Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer
Yuanxin Yao1, Honghui Lv2,1, Meiying Zhang1, Yuan Li3,1, James G. Herman4, Malcolm V. Brock5, Aiai Gao1, Qian Wang1, Francois Fuks6, Lirong Zhang2(), Mingzhou Guo1,7()
1. Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China 2. Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China 3. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China 4. UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA 5. Department of surgery, School of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA 6. Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels 1070, Belgium 7. National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.
L Rahib, BD Smith, R Aizenberg, AB Rosenzweig, JM Fleshman, LM Matrisian. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913–2921 https://doi.org/10.1158/0008-5472.CAN-14-0155
O Strobel, J Neoptolemos, D Jäger, MW Büchler. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11–26 https://doi.org/10.1038/s41571-018-0112-1
4
SB Dreyer, DK Chang, P Bailey, AV Biankin. Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clin Cancer Res 2017; 23(7): 1638–1646 https://doi.org/10.1158/1078-0432.CCR-16-2411
5
A Huang, LA Garraway, A Ashworth, B Weber. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2020; 19(1): 23–38 https://doi.org/10.1038/s41573-019-0046-z
6
H Farmer, N McCabe, CJ Lord, AN Tutt, DA Johnson, TB Richardson, M Santarosa, KJ Dillon, I Hickson, C Knights, NM Martin, SP Jackson, GC Smith, A Ashworth. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–921 https://doi.org/10.1038/nature03445
7
HE Bryant, N Schultz, HD Thomas, KM Parker, D Flower, E Lopez, S Kyle, M Meuth, NJ Curtin, T Helleday. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913–917 https://doi.org/10.1038/nature03443
Y Cui, H Chen, R Xi, H Cui, Y Zhao, E Xu, T Yan, X Lu, F Huang, P Kong, Y Li, X Zhu, J Wang, W Zhu, J Wang, Y Ma, Y Zhou, S Guo, L Zhang, Y Liu, B Wang, Y Xi, R Sun, X Yu, Y Zhai, F Wang, J Yang, B Yang, C Cheng, J Liu, B Song, H Li, Y Wang, Y Zhang, X Cheng, Q Zhan, Y Li, Z Liu. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res 2020; 30(10): 902–913 https://doi.org/10.1038/s41422-020-0333-6
KM Sathyan, Z Shen, V Tripathi, KV Prasanth, SG Prasanth. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J Cell Sci 2011; 124(Pt 18): 3149–3163 https://doi.org/10.1242/jcs.086603
15
F Kurniawan, SG Prasanth. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13(1–3): 82–87 https://doi.org/10.1080/21541264.2022.2105128
16
J Zhang, Y Zhang, Q You, C Huang, T Zhang, M Wang, T Zhang, X Yang, J Xiong, Y Li, CP Liu, Z Zhang, RM Xu, B Zhu. Highly enriched BEND3 prevents the premature activation of bivalent genes during differentiation. Science 2022; 375(6584): 1053–1058 https://doi.org/10.1126/science.abm0730
17
S Babu, Y Takeuchi, I Masai. Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina. eLife 2022; 11: e74611 https://doi.org/10.7554/eLife.74611
18
L Ma, D Xie, M Luo, X Lin, H Nie, J Chen, C Gao, S Duo, C Han. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. Sci Adv 2022; 8(21): eabn1606 https://doi.org/10.1126/sciadv.abn1606
19
Y Shi, D Zhang, J Chen, Q Jiang, S Song, Y Mi, T Wang, Q Ye. Interaction between BEND5 and RBPJ suppresses breast cancer growth and metastasis via inhibiting Notch signaling. Int J Biol Sci 2022; 18(10): 4233–4244 https://doi.org/10.7150/ijbs.70866
20
G Shi, Y Bai, X Zhang, J Su, J Pang, Q He, P Zeng, J Ding, Y Xiong, J Zhang, J Wang, D Liu, W Ma, J Huang, Z Songyang. Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2022; 13(10): 721–741 https://doi.org/10.1007/s13238-021-00884-1
21
W Du, A Gao, JG Herman, L Wang, L Zhang, S Jiao, M Guo. Methylation of NRN1 is a novel synthetic lethal marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer. Cancer Sci 2021; 112(7): 2870–2883 https://doi.org/10.1111/cas.14917
22
H Li, M Zhang, E Linghu, F Zhou, JG Herman, L Hu, M Guo. Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma. Clin Epigenetics 2018; 10(1): 137 https://doi.org/10.1186/s13148-018-0570-4
23
AJ Pierce, RD Johnson, LH Thompson, M Jasin. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13(20): 2633–2638 https://doi.org/10.1101/gad.13.20.2633
24
