ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163
Haihua Zhang1, Xinli Liu2, Junqiang Li3, Jin Meng4, Wan Huang5, Xuan Su1, Xutao Zhang6, Guizhou Gao1, Xiaodong Wang1, Haichuan Su3(), Feng Zhang2(), Tao Zhang1()
. Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China . Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710038, China . Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China . Department of Pharmacy, the Medical Security Centre, Chinese PLA General Hospital, Beijing 100091, China . National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an 710038, China . Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710038, China
Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial–mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression—upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.
. [J]. Frontiers of Medicine, 2024, 18(5): 878-895.
Haihua Zhang, Xinli Liu, Junqiang Li, Jin Meng, Wan Huang, Xuan Su, Xutao Zhang, Guizhou Gao, Xiaodong Wang, Haichuan Su, Feng Zhang, Tao Zhang. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163. Front. Med., 2024, 18(5): 878-895.
M Yuan, Y Zhao, HT Arkenau, T Lao, L Chu, Q Xu. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther 2022; 7(1): 187–204 https://doi.org/10.1038/s41392-022-01013-y
2
Y Doyon, C Cayrou, M Ullah, AJ Landry, V Côté, W Selleck, WS Lane, S Tan, XJ Yang, J Côté. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 2006; 21(1): 51–64 https://doi.org/10.1016/j.molcel.2005.12.007
3
S Anwar, A Shamsi, T Mohammad, A Islam, MI Hassan. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876(1): 188568–188592 https://doi.org/10.1016/j.bbcan.2021.188568
4
S Cui, X Liao, C Ye, X Yin, M Liu, Y Hong, M Yu, Y Liu, H Liang, CY Zhang, X Chen. ING5 suppresses breast cancer progression and is regulated by miR-24. Mol Cancer 2017; 16(1): 89–100 https://doi.org/10.1186/s12943-017-0658-z
5
S Ghafouri-Fard, M Taheri, A Baniahmad. Inhibitor of growth factors regulate cellular senescence. Cancers (Basel) 2022; 14(13): 3107–3118 https://doi.org/10.3390/cancers14133107
6
J Archambeau, A Blondel, R Pedeux. Focus-ING on DNA integrity: implication of ING proteins in cell cycle regulation and DNA repair modulation. Cancers (Basel) 2019; 12(1): 58–76 https://doi.org/10.3390/cancers12010058
7
F Wang, AY Wang, C Chesnelong, Y Yang, A Nabbi, S Thalappilly, V Alekseev, K Riabowol. ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Oncogene 2018; 37(3): 286–301 https://doi.org/10.1038/onc.2017.324
8
G Ormaza, JA Rodríguez, de Opakua A Ibáñez, N Merino, M Villate, I Gorroño, M Rábano, I Palmero, M Vilaseca, R Kypta, MDM Vivanco, AL Rojas, FJ Blanco. The tumor suppressor ING5 is a dimeric, bivalent recognition molecule of the histone H3K4me3 mark. J Mol Biol 2019; 431(12): 2298–2319 https://doi.org/10.1016/j.jmb.2019.04.018
9
F Zhang, X Zhang, J Meng, Y Zhao, X Liu, Y Liu, Y Wang, Y Li, Y Sun, Z Wang, Q Mei, T Zhang. ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer. Oncotarget 2015; 6(18): 16239–16252 https://doi.org/10.18632/oncotarget.3842
10
XL Liu, XT Zhang, J Meng, HF Zhang, Y Zhao, C Li, Y Sun, QB Mei, F Zhang, T Zhang. ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways. Oncotarget 2017; 8(33): 54265–54276 https://doi.org/10.18632/oncotarget.17346
