xie, X Kong, M Vaz, H Li, Y Cai, L Xia, P Huang, K Rodgers, B Lee, JB Riemer, CP Day, RC Yen, Y Cui, Y Wang, Y Wang, W Zhang, H Easwaran, A Hulbert, K Kim, RA Juergens, SC Yang, RJ Battafarano, EL Bush, SR Broderick, SM Cattaneo, JR Brahmer, CM Rudin, J Wrangle, Y Mei, YJ Kim, B Zhang, KK Wang, PM Forde, JB Margolick, BD Nelkin, CA Zahnow, DM Pardoll, F Housseau, SB Baylin, L Shen, MV Brock. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 2020; 579(7798): 284–290 https://doi.org/10.1038/s41586-020-2054-x
97
J Jiang, J Liu, D Sanders, S Qian, W Ren, J Song, F Liu, X Zhong. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat Plants 2021; 7(2): 184–197 https://doi.org/10.1038/s41477-020-00843-4
98
IR Miousse, KR Kutanzi, I Koturbash. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93(5): 457–469 https://doi.org/10.1080/09553002.2017.1287454
99
SY Lee, EK Jeong, MK Ju, HM Jeon, MY Kim, CH Kim, HG Park, SI Han, HS Kang. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16(1): 10 https://doi.org/10.1186/s12943-016-0577-4
100
C Mazziotta, CF Cervellera, C Lanzillotti, A Touzé, P Gaboriaud, M Tognon, F Martini, JC Rotondo. MicroRNA dysregulations in Merkel cell carcinoma: molecular mechanisms and clinical applications. J Med Virol 2023; 95(1): e28375 https://doi.org/10.1002/jmv.28375
101
JR Choi, SB Koh, HR Kim, H Lee, DR Kang. Radon exposure-induced genetic variations in lung cancers among never smokers. J Korean Med Sci 2018; 33(29): e207 https://doi.org/10.3346/jkms.2018.33.e207
102
Y Guan, M Xu, Z Zhang, C Liu, J Zhou, F Lin, J Fang, Y Zhang, Q Yue, X Zhen, G Yan, H Sun, W Liu. Maternal circadian disruption before pregnancy impairs the ovarian function of female offspring in mice. Sci Total Environ 2023; 864: 161161 https://doi.org/10.1016/j.scitotenv.2022.161161
103
R Zheng, Z Xin, M Li, T Wang, M Xu, J Lu, M Dai, D Zhang, Y Chen, S Wang, H Lin, W Wang, G Ning, Y Bi, Z Zhao, Y Xu. Outdoor light at night in relation to glucose homoeostasis and diabetes in Chinese adults: a national and cross-sectional study of 98,658 participants from 162 study sites. Diabetologia 2023; 66(2): 336–345 https://doi.org/10.1007/s00125-022-05819-x
104
IC Eze, A Jeong, E Schaffner, FI Rezwan, A Ghantous, M Foraster, D Vienneau, F Kronenberg, Z Herceg, P Vineis, M Brink, JM Wunderli, C Schindler, C Cajochen, M Röösli, JW Holloway, M Imboden, N Probst-Hensch. Genome-wide DNA methylation in peripheral blood and long-term exposure to source-specific transportation noise and air pollution: the SAPALDIA Study. Environ Health Perspect 2020; 128(6): 067003 https://doi.org/10.1289/EHP6174
105
T Münzel, M Sørensen, A Daiber. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol 2021; 18(9): 619–636 https://doi.org/10.1038/s41569-021-00532-5
106
V Miguel, JY Cui, L Daimiel, C Espinosa-Díez, C Fernández-Hernando, TJ Kavanagh, S Lamas. The role of microRNAs in environmental risk factors, noise-induced hearing loss, and mental stress. Antioxid Redox Signal 2018; 28(9): 773–796 https://doi.org/10.1089/ars.2017.7175
107
A Meerson, L Cacheaux, KA Goosens, RM Sapolsky, H Soreq, D Kaufer. Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40(1–2): 47–55 https://doi.org/10.1007/s12031-009-9252-1
108
CM Greco, G Condorelli. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 2015; 12(8): 488–497 https://doi.org/10.1038/nrcardio.2015.71
109
