Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  , Vol. Issue (): 0   https://doi.org/10.1007/s11684-024-1061-y
  本期目录
Pathological progression of osteoarthritis: a perspective on subchondral bone
Xuefei Li1, Wenhua Chen2, Dan Liu1, Pinghua Chen1, Shiyun Wang1, Fangfang Li1, Qian Chen1, Shunyi Lv1, Fangyu Li1, Chen Chen1, Suxia Guo1, Weina Yuan1, Pan Li1, Zhijun Hu1()
1. Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
2. Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
 全文: PDF(1647 KB)   HTML
Abstract

Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as “top to bottom.” However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone’s physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the “bottom-up” progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.

Key wordsosteoarthritis    subchondral bone    OPG/RANKL/RANK    CXCL12/CXCR4
收稿日期: 2023-11-21     
Corresponding Author(s): Zhijun Hu   
 引用本文:   
. [J]. Frontiers of Medicine, 10.1007/s11684-024-1061-y.
Xuefei Li, Wenhua Chen, Dan Liu, Pinghua Chen, Shiyun Wang, Fangfang Li, Qian Chen, Shunyi Lv, Fangyu Li, Chen Chen, Suxia Guo, Weina Yuan, Pan Li, Zhijun Hu. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front. Med., , (): 0.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-024-1061-y
https://academic.hep.com.cn/fmd/CN/Y/V/I/0
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 2017 Disease GBD, Incidence Injury, Collaborators Prevalence. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789–1858
https://doi.org/10.1016/S0140-6736(18)32279-7
2 JG Quicke, PG Conaghan, N Corp, G Peat. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage 2022; 30(2): 196–206
https://doi.org/10.1016/j.joca.2021.10.003
3 MHM Yunus, A Nordin, H Kamal. Pathophysiological perspective of osteoarthritis. Medicina (Kaunas) 2020; 56(11): 614–627
https://doi.org/10.3390/medicina56110614
4 RF Loeser, SR Goldring, CR Scanzello, MB Goldring. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697–1707
https://doi.org/10.1002/art.34453
5 N Aizah, PP Chong, T Kamarul. Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of osteoarthritis. Cartilage 2021; 13(2_suppl): 1322S–1333S
https://doi.org/10.1177/1947603519878479
6 X Zhu, YT Chan, PSH Yung, RS Tuan, Y Jiang. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol 2021; 8: 607764
https://doi.org/10.3389/fcell.2020.607764
7 T Hügle, J Geurts. What drives osteoarthritis? Synovial versus subchondral bone pathology.. Rheumatology (Oxford) 2017; 56(9): 1461–1471
https://doi.org/10.1093/rheumatology/kew389PMID:28003493
8 JP Mansell, C Collins, AJ Bailey. Bone, not cartilage, should be the major focus in osteoarthritis. Nat Clin Pract Rheumatol 2007; 3(6): 306–307
https://doi.org/10.1038/ncprheum0505
9 Y Henrotin, L Pesesse, C Sanchez. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 2012; 23(Suppl 8): S847–S851
https://doi.org/10.1007/s00198-012-2162-z
10 W Hu, Y Chen, C Dou, S Dong. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80(4): 413–422
https://doi.org/10.1136/annrheumdis-2020-218089
11 PR Coryell, BO Diekman, RF Loeser. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 2021; 17(1): 47–57
https://doi.org/10.1038/s41584-020-00533-7
12 M Darbandi, FK Shadmani, M Miryan, M Ghalandari, M Mohebi, SA Jam, Y Pasdar. The burden of osteoarthritis due to high body mass index in Iran from 1990 to 2019. Sci Rep 2023; 13(1): 11710–11719
https://doi.org/10.1038/s41598-023-37780-z
13 E Poulsen, GH Goncalves, A Bricca, EM Roos, JB Thorlund, CB Juhl. Knee osteoarthritis risk is increased 4–6 fold after knee injury—a systematic review and meta-analysis. Br J Sports Med 2019; 53(23): 1454–1463
https://doi.org/10.1136/bjsports-2018-100022
14 R Papalia, G Torre, B Zampogna, F Vorini, A Grasso, V Denaro. Sport activity as risk factor for early knee osteoarthritis. J Biol Regul Homeost Agents 2019; 33(2 Suppl. 1): 29–37, XIX
15 X Liang, OHI Chou, CL Cheung, BMY Cheung. Is hypertension associated with arthritis? The United States national health and nutrition examination survey 1999–2018.. Ann Med 2022; 54(1): 1767–1775
https://doi.org/10.1080/07853890.2022.2089911
16 M Peshkova, A Lychagin, M Lipina, B Di Matteo, G Anzillotti, F Ronzoni, N Kosheleva, A Shpichka, V Royuk, V Fomin, E Kalinsky, P Timashev, E Kon. Gender-related aspects in osteoarthritis development and progression: a review. Int J Mol Sci 2022; 23(5): 2767–2788
https://doi.org/10.3390/ijms23052767