J Guirouilh-Barbat, S Huck, P Bertrand, L Pirzio, C Desmaze, L Sabatier, BS Lopez. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 2004; 14(5): 611–623 https://doi.org/10.1016/j.molcel.2004.05.008
25
PL Olive, JP Banáth. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1(1): 23–29 https://doi.org/10.1038/nprot.2006.5
26
C Zhang, B Zhou, F Gu, H Liu, H Wu, F Yao, H Zheng, H Fu, W Chong, S Cai, M Huang, X Ma, Z Guo, T Li, W Deng, M Zheng, Q Ji, Y Zhao, Y Ma, QE Wang, TS Tang, C Guo. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell 2022; 82(7): 1297–1312.e8 https://doi.org/10.1016/j.molcel.2022.01.020
27
B Zhao, E Rothenberg, DA Ramsden, MR Lieber. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21(12): 765–781 https://doi.org/10.1038/s41580-020-00297-8
C Almoguera, D Shibata, K Forrester, J Martin, N Arnheim, M Perucho. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53(4): 549–554 https://doi.org/10.1016/0092-8674(88)90571-5
30
A Scarpa, P Capelli, K Mukai, G Zamboni, T Oda, C Iacono, S Hirohashi. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 1993; 142(5): 1534–1543
31
S Jones, X Zhang, DW Parsons, JC Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, H Kamiyama, A Jimeno, SM Hong, B Fu, MT Lin, ES Calhoun, M Kamiyama, K Walter, T Nikolskaya, Y Nikolsky, J Hartigan, DR Smith, M Hidalgo, SD Leach, AP Klein, EM Jaffee, M Goggins, A Maitra, C Iacobuzio-Donahue, JR Eshleman, SE Kern, RH Hruban, R Karchin, N Papadopoulos, G Parmigiani, B Vogelstein, VE Velculescu, KW Kinzler. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801–1806 https://doi.org/10.1126/science.1164368
32
AV Biankin, N Waddell, KS Kassahn, MC Gingras, LB Muthuswamy, AL Johns, DK Miller, PJ Wilson, AM Patch, J Wu, DK Chang, MJ Cowley, BB Gardiner, S Song, I Harliwong, S Idrisoglu, C Nourse, E Nourbakhsh, S Manning, S Wani, M Gongora, M Pajic, CJ Scarlett, AJ Gill, AV Pinho, I Rooman, M Anderson, O Holmes, C Leonard, D Taylor, S Wood, Q Xu, K Nones, JL Fink, A Christ, T Bruxner, N Cloonan, G Kolle, F Newell, M Pinese, RS Mead, JL Humphris, W Kaplan, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, A Chou, VT Chin, LA Chantrill, A Mawson, JS Samra, JG Kench, JA Lovell, RJ Daly, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N; Australian Pancreatic Cancer Genome Initiative; Kakkar N Zeps, F Zhao, YQ Wu, M Wang, DM Muzny, WE Fisher, FC Brunicardi, SE Hodges, JG Reid, J Drummond, K Chang, Y Han, LR Lewis, H Dinh, CJ Buhay, T Beck, L Timms, M Sam, K Begley, A Brown, D Pai, A Panchal, N Buchner, Borja R De, RE Denroche, CK Yung, S Serra, N Onetto, D Mukhopadhyay, MS Tsao, PA Shaw, GM Petersen, S Gallinger, RH Hruban, A Maitra, CA Iacobuzio-Donahue, RD Schulick, CL Wolfgang, RA Morgan, RT Lawlor, P Capelli, V Corbo, M Scardoni, G Tortora, MA Tempero, KM Mann, NA Jenkins, PA Perez-Mancera, DJ Adams, DA Largaespada, LF Wessels, AG Rust, LD Stein, DA Tuveson, NG Copeland, EA Musgrove, A Scarpa, JR Eshleman, TJ Hudson, RL Sutherland, DA Wheeler, JV Pearson, JD McPherson, RA Gibbs, SM Grimmond. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491(7424): 399–405 https://doi.org/10.1038/nature11547
33
P Bailey, DK Chang, K Nones, AL Johns, AM Patch, MC Gingras, DK Miller, AN Christ, TJ Bruxner, MC Quinn, C Nourse, LC Murtaugh, I Harliwong, S Idrisoglu, S Manning, E Nourbakhsh, S Wani, L Fink, O Holmes, V Chin, MJ Anderson, S Kazakoff, C Leonard, F Newell, N Waddell, S Wood, Q Xu, PJ Wilson, N Cloonan, KS Kassahn, D Taylor, K Quek, A Robertson, L Pantano, L Mincarelli, LN Sanchez, L Evers, J Wu, M Pinese, MJ Cowley, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, LA Chantrill, A Mawson, J Humphris, A Chou, M Pajic, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Lovell, ND Merrett, CW Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, K Moran-Jones, NB Jamieson, JS Graham, F Duthie, K Oien, J Hair, R Grützmann, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, B Rusev, P Capelli, R Salvia, G Tortora, D Mukhopadhyay, GM; Australian Pancreatic Cancer Genome Initiative; Munzy DM Petersen, WE Fisher, SA Karim, JR Eshleman, RH Hruban, C Pilarsky, JP Morton, OJ Sansom, A Scarpa, EA Musgrove, UM Bailey, O Hofmann, RL Sutherland, DA Wheeler, AJ Gill, RA Gibbs, JV Pearson, N Waddell, AV Biankin, SM Grimmond. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52 https://doi.org/10.1038/nature16965