L Guo, PH Li, H Li, E Colicino, S Colicino, Y Wen, R Zhang, X Feng, TM Barrow, A Cayir, AA Baccarelli, HM Byun. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. Environ Res 2017; 153: 73–82 https://doi.org/10.1016/j.envres.2016.11.017
110
D Drozdz, J Alvarez-Pitti, M Wójcik, C Borghi, R Gabbianelli, A Mazur, V Herceg-Čavrak, BG Lopez-Valcarcel, M Brzeziński, E Lurbe, E Wühl. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients 2021; 13(11): 4176 https://doi.org/10.3390/nu13114176
AE Charkiewicz, JR Backstrand. Lead toxicity and pollution in Poland. Int J Environ Res Public Health 2020; 17(12): 4385 https://doi.org/10.3390/ijerph17124385
113
W Zhang, H Wan, G Feng, J Qu, J Wang, Y Jing, R Ren, Z Liu, L Zhang, Z Chen, S Wang, Y Zhao, Z Wang, Y Yuan, Q Zhou, W Li, GH Liu, B Hu. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 2018; 560(7720): 661–665 https://doi.org/10.1038/s41586-018-0437-z
114
M Chin-Chan, L Cobos-Puc, I Alvarado-Cruz, M Bayar, M Ermolaeva. Early-life Pb exposure as a potential risk factor for Alzheimer’s disease: are there hazards for the Mexican population?. Eur J Biochem 2019; 24(8): 1285–1303 https://doi.org/10.1007/s00775-019-01739-1
C Zuo, L Ai, P Ratliff, JY Suen, E Hanna, TP Brent, CY Fan. O6-methylguanine-DNA methyltransferase gene: epigenetic silencing and prognostic value in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2004; 13(6): 967–975 https://doi.org/10.1158/1055-9965.967.13.6
S Singh, SS Li. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 2012; 13(8): 10143–10153 https://doi.org/10.3390/ijms130810143
119
DY Ryu, WK Pang, EO Adegoke, MS Rahman, YJ Park, MG Pang. Abnormal histone replacement following BPA exposure affects spermatogenesis and fertility sequentially. Environ Int 2022; 170: 107617 https://doi.org/10.1016/j.envint.2022.107617
120
MTMT Tran, FC Kuo, JT Low, YM Chuang, S Sultana, WL Huang, ZY Lin, GL Lin, CF Wu, SS Li, JL Suen, CH Hung, MT Wu, MWY Chan. Prenatal DEHP exposure predicts neurological disorders via transgenerational epigenetics. Sci Rep 2023; 13(1): 7399 https://doi.org/10.1038/s41598-023-34661-3
121
NQ Vuong, D Breznan, P Goegan, JS O’Brien, A Williams, S Karthikeyan, P Kumarathasan, R Vincent. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Part Fibre Toxicol 2017; 14(1): 39 https://doi.org/10.1186/s12989-017-0220-6
122
BB Ural, DP Caron, P Dogra, SB Wells, PA Szabo, T Granot, T Senda, MML Poon, N Lam, P Thapa, YS Lee, M Kubota, R Matsumoto, DL Farber. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med 2022; 28(12): 2622–2632 https://doi.org/10.1038/s41591-022-02073-x
123
CY Chang, R You, D Armstrong, A Bandi, YT Cheng, PM Burkhardt, L Becerra-Dominguez, MC Madison, HY Tung, Z Zeng, Y Wu, L Song, PE Phillips, P Porter, JM Knight, N Putluri, X Yuan, DC Marcano, EA McHugh, JM Tour, A Catic, L Maneix, BM Burt, HS Lee, DB Corry, F Kheradmand. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. Sci Adv 2022; 8(46): eabq0615 https://doi.org/10.1126/sciadv.abq0615
124
A Perfilyev, I Dahlman, L Gillberg, F Rosqvist, D Iggman, P Volkov, E Nilsson, U Risérus, C Ling. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 991–1000 https://doi.org/10.3945/ajcn.116.143164
125
X Lu, Y Zhu, R Bai, Z Wu, W Qian, L Yang, R Cai, H Yan, T Li, V Pandey, Y Liu, PE Lobie, C Chen, T Zhu. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat Nanotechnol 2019; 14(7): 719–727 https://doi.org/10.1038/s41565-019-0472-4