17 CG Boer, K Hatzikotoulas, L Southam, L Stefánsdóttir, Y Zhang, de Almeida R Coutinho, TT Wu, J Zheng, A Hartley, M Teder-Laving, AH Skogholt, C Terao, E Zengini, G Alexiadis, A Barysenka, G Bjornsdottir, ME Gabrielsen, A Gilly, T Ingvarsson, MB Johnsen, H Jonsson, M Kloppenburg, A Luetge, SH Lund, R Mägi, M Mangino, RRGHH Nelissen, M Shivakumar, J Steinberg, H Takuwa, LF Thomas, M; arcOGEN Consortium; HUNT All-In Pain; ARGO Consortium; Regeneron Genetics Center; Babis GC Tuerlings, JPY Cheung, JH Kang, P Kraft, SA Lietman, D Samartzis, PE Slagboom, K Stefansson, U Thorsteinsdottir, JH Tobias, AG Uitterlinden, B Winsvold, JA Zwart, Smith G Davey, PC Sham, G Thorleifsson, TR Gaunt, AP Morris, AM Valdes, A Tsezou, KSE Cheah, S Ikegawa, K Hveem, T Esko, JM Wilkinson, I Meulenbelt, MTM Lee, Meurs JBJ van, U Styrkársdóttir, E Zeggini. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184(18): 4784–4818.e17
https://doi.org/10.1016/j.cell.2021.07.038
18 Q Yao, X Wu, C Tao, W Gong, M Chen, M Qu, Y Zhong, T He, S Chen, G Xiao. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8(1): 56–87
https://doi.org/10.1038/s41392-023-01330-w
19 KD Allen, LM Thoma, YM Golightly. Epidemiology of osteoarthritis. Osteoarthritis Cartilage 2022; 30(2): 184–195
https://doi.org/10.1016/j.joca.2021.04.020
20 S Safiri, AA Kolahi, E Smith, C Hill, D Bettampadi, MA Mansournia, D Hoy, A Ashrafi-Asgarabad, M Sepidarkish, A Almasi-Hashiani, G Collins, J Kaufman, M Qorbani, M Moradi-Lakeh, AD Woolf, F Guillemin, L March, M Cross. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 2020; 79(6): 819–828
https://doi.org/10.1136/annrheumdis-2019-216515
21 H Long, Q Liu, H Yin, K Wang, N Diao, Y Zhang, J Lin, A Guo. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol 2022; 74(7): 1172–1183
https://doi.org/10.1002/art.42089
22 Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2163–2196 doi:10.1016/S0140-6736(12)61729-2 PMID:23245607
23 D Li, S Li, Q Chen, X Xie. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: a systematic review and meta-analysis. Front Med (Lausanne) 2020; 7: 304–316
https://doi.org/10.3389/fmed.2020.00304
24 JW Hong, JH Noh, DJ Kim. The prevalence of and demographic factors associated with radiographic knee osteoarthritis in Korean adults aged ≥ 50 years: the 2010–2013 Korea National Health and Nutrition Examination Survey. PLoS One 2020; 15(3): e0230613
https://doi.org/10.1371/journal.pone.0230613
25 Y Li, W Xie, W Xiao, D Dou. Progress in osteoarthritis research by the national natural science foundation of China. Bone Res 2022; 10(1): 41–53
https://doi.org/10.1038/s41413-022-00207-y
26 C Kim, KD Linsenmeyer, SC Vlad, A Guermazi, MM Clancy, J Niu, DT Felson. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: the Framingham osteoarthritis study. Arthritis Rheumatol 2014; 66(11): 3013–3017
https://doi.org/10.1002/art.38795
27 Z Fan, L Yan, H Liu, X Li, K Fan, Q Liu, JJ Li, B Wang. The prevalence of hip osteoarthritis: a systematic review and meta-analysis. Arthritis Res Ther 2023; 25(1): 51–62
https://doi.org/10.1186/s13075-023-03033-7
28 2016 Causes of Death Collaborators GBD. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390(10100): 1151–1210
https://doi.org/10.1016/S0140-6736(17)32152-9
29 2019 Diseases GBD, Collaborators Injuries. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204–1222
https://doi.org/10.1016/S0140-6736(20)30925-9
30 X Tang, S Wang, S Zhan, J Niu, K Tao, Y Zhang, J Lin. The prevalence of symptomatic knee osteoarthritis in China: results from the China health and retirement longitudinal study. Arthritis Rheumatol 2016; 68(3): 648–653
https://doi.org/10.1002/art.39465
31 JB Driban, MS Harkey, MF Barbe, RJ Ward, JW MacKay, JE Davis, B Lu, LL Price, CB Eaton, GH Lo, TE McAlindon. Risk factors and the natural history of accelerated knee osteoarthritis: a narrative review. BMC Musculoskelet Disord 2020; 21(1): 332–343
https://doi.org/10.1186/s12891-020-03367-2
32 J Lo, L Chan, S Flynn. A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: a 2019 update. Arch Phys Med Rehabil 2021; 102(1): 115–131
https://doi.org/10.1016/j.apmr.2020.04.001
33 SX Wang, AX Ganguli, A Bodhani, JK Medema, WM Reichmann, D Macaulay. Healthcare resource utilization and costs by age and joint location among osteoarthritis patients in a privately insured population. J Med Econ 2017; 20(12): 1299–1306
https://doi.org/10.1080/13696998.2017.1377717
34 DJ Hunter, M Nevitt, E Losina, V Kraus. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol 2014; 28(1): 61–71