11
XL Liu, J Meng, XT Zhang, XH Liang, F Zhang, GR Zhao, T Zhang. ING5 inhibits lung cancer invasion and epithelial-mesenchymal transition by inhibiting the WNT/β-catenin pathway. Thorac Cancer 2019; 10(4): 848–855 https://doi.org/10.1111/1759-7714.13013
12
T Zhang, J Meng, X Liu, X Zhang, X Peng, Z Cheng, F Zhang. ING5 differentially regulates protein lysine acetylation and promotes p300 autoacetylation. Oncotarget 2018; 9(2): 1617–1629 https://doi.org/10.18632/oncotarget.22176
RV Pusapati, A Daemen, C Wilson, W Sandoval, M Gao, B Haley, AR Baudy, G Hatzivassiliou, M Evangelista, J Settleman. mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell 2016; 29(4): 548–562 https://doi.org/10.1016/j.ccell.2016.02.018
16
A Erdem, S Marin, DA Pereira-Martins, R Cortés, A Cunningham, MG Pruis, Boer B de, den Heuvel FAJ van, M Geugien, ATJ Wierenga, AZ Brouwers-Vos, EM Rego, G Huls, M Cascante, JJ Schuringa. The glycolytic gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nat Commun 2022; 13(1): 1105–1120 https://doi.org/10.1038/s41467-022-28737-3
A Cenigaonandia-Campillo, R Serna-Blasco, L Gómez-Ocabo, S Solanes-Casado, N Baños-Herraiz, LD Puerto-Nevado, JA Cañas, MJ Aceñero, J García-Foncillas, Ó Aguilera. Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer. Theranostics 2021; 11(8): 3595–3606 https://doi.org/10.7150/thno.51265
19
SM Hong, YK Lee, I Park, SM Kwon, S Min, G Yoon. Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis. J Biol Chem 2019; 294(19): 7810–7820 https://doi.org/10.1074/jbc.RA118.006095
20
I Adant, M Bird, B Decru, P Windmolders, M Wallays, Witte P de, D Rymen, P Witters, P Vermeersch, D Cassiman, B Ghesquière. Pyruvate and uridine rescue the metabolic profile of OXPHOS dysfunction. Mol Metab 2022; 63: 101537–101550 https://doi.org/10.1016/j.molmet.2022.101537
21
S Imanaka, H Shigetomi, H Kobayashi. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2022; 29(3): 653–667 https://doi.org/10.1007/s43032-021-00505-6
22
TN Seyfried, G Arismendi-Morillo, P Mukherjee, C Chinopoulos. On the origin of ATP synthesis in cancer. iScience 2020; 23(11): 101761–101781 https://doi.org/10.1016/j.isci.2020.101761
23
J Fan, C Shan, HB Kang, S Elf, J Xie, M Tucker, TL Gu, M Aguiar, S Lonning, H Chen, M Mohammadi, LM Britton, BA Garcia, M Alečković, Y Kang, S Kaluz, N Devi, Meir EG Van, T Hitosugi, JH Seo, S Lonial, M Gaddh, M Arellano, HJ Khoury, FR Khuri, TJ Boggon, S Kang, J Chen. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 2014; 53(4): 534–548 https://doi.org/10.1016/j.molcel.2013.12.026
24
V De Rosa, F Iommelli, C Terlizzi, E Leggiero, R Camerlingo, GG Altobelli, R Fonti, L Pastore, S Del Vecchio. Non-canonical role of PDK1 as a negative regulator of apoptosis through macromolecular complexes assembly at the ER-mitochondria interface in oncogene-driven NSCLC. Cancers (Basel) 2021; 13(16): 4133–4146 https://doi.org/10.3390/cancers13164133
25
V Calleja, M Laguerre, G de Las Heras-Martinez, PJ Parker, J Requejo-Isidro, B Larijani. Acute regulation of PDK1 by a complex interplay of molecular switches. Biochem Soc Trans 2014; 42(5): 1435–1440 https://doi.org/10.1042/BST20140222