126
Y Chen, M Xu, J Zhang, J Ma, M Gao, Z Zhang, Y Xu, S Liu. Genome-wide DNA methylation variations upon exposure to engineered nanomaterials and their implications in nanosafety assessment. Adv Mater 2017; 29(6): 1604580 https://doi.org/10.1002/adma.201604580
127
X Wang, Y Liu, J Wang, Y Nie, S Chen, TK Hei, Z Deng, L Wu, G Zhao, A Xu. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 2017; 11(8): 978–995 https://doi.org/10.1080/17435390.2017.1388861
128
S Chang, J Min, X Lu, Q Zhang, S Shangguan, T Zhang, L Wang. Effect of epigenetic activating of Dlk1-Dio3 imprinted cluster on miR-370 expression due to folate deficiency during nerve development. J Nutr Biochem 2023; 116: 109297 https://doi.org/10.1016/j.jnutbio.2023.109297
129
Y An, L Feng, X Zhang, Y Wang, Y Wang, L Tao, Z Qin, R Xiao. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin Epigenetics 2019; 11(1): 139 https://doi.org/10.1186/s13148-019-0741-y
130
B Glimelius, S Stintzing, J Marshall, T Yoshino, A de Gramont. Metastatic colorectal cancer: advances in the folate-fluoropyrimidine chemotherapy backbone. Cancer Treat Rev 2021; 98: 102218 https://doi.org/10.1016/j.ctrv.2021.102218
131
JT Li, H Yang, MZ Lei, WP Zhu, Y Su, KY Li, WY Zhu, J Wang, L Zhang, J Qu, L Lv, HJ Lu, ZJ Chen, L Wang, M Yin, QY Lei. Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther 2022; 7(1): 192 https://doi.org/10.1038/s41392-022-01017-8
132
ML Holland, R Lowe, PW Caton, C Gemma, G Carbajosa, AF Danson, AA Carpenter, E Loche, SE Ozanne, VK Rakyan. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 2016; 353(6298): 495–498 https://doi.org/10.1126/science.aaf7040
133
L Han, C Ren, L Li, X Li, J Ge, H Wang, YL Miao, X Guo, KH Moley, W Shu, Q Wang. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 2018; 50(3): 432–442 https://doi.org/10.1038/s41588-018-0055-6
134
RC Laker, TS Lillard, M Okutsu, M Zhang, KL Hoehn, JJ Connelly, Z Yan. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 2014; 63(5): 1605–1611 https://doi.org/10.2337/db13-1614
135
M Vaz, SY Hwang, I Kagiampakis, J Phallen, A Patil, HM O’Hagan, L Murphy, CA Zahnow, E Gabrielson, VE Velculescu, HP Easwaran, SB Baylin. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell 2017; 32(3): 360–376.e6 https://doi.org/10.1016/j.ccell.2017.08.006
136
MJ Xavier, SD Roman, RJ Aitken, B Nixon. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25(5): 518–540 https://doi.org/10.1093/humupd/dmz017
137
F Liu, JK Killian, M Yang, RL Walker, JA Hong, M Zhang, S Davis, Y Zhang, M Hussain, S Xi, M Rao, PA Meltzer, DS Schrump. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 2010; 29(25): 3650–3664 https://doi.org/10.1038/onc.2010.129
138
A Okabe, KK Huang, K Matsusaka, M Fukuyo, M Xing, X Ong, T Hoshii, G Usui, M Seki, Y Mano, B Rahmutulla, T Kanda, T Suzuki, SY Rha, T Ushiku, M Fukayama, P Tan, A Kaneda. Cross-species chromatin interactions drive transcriptional rewiring in Epstein–Barr virus-positive gastric adenocarcinoma. Nat Genet 2020; 52(9): 919–930 https://doi.org/10.1038/s41588-020-0665-7
139
J Xie, Z Wang, W Fan, Y Liu, F Liu, X Wan, M Liu, X Wang, D Zeng, Y Wang, B He, M Yan, Z Zhang, M Zhang, Z Hou, C Wang, Z Kang, W Fang, L Zhang, EW Lam, X Guo, J Yan, Y Zeng, M Chen, Q Liu. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6(1): 333 https://doi.org/10.1038/s41392-021-00702-4