https://doi.org/10.1016/j.berh.2014.01.007
35 X Zhou, H Cao, Y Yuan, W Wu. Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. BioMed Res Int 2020; 2020: 5720360
https://doi.org/10.1155/2020/5720360
36 CB Carballo, Y Nakagawa, I Sekiya, SA Rodeo. Basic science of articular cartilage. Clin Sports Med 2017; 36(3): 413–425
https://doi.org/10.1016/j.csm.2017.02.001
37 P Lu, K Takai, VM Weaver, Z Werb. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3(12): a005058
https://doi.org/10.1101/cshperspect.a005058
38 S Chen, P Fu, H Wu, M Pei. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370(1): 53–70
https://doi.org/10.1007/s00441-017-2613-0
39 TL Vincent. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum 2019; 49(3 3S): S36–S38
https://doi.org/10.1016/j.semarthrit.2019.09.018
40 GW Greene, X Banquy, DW Lee, DD Lowrey, J Yu, JN Israelachvili. Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc Natl Acad Sci USA 2011; 108(13): 5255–5259
https://doi.org/10.1073/pnas.1101002108
41 AA Mieloch, M Richter, T Trzeciak, M Giersig, JD Rybka. Osteoarthritis severely decreases the elasticity and hardness of knee joint cartilage: a nanoindentation study. J Clin Med 2019; 8(11): 1865–1876
https://doi.org/10.3390/jcm8111865
42 CD Hoemann, CH Lafantaisie-Favreau, V Lascau-Coman, G Chen, J Guzmán-Morales. The cartilage-bone interface. J Knee Surg 2012; 25(2): 85–97
https://doi.org/10.1055/s-0032-1319782
43 J Yu, F Liang, H Huang, P Pirttiniemi, D Yu. Effects of loading on chondrocyte hypoxia, HIF-1α and VEGF in the mandibular condylar cartilage of young rats. Orthod Craniofac Res 2018; 21(1): 41–47
https://doi.org/10.1111/ocr.12212
44 J Pan, X Zhou, W Li, JE Novotny, SB Doty, L Wang. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 2009; 27(10): 1347–1352
https://doi.org/10.1002/jor.20883
45 SR Goldring, MB Goldring. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12(11): 632–644
https://doi.org/10.1038/nrrheum.2016.148
46 MB Goldring, SR Goldring. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192(1): 230–237
https://doi.org/10.1111/j.1749-6632.2009.05240.x
47 SJO Rytky, L Huang, P Tanska, A Tiulpin, E Panfilov, W Herzog, RK Korhonen, S Saarakkala, MAJ Finnilä. Automated analysis of rabbit knee calcified cartilage morphology using micro-computed tomography and deep learning. J Anat 2021; 239(2): 251–263
https://doi.org/10.1111/joa.13435
48 H Madry, CN van Dijk, M Mueller-Gerbl. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18(4): 419–433
https://doi.org/10.1007/s00167-010-1054-z
49 JM Berthelot, J Sellam, Y Maugars, F Berenbaum. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5(2): e001037
https://doi.org/10.1136/rmdopen-2019-001037
50 S Milz, R Putz. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 1994; 185(Pt 1): 103–110
51 A Boyde. The bone cartilage interface and osteoarthritis. Calcif Tissue Int 2021; 109(3): 303–328
https://doi.org/10.1007/s00223-021-00866-9
52 X Zhu, YT Chan, PSH Yung, RS Tuan, Y Jiang. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol 2021; 8: 607764
https://doi.org/10.3389/fcell.2020.607764
53 S Taheri, T Winkler, LS Schenk, C Neuerburg, SF Baumbach, J Zustin, W Lehmann, AF Schilling. Developmental transformation and reduction of connective cavities within the subchondral bone. Int J Mol Sci 2019; 20(3): 770–783
https://doi.org/10.3390/ijms20030770
54 JT Holopainen, PA Brama, E Halmesmäki, T Harjula, J Tuukkanen, Weeren PR van, HJ Helminen, MM Hyttinen. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone 2008; 43(6): 1108–1114
https://doi.org/10.1016/j.bone.2008.07.254
55 JS Day, JC Van Der Linden, RA Bank, M Ding, I Hvid, DR Sumner, H Weinans. Adaptation of subchondral bone in osteoarthritis. Biorheology 2004; 41(3–4): 359–368
56 DB Burr, MA Gallant. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8(11): 665–673
https://doi.org/10.1038/nrrheum.2012.130
57 G Zhen, C Wen, X Jia, Y Li, JL Crane, SC Mears, FB Askin, FJ Frassica, W Chang, J Yao, JA Carrino, A Cosgarea, D Artemov, Q Chen, Z Zhao, X Zhou, L Riley, P Sponseller, M Wan, WW Lu, X Cao. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712
https://doi.org/10.1038/nm.3143
58 NLA Fell, BM Lawless, SC Cox, ME Cooke, NM Eisenstein, DET Shepherd, DM Espino. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthritis Cartilage 2019; 27(3): 535–543
https://doi.org/10.1016/j.joca.2018.12.006
59 EL Radin, RB Martin, DB Burr, B Caterson, RD Boyd, C Goodwin. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 1984; 2(3): 221–234