26
T Hitosugi, J Fan, TW Chung, K Lythgoe, X Wang, J Xie, Q Ge, TL Gu, RD Polakiewicz, JL Roesel, GZ Chen, TJ Boggon, S Lonial, H Fu, FR Khuri, S Kang, J Chen. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 2011; 44(6): 864–877 https://doi.org/10.1016/j.molcel.2011.10.015
27
Z Tang, C Li, B Kang, G Gao, C Li, Z Zhang. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98–W102 https://doi.org/10.1093/nar/gkx247
28
T Li, J Fan, B Wang, N Traugh, Q Chen, JS Liu, B Li, XS Liu. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017; 77(21): e108–e110 https://doi.org/10.1158/0008-5472.CAN-17-0307
29
B Győrffy. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023; 45(3): 1889–1898 https://doi.org/10.1007/s11357-023-00742-4
30
A Gautam, JC Waldrep, CL Densmore, N Koshkina, S Melton, L Roberts, B Gilbert, V Knight. Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther 2002; 9(5): 353–357 https://doi.org/10.1038/sj.gt.3301662
31
F Chen, Y Zhang, DS Chandrashekar, S Varambally, CJ Creighton. Global impact of somatic structural variation on the cancer proteome. Nat Commun 2023; 14(1): 5637 https://doi.org/10.1038/s41467-023-41374-8
32
E Atas, M Oberhuber, L Kenner. The implications of PDK1-4 on tumor energy metabolism, aggressiveness and therapy resistance. Front Oncol 2020; 10: 583217–583225 https://doi.org/10.3389/fonc.2020.583217
33
T Wang, F Chuffart, E Bourova-Flin, J Wang, J Mi, S Rousseaux, S Khochbin. Histone variants: critical determinants in tumour heterogeneity. Front Med 2019; 13(3): 289–297 https://doi.org/10.1007/s11684-018-0667-3
34
PW Szlosarek, S Lee, PJ Pollard. Rewiring mitochondrial pyruvate metabolism: switching off the light in cancer cells. Mol Cell 2014; 56(3): 343–344 https://doi.org/10.1016/j.molcel.2014.10.018
35
JE Burns, CD Hurst, MA Knowles, RM Phillips, SJ Allison. The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets. Cancer Sci 2021; 112(9): 3822–3834 https://doi.org/10.1111/cas.15047
36
F Peng, JH Wang, WJ Fan, YT Meng, MM Li, TT Li, B Cui, HF Wang, Y Zhao, F An, T Guo, XF Liu, L Zhang, L Lv, DK Lv, LZ Xu, JJ Xie, WX Lin, EW Lam, J Xu, Q Liu. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 2018; 37(8): 1062–1074 https://doi.org/10.1038/onc.2017.368
37
F Dupuy, S Tabariès, S Andrzejewski, Z Dong, J Blagih, MG Annis, A Omeroglu, D Gao, S Leung, E Amir, M Clemons, A Aguilar-Mahecha, M Basik, EE Vincent, J St-Pierre, RG Jones, PM Siegel. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 2015; 22(4): 577–589 https://doi.org/10.1016/j.cmet.2015.08.007
38
JY Hsu, JY Chang, KY Chang, WC Chang, BK Chen. Epidermal growth factor-induced pyruvate dehydrogenase kinase 1 expression enhances head and neck squamous cell carcinoma metastasis via up-regulation of fibronectin. FASEB J 2017; 31(10): 4265–4276 https://doi.org/10.1096/fj.201700156R
39
Milić N Škorja, K Dolinar, K Miš, U Matkovič, M Bizjak, M Pavlin, M Podbregar, S Pirkmajer. Suppression of pyruvate dehydrogenase kinase by dichloroacetate in cancer and skeletal muscle cells is isoform specific and partially independent of HIF-1α. Int J Mol Sci 2021; 22(16): 8610–8635 https://doi.org/10.3390/ijms22168610