X Chen, JX Loo, X Shi, W Xiong, Y Guo, H Ke, M Yang, Y Jiang, S Xia, M Zhao, S Zhong, C He, L Fu, F Li. E6 protein expressed by high-risk HPV activates super-enhancers of the EGFR and c-MET oncogenes by destabilizing the histone demethylase KDM5C. Cancer Res 2018; 78(6): 1418–1430 https://doi.org/10.1158/0008-5472.CAN-17-2118
142
Z Shen, J Wu, Z Gao, S Zhang, J Chen, J He, Y Guo, Q Deng, Y Xie, J Liu, J Zhang. High mobility group AT-hook 1 (HMGA1) is an important positive regulator of hepatitis B virus (HBV) that is reciprocally upregulated by HBV X protein. Nucleic Acids Res 2022; 50(4): 2157–2171 https://doi.org/10.1093/nar/gkac070
143
S Lee, Y Yu, J Trimpert, F Benthani, M Mairhofer, P Richter-Pechanska, E Wyler, D Belenki, S Kaltenbrunner, M Pammer, L Kausche, TC Firsching, K Dietert, M Schotsaert, C Martínez-Romero, G Singh, S Kunz, D Niemeyer, R Ghanem, HJF Salzer, C Paar, M Mülleder, M Uccellini, EG Michaelis, A Khan, A Lau, M Schönlein, A Habringer, J Tomasits, JM Adler, S Kimeswenger, AD Gruber, W Hoetzenecker, H Steinkellner, B Purfürst, R Motz, Pierro F Di, B Lamprecht, N Osterrieder, M Landthaler, C Drosten, A García-Sastre, R Langer, M Ralser, R Eils, M Reimann, DNY Fan, CA Schmitt. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 2021; 599(7884): 283–289 https://doi.org/10.1038/s41586-021-03995-1
144
M Zazhytska, A Kodra, DA Hoagland, J Frere, JF Fullard, H Shayya, NG McArthur, R Moeller, S Uhl, AD Omer, ME Gottesman, S Firestein, Q Gong, PD Canoll, JE Goldman, P Roussos, BR tenOever, B Overdevest Jonathan, S Lomvardas. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 2022; 185(6): 1052–1064.e12 https://doi.org/10.1016/j.cell.2022.01.024
145
J Kee, S Thudium, DM Renner, K Glastad, K Palozola, Z Zhang, Y Li, Y Lan, J Cesare, A Poleshko, AA Kiseleva, R Truitt, FL Cardenas-Diaz, X Zhang, X Xie, DN Kotton, KD Alysandratos, JA Epstein, PY Shi, W Yang, E Morrisey, BA Garcia, SL Berger, SR Weiss, E Korb. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 2022; 610(7931): 381–388 https://doi.org/10.1038/s41586-022-05282-z
146
Z Li, Q Hao, J Luo, J Xiong, S Zhang, T Wang, L Bai, W Wang, M Chen, W Wang, L Gu, K Lv, J Chen. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene 2016; 35(22): 2902–2912 https://doi.org/10.1038/onc.2015.349
J Wu, Y Zhao, X Wang, L Kong, LJ Johnston, L Lu, X Ma. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2022; 62(3): 783–797 https://doi.org/10.1080/10408398.2020.1828813
149
S Bubendorfer, J Krebes, I Yang, E Hage, TF Schulz, C Bahlawane, X Didelot, S Suerbaum. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 2016; 7(1): 11995 https://doi.org/10.1038/ncomms11995
J Krebes, RD Morgan, B Bunk, C Spröer, K Luong, R Parusel, BP Anton, C König, C Josenhans, J Overmann, RJ Roberts, J Korlach, S Suerbaum. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 2014; 42(4): 2415–2432 https://doi.org/10.1093/nar/gkt1201
152
M Fol, M Włodarczyk, M Druszczyńska. Host epigenetics in intracellular pathogen infections. Int J Mol Sci 2020; 21(13): 4573 https://doi.org/10.3390/ijms21134573
153
I Yaseen, P Kaur, VK Nandicoori, S Khosla. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 2015; 6(1): 8922 https://doi.org/10.1038/ncomms9922
154
NP Semenkovich, JD Planer, PP Ahern, NW Griffin, CY Lin, JI Gordon. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci USA 2016; 113(51): 14805–14810 https://doi.org/10.1073/pnas.1617793113