https://doi.org/10.1002/jor.1100020303
60 Y Hu, X Chen, S Wang, Y Jing, J Su. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9(1): 20–33
https://doi.org/10.1038/s41413-021-00147-z
61 XS Liu, P Sajda, PK Saha, FW Wehrli, G Bevill, TM Keaveny, XE Guo. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 2008; 23(2): 223–235
https://doi.org/10.1359/jbmr.071009
62 J Wang, B Zhou, XS Liu, AJ Fields, A Sanyal, X Shi, M Adams, TM Keaveny, XE Guo. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 2015; 72: 71–80
https://doi.org/10.1016/j.bone.2014.11.006
63 MS O’Brien, JJ McDougall. Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 2019; 180: 21–28
https://doi.org/10.1016/j.mad.2019.03.003
64 R Ding, N Zhang, Q Wang, W Wang. Alterations of the subchondral bone in osteoarthritis: complying with Wolff’s law. Curr Rheumatol Rev 2022; 18(3): 178–185
https://doi.org/10.2174/1573397118666220401104428
65 AJ Teichtahl, AE Wluka, P Wijethilake, Y Wang, A Ghasem-Zadeh, FM Cicuttini. Wolff’s law in action: a mechanism for early knee osteoarthritis. Arthritis Res Ther 2015; 17(1): 207–216
https://doi.org/10.1186/s13075-015-0738-7
66 J Zhang, S Chen, W Chen, Y Huang, R Lin, M Huang, Y Wu, L Zheng, Z Li, N Liao, J Ye, X Liu. Ultrastructural change of the subchondral bone increases the severity of cartilage damage in osteoporotic osteoarthritis of the knee in rabbits. Pathol Res Pract 2018; 214(1): 38–43
https://doi.org/10.1016/j.prp.2017.11.018
67 Y Chen, Y Hu, YE Yu, X Zhang, T Watts, B Zhou, J Wang, T Wang, W Zhao, KY Chiu, FK Leung, X Cao, W Macaulay, KK Nishiyama, E Shane, WW Lu, XE Guo. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J Bone Miner Res 2018; 33(2): 316–327
https://doi.org/10.1002/jbmr.3313
68 Z Zamli, K Robson Brown, M Sharif. Subchondral bone plate changes more rapidly than trabecular bone in osteoarthritis. Int J Mol Sci 2016; 17(9): 1496–1507
https://doi.org/10.3390/ijms17091496
69 F Intema, HA Hazewinkel, D Gouwens, JW Bijlsma, H Weinans, FP Lafeber, SC Mastbergen. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage 2010; 18(5): 691–698
https://doi.org/10.1016/j.joca.2010.01.004
70 SM Botter, GJ van Osch, S Clockaerts, JH Waarsing, H Weinans, JP van Leeuwen. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum 2011; 63(9): 2690–2699
https://doi.org/10.1002/art.30307
71 AG Robling, LF Bonewald. The osteocyte: new insights. Annu Rev Physiol 2020; 82(1): 485–506
https://doi.org/10.1146/annurev-physiol-021119-034332
72 P Pu, M Qingyuan, W Weishan, H Fei, M Tengyang, Z Weiping, Z Zhoujun, W Mengyu, W Chao, S Chong. Protein-degrading enzymes in osteoarthritis. Z Orthop Unfall 2021; 159(1): 54–66
https://doi.org/10.1055/a-1019-8117
73 SY Tang, RP Herber, SP Ho, T Alliston. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 2012; 27(9): 1936–1950
https://doi.org/10.1002/jbmr.1646
74 P Katsimbri. The biology of normal bone remodelling. Eur J Cancer Care (Engl) 2017; 26(6): e12740
https://doi.org/10.1111/ecc.12740
75 G Borciani, G Montalbano, N Baldini, G Cerqueni, C Vitale-Brovarone, G Ciapetti. Co-culture systems of osteoblasts and osteoclasts: simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108: 22–45
https://doi.org/10.1016/j.actbio.2020.03.043
76 DJ Hunter, S Bierma-Zeinstra. Osteoarthritis. Lancet 2019; 393(10182): 1745–1759
https://doi.org/10.1016/S0140-6736(19)30417-9
77 W Su, G Liu, X Liu, Y Zhou, Q Sun, G Zhen, X Wang, Y Hu, P Gao, S Demehri, X Cao, M Wan. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5(8): e135446
https://doi.org/10.1172/jci.insight.135446
78 S Zhu, J Zhu, G Zhen, Y Hu, S An, Y Li, Q Zheng, Z Chen, Y Yang, M Wan, RL Skolasky, Y Cao, T Wu, B Gao, M Yang, M Gao, J Kuliwaba, S Ni, L Wang, C Wu, D Findlay, HK Eltzschig, HW Ouyang, J Crane, FQ Zhou, Y Guan, X Dong, X Cao. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 2019; 129(3): 1076–1093
https://doi.org/10.1172/JCI121561
79 W Jiang, Y Jin, S Zhang, Y Ding, K Huo, J Yang, L Zhao, B Nian, TP Zhong, W Lu, H Zhang, X Cao, KM Shah, N Wang, M Liu, J Luo. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res 2022; 10(1): 27–43
https://doi.org/10.1038/s41413-022-00201-4
80 P Ren, H Niu, H Cen, S Jia, H Gong, Y Fan. Biochemical and morphological abnormalities of subchondral bone and their association with cartilage degeneration in spontaneous osteoarthritis. Calcif Tissue Int 2021; 109(2): 179–189
https://doi.org/10.1007/s00223-021-00834-3