40
S Savant, Porta S La, A Budnik, K Busch, J Hu, N Tisch, C Korn, AF Valls, AV Benest, D Terhardt, X Qu, RH Adams, HS Baldwin, de Almodóvar C Ruiz, HR Rodewald, HG Augustin. The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Rep 2015; 12(11): 1761–1773 https://doi.org/10.1016/j.celrep.2015.08.024
41
M Singhal, N Gengenbacher, S La Porta, S Gehrs, J Shi, M Kamiyama, DM Bodenmiller, A Fischl, B Schieb, E Besemfelder, S Chintharlapalli, HG Augustin. Preclinical validation of a novel metastasis-inhibiting Tie1 function-blocking antibody. EMBO Mol Med 2020; 12(6): e11164 https://doi.org/10.15252/emmm.201911164
42
PJ Zwiers, RM Jongman, T Kuiper, J Moser, RV Stan, JR Göthert, Meurs M van, ER Popa, G Molema. Pattern of tamoxifen-induced Tie2 deletion in endothelial cells in mature blood vessels using endo SCL-Cre-ERT transgenic mice. PLoS One 2022; 17(6): e0268986 https://doi.org/10.1371/journal.pone.0268986
43
EA Korhonen, A Murtomäki, SK Jha, A Anisimov, A Pink, Y Zhang, S Stritt, I Liaqat, L Stanczuk, L Alderfer, Z Sun, E Kapiainen, A Singh, I Sultan, A Lantta, VM Leppänen, L Eklund, Y He, HG Augustin, K Vaahtomeri, P Saharinen, T Mäkinen, K Alitalo. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J Clin Invest 2022; 132(15): e155478 https://doi.org/10.1172/JCI155478
44
JH Yun, HM Lee, EH Lee, JW Park, CH Cho. Hypoxia reduces endothelial Ang1-induced Tie2 activity in a Tie1-dependent manner. Biochem Biophys Res Commun 2013; 436(4): 691–697 https://doi.org/10.1016/j.bbrc.2013.06.018
45
F Chen, J Chen, L Yang, J Liu, X Zhang, Y Zhang, Q Tu, D Yin, D Lin, PP Wong, D Huang, Y Xing, J Zhao, M Li, Q Liu, F Su, S Su, E Song. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol 2019; 21(4): 498–510 https://doi.org/10.1038/s41556-019-0299-0
46
GL Semenza. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 2013; 123(9): 3664–3671 https://doi.org/10.1172/JCI67230
47
L Hulea, SP Gravel, M Morita, M Cargnello, O Uchenunu, YK Im, C Lehuédé, EH Ma, M Leibovitch, S McLaughlan, MJ Blouin, M Parisotto, V Papavasiliou, C Lavoie, O Larsson, M Ohh, T Ferreira, C Greenwood, G Bridon, D Avizonis, G Ferbeyre, P Siegel, RG Jones, W Muller, J Ursini-Siegel, J St-Pierre, M Pollak, I Topisirovic. Translational and HIF-1α-dependent metabolic reprogramming underpin metabolic plasticity and responses to kinase inhibitors and biguanides. Cell Metab 2018; 28(6): 817–832.e8 https://doi.org/10.1016/j.cmet.2018.09.001
48
A Brand, K Singer, GE Koehl, M Kolitzus, G Schoenhammer, A Thiel, C Matos, C Bruss, S Klobuch, K Peter, M Kastenberger, C Bogdan, U Schleicher, A Mackensen, E Ullrich, S Fichtner-Feigl, R Kesselring, M Mack, U Ritter, M Schmid, C Blank, K Dettmer, PJ Oefner, P Hoffmann, S Walenta, EK Geissler, J Pouyssegur, A Villunger, A Steven, B Seliger, S Schreml, S Haferkamp, E Kohl, S Karrer, M Berneburg, W Herr, W Mueller-Klieser, K Renner, M Kreutz. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 2016; 24(5): 657–671 https://doi.org/10.1016/j.cmet.2016.08.011
49
D Mishra, D Banerjee. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers (Basel) 2019; 11(6): 750–770 https://doi.org/10.3390/cancers11060750