H Lecoeur, E Prina, M Gutiérrez-Sanchez, GF Späth. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2022; 38(3): 205–216 https://doi.org/10.1016/j.pt.2021.09.009
157
G Roy, HK Brar, R Muthuswami, R Madhubala. Epigenetic regulation of defense genes by histone deacetylase1 in human cell line-derived macrophages promotes intracellular survival of Leishmania donovani. PLoS Negl Trop Dis 2020; 14(4): e0008167 https://doi.org/10.1371/journal.pntd.0008167
158
NO Jõgi, N Kitaba, T Storaas, V Schlünssen, K Triebner, JW Holloway, WGC Horsnell, C Svanes, RJ Bertelsen. Ascaris exposure and its association with lung function, asthma, and DNA methylation in Northern Europe. J Allergy Clin Immunol 2022; 149(6): 1960–1969 https://doi.org/10.1016/j.jaci.2021.11.013
159
J Tripathi, L Zhu, S Nayak, M Stoklasa, Z Bozdech. Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13(1): 3004 https://doi.org/10.1038/s41467-022-30605-z
M Sharma, TO Tollefsbol. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp Cell Res 2022; 416(1): 113160 https://doi.org/10.1016/j.yexcr.2022.113160
MR McReynolds, K Chellappa, E Chiles, C Jankowski, Y Shen, L Chen, HC Descamps, S Mukherjee, YR Bhat, SR Lingala, Q Chu, P Botolin, F Hayat, T Doke, K Susztak, CA Thaiss, W Lu, ME Migaud, X Su, JD Rabinowitz, JA Baur. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst 2021; 12(12): 1160–1172.e4 https://doi.org/10.1016/j.cels.2021.09.001
164
JW Lv, YP Song, ZC Zhang, YJ Fan, FX Xu, L Gao, XY Zhang, C Zhang, H Wang, DX Xu. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. Ecotoxicol Environ Saf 2021; 227: 112901 https://doi.org/10.1016/j.ecoenv.2021.112901
165
H Hou, H Zhao. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin Chim Acta 2021; 512: 7–11 https://doi.org/10.1016/j.cca.2020.11.013
M Chen, S Li, I Arora, N Yi, M Sharma, Z Li, TO Tollefsbol, Y Li. Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. J Nutr Biochem 2022; 110: 109119 https://doi.org/10.1016/j.jnutbio.2022.109119
168
AM Intlekofer, AH Shih, B Wang, A Nazir, AS Rustenburg, SK Albanese, M Patel, C Famulare, FM Correa, N Takemoto, V Durani, H Liu, J Taylor, N Farnoud, E Papaemmanuil, JR Cross, MS Tallman, ME Arcila, M Roshal, GA Petsko, B Wu, S Choe, ZD Konteatis, SA Biller, JD Chodera, CB Thompson, RL Levine, EM Stein. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 2018; 559(7712): 125–129 https://doi.org/10.1038/s41586-018-0251-7
169
A Ferrari, R Longo, R Silva, N Mitro, D Caruso, E De Fabiani, M Crestani. Epigenome modifiers and metabolic rewiring: new frontiers in therapeutics. Pharmacol Ther 2019; 193: 178–193 https://doi.org/10.1016/j.pharmthera.2018.08.008
170
J Zhong, E Colicino, X Lin, A Mehta, I Kloog, A Zanobetti, HM Byun, MA Bind, L Cantone, D Prada, L Tarantini, L Trevisi, D Sparrow, P Vokonas, J Schwartz, AA Baccarelli. Cardiac autonomic dysfunction: particulate air pollution effects are modulated by epigenetic immunoregulation of Toll-like receptor 2 and dietary flavonoid intake. J Am Heart Assoc 2015; 4(1): e001423 https://doi.org/10.1161/JAHA.114.001423
171
I Arora, S Li, MR Crowley, Y Li, TO Tollefsbol. Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells 2022; 12(1): 14 https://doi.org/10.3390/cells12010014
172