81 M Haneda, MF Rai, L Cai, RH Brophy, RJ O’Keefe, JC Clohisy, C Pascual-Garrido. Distinct pattern of inflammation of articular cartilage and the synovium in early and late hip femoroacetabular impingement. Am J Sports Med 2020; 48(10): 2481–2488
https://doi.org/10.1177/0363546520935440
82 GJ Kazakia, D Kuo, J Schooler, S Siddiqui, S Shanbhag, G Bernstein, A Horvai, S Majumdar, M Ries, X Li. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage 2013; 21(1): 94–101
https://doi.org/10.1016/j.joca.2012.09.008
83 AJ Wilson, WA Murphy, DC Hardy, WG Totty. Transient osteoporosis: transient bone marrow edema?. Radiology 1988; 167(3): 757–760
https://doi.org/10.1148/radiology.167.3.3363136
84 H Leydet-Quilici, T Le Corroller, C Bouvier, R Giorgi, JN Argenson, P Champsaur, T Pham, AM de Paula, P Lafforgue. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. Osteoarthritis Cartilage 2010; 18(11): 1429–1435
https://doi.org/10.1016/j.joca.2010.08.008
85 E Kon, M Ronga, G Filardo, J Farr, H Madry, G Milano, L Andriolo, N Shabshin. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24(6): 1797–1814
https://doi.org/10.1007/s00167-016-4113-2
86 D Muratovic, DM Findlay, FM Cicuttini, AE Wluka, YR Lee, S Edwards, JS Kuliwaba. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthritis Cartilage 2019; 27(11): 1653–1662
https://doi.org/10.1016/j.joca.2019.07.004
87 S Koushesh, SM Shahtaheri, DF McWilliams, DA Walsh, MN Sheppard, J Westaby, SM Haybatollahi, FA Howe, N Sofat. The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis. Osteoarthritis Cartilage 2022; 30(5): 746–755
https://doi.org/10.1016/j.joca.2022.01.008
88 A Kuttapitiya, L Assi, K Laing, C Hing, P Mitchell, G Whitley, A Harrison, FA Howe, V Ejindu, C Heron, N Sofat. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis 2017; 76(10): 1764–1773
https://doi.org/10.1136/annrheumdis-2017-211396
89 LN Nwosu, M Allen, L Wyatt, JL Huebner, V Chapman, DA Walsh, VB Kraus. Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 2017; 25(6): 858–865
https://doi.org/10.1016/j.joca.2017.01.002
90 M Zarka, E Hay, A Ostertag, C Marty, C Chappard, F Oudet, K Engelke, JD Laredo, M Cohen-Solal. Microcracks in subchondral bone plate is linked to less cartilage damage. Bone 2019; 123: 1–7
https://doi.org/10.1016/j.bone.2019.03.011
91 W Gilbert, R Bragg, AM Elmansi, ME McGee-Lawrence, CM Isales, MW Hamrick, WD Hill, S Fulzele. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123: 154783
https://doi.org/10.1016/j.cyto.2019.154783
92 S Tonna, IJ Poulton, F Taykar, PW Ho, B Tonkin, B Crimeen-Irwin, L Tatarczuch, NE McGregor, EJ Mackie, TJ Martin, NA Sims. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development 2016; 143(4): 648–657
93 PI Croucher, MM McDonald, TJ Martin. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 2016; 16(6): 373–386
https://doi.org/10.1038/nrc.2016.44
94 RK Zhang, GW Li, C Zeng, CX Lin, LS Huang, GX Huang, C Zhao, SY Feng, H Fang. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res 2018; 7(11): 587–594
https://doi.org/10.1302/2046-3758.711.BJR-2018-0057.R1
95 YK Jung, MS Han, HR Park, EJ Lee, JA Jang, GW Kim, SY Lee, D Moon, S Han. Calcium-phosphate complex increased during subchondral bone remodeling affects earlystage osteoarthritis. Sci Rep 2018; 8(1): 487–497
https://doi.org/10.1038/s41598-017-18946-y
96 MJ Pearson, D Herndler-Brandstetter, MA Tariq, TA Nicholson, AM Philp, HL Smith, ET Davis, SW Jones, JM Lord. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 2017; 7(1): 3451–3462
https://doi.org/10.1038/s41598-017-03759-w
97 Y Cao, ID Jansen, S Sprangers, J Stap, PJ Leenen, V Everts, TJ de Vries. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leukoc Biol 2016; 100(3): 513–523
https://doi.org/10.1189/jlb.1A1215-543R
98 Q Tang, YW Su, CM Fan, R Chung, M Hassanshahi, Y Peymanfar, CJ Xian. Release of CXCL12 from apoptotic skeletal cells contributes to bone growth defects following dexamethasone therapy in rats. J Bone Miner Res 2020; 35(8): 1612–1613
https://doi.org/10.1002/jbmr.4034
99 L Chen, F Yao, T Wang, G Li, P Chen, M Bulsara, JJY Zheng, E Landao-Bassonga, M Firth, P Vasantharao, Y Huang, M Lorimer, S Graves, J Gao, R Carey-Smith, J Papadimitriou, C Zhang, D Wood, C Jones, M Zheng. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis 2020; 79(6): 811–818
https://doi.org/10.1136/annrheumdis-2020-216942
100 XL Yuan, HY Meng, YC Wang, J Peng, QY Guo, AY Wang, SB Lu. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22(8): 1077–1089