34
SB Dreyer, R Upstill-Goddard, A Legrini, AV; Glasgow Precision Oncology Laboratory; Jamieson NB Biankin, DK; Australian Pancreatic Genome Initiative; Jamieson NB Chang, DK Chang. Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence. Gastroenterology 2022; 162(1): 320–324.e4 https://doi.org/10.1053/j.gastro.2021.09.022
35
N Waddell, M Pajic, AM Patch, DK Chang, KS Kassahn, P Bailey, AL Johns, D Miller, K Nones, K Quek, MC Quinn, AJ Robertson, MZ Fadlullah, TJ Bruxner, AN Christ, I Harliwong, S Idrisoglu, S Manning, C Nourse, E Nourbakhsh, S Wani, PJ Wilson, E Markham, N Cloonan, MJ Anderson, JL Fink, O Holmes, SH Kazakoff, C Leonard, F Newell, B Poudel, S Song, D Taylor, N Waddell, S Wood, Q Xu, J Wu, M Pinese, MJ Cowley, HC Lee, MD Jones, AM Nagrial, J Humphris, LA Chantrill, V Chin, AM Steinmann, A Mawson, ES Humphrey, EK Colvin, A Chou, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Pettitt, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, NB Jamieson, JS Graham, SP Niclou, R Bjerkvig, R Grützmann, D Aust, RH Hruban, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, M Falconi, G Zamboni, G Tortora, MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ Tempero, JR Eshleman, C Pilarsky, A Scarpa, EA Musgrove, JV Pearson, AV Biankin, SM Grimmond. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501 https://doi.org/10.1038/nature14169
36
Genome Atlas Research Network Cancer. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13 https://doi.org/10.1016/j.ccell.2017.07.007
37
AD Singhi, B George, JR Greenbowe, J Chung, J Suh, A Maitra, SJ Klempner, A Hendifar, JM Milind, T Golan, RE Brand, AH Zureikat, S Roy, AB Schrock, VA Miller, JS Ross, SM Ali, N Bahary. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 2019; 156(8): 2242–2253.e4 https://doi.org/10.1053/j.gastro.2019.02.037
38
Y Qian, Y Gong, Z Fan, G Luo, Q Huang, S Deng, H Cheng, K Jin, Q Ni, X Yu, C Liu. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol 2020; 13(1): 130 https://doi.org/10.1186/s13045-020-00958-3
39
MS Rémond, A Pellat, C Brezault, M Dhooge, R Coriat. Are targeted therapies or immunotherapies effective in metastatic pancreatic adenocarcinoma?. ESMO Open 2022; 7(6): 100638 https://doi.org/10.1016/j.esmoop.2022.100638
40
T Golan, P Hammel, M Reni, Cutsem E Van, T Macarulla, MJ Hall, JO Park, D Hochhauser, D Arnold, DY Oh, A Reinacher-Schick, G Tortora, H Algül, EM O’Reilly, D McGuinness, KY Cui, K Schlienger, GY Locker, HL Kindler. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 2019; 381(4): 317–327 https://doi.org/10.1056/NEJMoa1903387
41
L Perkhofer, J Gout, E Roger, de Almeida F Kude, Simões C Baptista, L Wiesmüller, T Seufferlein, A Kleger. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut 2021; 70(3): 606–617 https://doi.org/10.1136/gutjnl-2019-319984
42
A Hayashi, J Hong, CA Iacobuzio-Donahue. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021; 18(7): 469–481 https://doi.org/10.1038/s41575-021-00463-z
43
C Gourley, J Balmaña, JA Ledermann, V Serra, R Dent, S Loibl, E Pujade-Lauraine, SJ Boulton. Moving from Poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J Clin Oncol 2019; 37(25): 2257–2269 https://doi.org/10.1200/JCO.18.02050
44
H Li, W Yang, M Zhang, T He, F Zhou, J G Herman, L Hu, M Guo. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021; 13(17): 1403–1419 https://doi.org/10.2217/epi-2021-0217
45
V Davalos, M Esteller. Cancer epigenetics in clinical practice. CA Cancer J Clin 2023; 73(4): 376–424 https://doi.org/10.3322/caac.21765
46
MJ Topper, M Vaz, KA Marrone, JR Brahmer, SB Baylin. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2020; 17(2): 75–90 https://doi.org/10.1038/s41571-019-0266-5
47
D Wang, W Wu, E Callen, R Pavani, N Zolnerowich, S Kodali, D Zong, N Wong, S Noriega, WJ Nathan, G Matos-Rodrigues, R Chari, MJ Kruhlak, F Livak, M Ward, K Caldecott, B Di Stefano, A Nussenzweig. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 2022; 378(6623): 983–989 https://doi.org/10.1126/science.add9838
48
AR Weber, C Krawczyk, AB Robertson, A Kuśnierczyk, CB Vågbø, D Schuermann, A Klungland, P Schär. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 2016; 7(1): 10806 https://doi.org/10.1038/ncomms10806