S Li, M Chen, Y Li, TO Tollefsbol. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11(1): 82 https://doi.org/10.1186/s13148-019-0659-4
173
M Lucock. Vitamin-related phenotypic adaptation to exposomal factors: the folate-vitamin D-exposome triad. Mol Aspects Med 2022; 87: 100944 https://doi.org/10.1016/j.mam.2021.100944
174
H Wu, WJ Van Der Pol, LG Dubois, CD Morrow, TO Tollefsbol. Dietary supplementation of inulin contributes to the prevention of estrogen receptor-negative mammary cancer by alteration of gut microbial communities and epigenetic regulations. Int J Mol Sci 2023; 24(10): 9015 https://doi.org/10.3390/ijms24109015
175
Z Yuan, S Chen, C Gao, Q Dai, C Zhang, Q Sun, JS Lin, C Guo, Y Chen, Y Jiang. Development of a versatile DNMT and HDAC inhibitor C02S modulating multiple cancer hallmarks for breast cancer therapy. Bioorg Chem 2019; 87: 200–208 https://doi.org/10.1016/j.bioorg.2019.03.027
176
S Zhang, B Tang, C Fan, L Shi, X Zhang, L Sun, Z Li. Effect of DNMT inhibitor on bovine parthenogenetic embryo development. Biochem Biophys Res Commun 2015; 466(3): 505–511 https://doi.org/10.1016/j.bbrc.2015.09.060
177
C Segovia, José-Enériz E San, E Munera-Maravilla, M Martínez-Fernández, L Garate, E Miranda, A Vilas-Zornoza, I Lodewijk, C Rubio, C Segrelles, LV Valcárcel, O Rabal, N Casares, A Bernardini, C Suarez-Cabrera, FF López-Calderón, P Fortes, JA Casado, M Dueñas, F Villacampa, JJ Lasarte, F Guerrero-Ramos, Velasco G de, J Oyarzabal, D Castellano, X Agirre, F Prósper, JM Paramio. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019; 25(7): 1073–1081 https://doi.org/10.1038/s41591-019-0499-y
178
X Zhang, J Yang, D Shi, Z Cao. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 2020; 20(1): 363 https://doi.org/10.1186/s12935-020-01456-9
179
N Garmpis, C Damaskos, A Garmpi, D Dimitroulis, E Spartalis, GA Margonis, D Schizas, I Deskou, C Doula, E Magkouti, N Andreatos, EA Antoniou, A Nonni, K Kontzoglou, D Mantas. Targeting histone deacetylases in malignant melanoma: a future therapeutic agent or just great expectations?. Anticancer Res 2017; 37(10): 5355–5362
180
YN Zhu, XW Gan, F Pan, XT Ni, L Myatt, WS Wang, K Sun. Role of EZH2-mediated H3K27me3 in placental ADAM12-S expression: implications for fetoplacental growth. BMC Med 2022; 20(1): 189 https://doi.org/10.1186/s12916-022-02391-4
181
X Sun, JM Bieber, H Hammerlindl, RJ Chalkley, KH Li, AL Burlingame, MP Jacobson, LF Wu, SJ Altschuler. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Sci Adv 2022; 8(4): eabi7711 https://doi.org/10.1126/sciadv.abi7711
182
M Vicioso-Mantis, R Fueyo, C Navarro, S Cruz-Molina, Ijcken WFJ van, E Rebollo, Á Rada-Iglesias, MA Martínez-Balbás. JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation. Nat Commun 2022; 13(1): 3263 https://doi.org/10.1038/s41467-022-30614-y
183
Y You, Y Fu, M Huang, D Shen, B Zhao, H Liu, Y Zheng, L Huang. Recent advances of m6A demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci 2022; 23(10): 5815 https://doi.org/10.3390/ijms23105815
184
E Yankova, W Blackaby, M Albertella, J Rak, E De Braekeleer, G Tsagkogeorga, ES Pilka, D Aspris, D Leggate, AG Hendrick, NA Webster, B Andrews, R Fosbeary, P Guest, N Irigoyen, M Eleftheriou, M Gozdecka, JML Dias, AJ Bannister, B Vick, I Jeremias, GS Vassiliou, O Rausch, K Tzelepis, T Kouzarides. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021; 593(7860): 597–601 https://doi.org/10.1038/s41586-021-03536-w