https://doi.org/10.1016/j.joca.2014.05.023
101 JA Carrino, J Blum, JA Parellada, ME Schweitzer, WB Morrison. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 2006; 14(10): 1081–1085
https://doi.org/10.1016/j.joca.2006.05.011
102 A Anwar, Z Hu, Y Zhang, Y Gao, C Tian, X Wang, MU Nazir, Y Wang, Z Zhao, D Lv, Z Zhang, H Zhang, G Lv. Multiple subchondral bone cysts cause deterioration of articular cartilage in medial OA of knee: a 3D simulation study. Front Bioeng Biotechnol 2020; 8: 573938
https://doi.org/10.3389/fbioe.2020.573938
103 TA Perry, TW O’Neill, I Tolstykh, J Lynch, DT Felson, NK Arden, MC Nevitt. Magnetic resonance imaging-assessed subchondral cysts and incident knee pain and knee osteoarthritis: data from the multicenter osteoarthritis study. Arthritis Rheumatol 2022; 74(1): 60–69
https://doi.org/10.1002/art.41917
104 A Nakasone, Y Guang, A Wise, L Kim, J Babbin, S Rathod, AJ Mitchell, LC Gerstenfeld, EF Morgan. Structural features of subchondral bone cysts and adjacent tissues in hip osteoarthritis. Osteoarthritis Cartilage 2022; 30(8): 1130–1139
https://doi.org/10.1016/j.joca.2022.03.013
105 B von Rechenberg, H Guenther, CW McIlwraith, C Leutenegger, DD Frisbie, MK Akens, JA Auer. Fibrous tissue of subchondral cystic lesions in horses produce local mediators and neutral metalloproteinases and cause bone resorption in vitro. Vet Surg 2000; 29(5): 420–429
https://doi.org/10.1053/jvet.2000.7538
106 HD Dürr, H Martin, C Pellengahr, M Schlemmer, M Maier, V Jansson. The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand 2004; 75(5): 554–558
https://doi.org/10.1080/00016470410001411
107 LG Cox, MW Lagemaat, CC van Donkelaar, B van Rietbergen, ML Reilingh, L Blankevoort, CN van Dijk, K Ito. The role of pressurized fluid in subchondral bone cyst growth. Bone 2011; 49(4): 762–768
https://doi.org/10.1016/j.bone.2011.06.028
108 H Iijima, T Aoyama, A Ito, S Yamaguchi, M Nagai, J Tajino, X Zhang, H Kuroki. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis Cartilage 2015; 23(9): 1563–1574
https://doi.org/10.1016/j.joca.2015.04.015
109 W Wang, R Ding, N Zhang, P Hernigou. Subchondral bone cysts regress after correction of malalignment in knee osteoarthritis: comply with Wolff’s law. Int Orthop 2021; 45(2): 445–451
https://doi.org/10.1007/s00264-020-04809-1
110 G Li, J Yin, J Gao, TS Cheng, NJ Pavlos, C Zhang, MH Zheng. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15(6): 223–235
https://doi.org/10.1186/ar4405
111 PMB Chan, C Wen, WC Yang, C Yan, K Chiu. Is subchondral bone cyst formation in non-load-bearing region of osteoarthritic knee a vascular problem?. Med Hypotheses 2017; 109: 80–83
https://doi.org/10.1016/j.mehy.2017.09.027
112 H Sumino, S Ichikawa, S Kasama, T Takahashi, H Kumakura, Y Takayama, T Kanda, T Sakamaki, M Kurabayashi. Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 2006; 55(3): 212–218
https://doi.org/10.1016/j.maturitas.2006.02.008
113 S Kamekura, K Hoshi, T Shimoaka, U Chung, H Chikuda, T Yamada, M Uchida, N Ogata, A Seichi, K Nakamura, H Kawaguchi. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 2005; 13(7): 632–641
https://doi.org/10.1016/j.joca.2005.03.004
114 J Lieberthal, N Sambamurthy, CR Scanzello. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23(11): 1825–1834
https://doi.org/10.1016/j.joca.2015.08.015
115 K Feng, Y Ge, Z Chen, X Li, Z Liu, X Li, H Li, T Tang, F Yang, X Wang. Curcumin inhibits the PERK-eIF2α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxid Med Cell Longev 2019; 2019: 8574386
https://doi.org/10.1155/2019/8574386
116 HJ Faust, H Zhang, J Han, MT Wolf, OH Jeon, K Sadtler, AN Peña, L Chung, DR Jr Maestas, AJ Tam, DM Pardoll, J Campisi, F Housseau, D Zhou, CO 3rd Bingham, JH Elisseeff. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest 2020; 130(10): 5493–5507
https://doi.org/10.1172/JCI134091
117 JF Xue, ZM Shi, J Zou, XL Li. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 2017; 89: 1252–1261
https://doi.org/10.1016/j.biopha.2017.01.130
118 JL Astephen Wilson, D Kobsar. Osteoarthritis year in review 2020: mechanics. Osteoarthritis Cartilage 2021; 29(2): 161–169
https://doi.org/10.1016/j.joca.2020.12.009
119 A Mobasheri, C Matta, R Zákány, G Musumeci. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2015; 80(3): 237–244
https://doi.org/10.1016/j.maturitas.2014.12.003
120 J Shen, Y Abu-Amer, RJ O’Keefe, A McAlinden. Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 2017; 58(1): 49–63
https://doi.org/10.1080/03008207.2016.1208655
121 A Ruscitto, V Scarpa, M Morel, S Pylawka, CJ Shawber, MC Embree. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis. J Dent Res 2020; 99(10): 1174–1181
https://doi.org/10.1177/0022034520924656
122 B Qiu, X Xu, P Yi, Y Hao. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-κB and miR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med 2020; 24(18): 10855–10865
https://doi.org/10.1111/jcmm.15714
123 C Wang, J Shen, J Ying, D Xiao, RJ O’Keefe. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc Natl Acad Sci USA 2020; 117(48): 30488–30497
https://doi.org/10.1073/pnas.2017056117
124 C Lietman, B Wu, S Lechner, A Shinar, M Sehgal, E Rossomacha, P Datta, A Sharma, R Gandhi, M Kapoor, PP Young. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 2018; 3(3): e96308
https://doi.org/10.1172/jci.insight.96308
125 J Lu, H Zhang, J Pan, Z Hu, L Liu, Y Liu, X Yu, X Bai, D Cai, H Zhang. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23(1): 142–155
https://doi.org/10.1186/s13075-021-02512-z
126 F Gibertoni, MEL Sommer, MAM Esquisatto, MECD Amaral, CA Oliveira, TAM Andrade, FAS Mendonça, M Jr Santamaria, M Felonato. Evolution of periodontal disease: immune response and RANK/RANKL/OPG system. Braz Dent J 2017; 28(6): 679–687
https://doi.org/10.1590/0103-6440201701407
127 X Chen, Z Wang, N Duan, G Zhu, EM Schwarz, C Xie. Osteoblast-osteoclast interactions. Connect Tissue Res 2018; 59(2): 99–107
https://doi.org/10.1080/03008207.2017.1290085
128 E Neumann, U Müller-Ladner, KW Frommer. Inflammation and bone metabolism. Z Rheumatol 2014; 73(4): 342–348 (in German)
https://doi.org/10.1007/s00393-013-1288-5
129 N Takegahara, H Kim, Y Choi. RANKL biology. Bone 2022; 159: 116353
https://doi.org/10.1016/j.bone.2022.116353
130 B Kovács, E Vajda, EE Nagy. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 2019; 20(18): 4653–4681
https://doi.org/10.3390/ijms20184653
131 TJ Yun, PM Chaudhary, GL Shu, JK Frazer, MK Ewings, SM Schwartz, V Pascual, LE Hood, EA Clark. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 1998; 161(11): 6113–6121
https://doi.org/10.4049/jimmunol.161.11.6113
132 H Yasuda. Correction to: Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 2021; 39(1): 12–22
https://doi.org/10.1007/s00774-021-01203-8
133 D Frase, C Lee, C Nachiappan, R Gupta, A Akkouch. The inflammatory contribution of B-lymphocytes and neutrophils in progression to osteoporosis. Cells 2023; 12(13): 1744–1759
https://doi.org/10.3390/cells12131744
134 L Rochette, A Meloux, E Rigal, M Zeller, Y Cottin, C Vergely. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 2019; 20(3): 705–724
https://doi.org/10.3390/ijms20030705
135 J Lee, S Lee, CY Lee, HH Seo, S Shin, JW Choi, SW Kim, JC Park, S Lim, KC Hwang. Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther 2017; 8(1): 195–201
https://doi.org/10.1186/s13287-017-0647-6
136 X Li, L Qin, M Bergenstock, LM Bevelock, DV Novack, NC Partridge. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 2007; 282(45): 33098–33106
https://doi.org/10.1074/jbc.M611781200
137 M Dutka, R Bobiński, W Wojakowski, T Francuz, C Pająk, K Zimmer. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases. Heart Fail Rev 2022; 27(4): 1395–1411
https://doi.org/10.1007/s10741-021-10153-2
138 S Kikuchi, A Wada, Y Kamihara, I Yamamoto, D Kirigaya, K Kunimoto, R Horaguchi, T Fujihira, Y Nabe, T Minemura, NH Dang, T Sato. A novel mechanism for bone loss: platelet count negatively correlates with bone mineral density via megakaryocyte-derived RANKL. Int J Mol Sci 2023; 24(15): 12150–12158
https://doi.org/10.3390/ijms241512150
139 S Theoleyre, Y Wittrant, SK Tat, Y Fortun, F Redini, D Heymann. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004; 15(6): 457–475
https://doi.org/10.1016/j.cytogfr.2004.06.004
140 V Milanova, N Ivanovska, P Dimitrova. TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm 2014; 2014: 643406
https://doi.org/10.1155/2014/643406
141 S Hao, J Zhang, B Huang, D Feng, X Niu, W Huang. Bone remodeling serum markers in children with systemic lupus erythematosus. Pediatr Rheumatol Online J 2022; 20(1): 54–60
https://doi.org/10.1186/s12969-022-00717-3
142 P Hadji, E Colli, PA Regidor. Bone health in estrogen-free contraception. Osteoporos Int 2019; 30(12): 2391–2400
https://doi.org/10.1007/s00198-019-05103-6
143 S Khosla. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001; 142(12): 5050–5055
https://doi.org/10.1210/endo.142.12.8536
144 H Hariri, O Kose, A Bezdjian, SJ Daniel, R St-Arnaud. USP53 regulates bone homeostasis by controlling rankl expression in osteoblasts and bone marrow adipocytes. J Bone Miner Res 2023; 38(4): 578–596
https://doi.org/10.1002/jbmr.4778
145 WC Dougall, M Glaccum, K Charrier, K Rohrbach, K Brasel, T De Smedt, E Daro, J Smith, ME Tometsko, CR Maliszewski, A Armstrong, V Shen, S Bain, D Cosman, D Anderson, PJ Morrissey, JJ Peschon, J Schuh. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13(18): 2412–2424
https://doi.org/10.1101/gad.13.18.2412
146 X Li, L Cui, W Chen, Y Fang, G Shen, Z Li, B Zhang, L Wu. QiangGuYin modulates the OPG/RANKL/RANK pathway by increasing secretin levels during treatment of primary type I osteoporosis. Evid Based Complement Alternat Med 2021; 2021: 7114139
https://doi.org/10.1155/2021/7114139
147 K Okamoto, T Nakashima, M Shinohara, T Negishi-Koga, N Komatsu, A Terashima, S Sawa, T Nitta, H Takayanagi. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017; 97(4): 1295–1349
https://doi.org/10.1152/physrev.00036.2016
148 AE Kearns, S Khosla, PJ Kostenuik. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29(2): 155–192
https://doi.org/10.1210/er.2007-0014
149 Y Furuya, H Mera, M Itokazu, S Terai, H Nakamura, S Wakitani, H Yasuda. Induction of chondrogenesis with a RANKL-binding peptide, WP9QY, in vitro and in vivo in a rabbit model. Biochem Biophys Res Commun 2022; 602: 98–104
https://doi.org/10.1016/j.bbrc.2022.03.019
150 B Li, P Wang, J Jiao, H Wei, W Xu, P Zhou. Roles of the RANKL-RANK axis in immunity-implications for pathogenesis and treatment of bone metastasis. Front Immunol 2022; 13: 824117
https://doi.org/10.3389/fimmu.2022.824117
151 H Yasuda. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 2021; 39(1): 2–11
https://doi.org/10.1007/s00774-020-01175-1
152 PA van Dam, Y Verhoeven, J Jacobs, A Wouters, W Tjalma, F Lardon, T Van den Wyngaert, J Dewulf, E Smits, C Colpaert, H Prenen, M Peeters, M Lammens, XB Trinh. RANK-RANKL signaling in cancer of the uterine cervix: a review. Int J Mol Sci 2019; 20(9): 2183–2198
https://doi.org/10.3390/ijms20092183
153 T Nakashima, M Hayashi, H Takayanagi. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 2012; 23(11): 582–590
https://doi.org/10.1016/j.tem.2012.05.005
154 E González-Suárez, A Sanz-Moreno. RANK as a therapeutic target in cancer. FEBS J 2016; 283(11): 2018–2033
https://doi.org/10.1111/febs.13645
155 AI Lalani, S Zhu, S Gokhale, J Jin, P Xie. TRAF molecules in inflammation and inflammatory diseases. Curr Pharmacol Rep 2018; 4(1): 64–90
https://doi.org/10.1007/s40495-017-0117-y
156 L Galibert, ME Tometsko, DM Anderson, D Cosman, WC Dougall. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J Biol Chem 1998; 273(51): 34120–34127
https://doi.org/10.1074/jbc.273.51.34120
157 X Ma, J Liu, L Yang, B Zhang, Y Dong, Q Zhao. Cynomorium songaricum prevents bone resorption in ovariectomized rats through RANKL/RANK/TRAF6 mediated suppression of PI3K/AKT and NF-κB pathways. Life Sci 2018; 209: 140–148
https://doi.org/10.1016/j.lfs.2018.08.008
158 TJ Martin, NA Sims. RANKL/OPG; critical role in bone physiology. Rev Endocr Metab Disord 2015; 16(2): 131–139
https://doi.org/10.1007/s11154-014-9308-6
159 Y Duan, YT Su, J Ren, Q Zhou, M Tang, J Li, SX Li. Kidney tonifying traditional Chinese medicine: potential implications for the prevention and treatment of osteoporosis. Front Pharmacol 2023; 13: 1063899
https://doi.org/10.3389/fphar.2022.1063899
160 G Zhen, C Wen, X Jia, Y Li, JL Crane, SC Mears, FB Askin, FJ Frassica, W Chang, J Yao, JA Carrino, A Cosgarea, D Artemov, Q Chen, Z Zhao, X Zhou, L Riley, P Sponseller, M Wan, WW Lu, X Cao. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712
https://doi.org/10.1038/nm.3143
161 Y Tang, X Wu, W Lei, L Pang, C Wan, Z Shi, L Zhao, TR Nagy, X Peng, J Hu, X Feng, W Van Hul, M Wan, X Cao. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009; 15(7): 757–765
https://doi.org/10.1038/nm.1979
162 Y Zhong, Y Xu, S Xue, L Zhu, H Lu, C Wang, H Chen, W Sang, J Ma. Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology 2022; 30(3): 1107–1117
https://doi.org/10.1007/s10787-022-00984-2
163 D Muratovic, DM Findlay, RD Quarrington, X Cao, LB Solomon, GJ Atkins, JS Kuliwaba. Elevated levels of active transforming growth factor β1 in the subchondral bone relate spatially to cartilage loss and impaired bone quality in human knee osteoarthritis. Osteoarthritis Cartilage 2022; 30(6): 896–907
https://doi.org/10.1016/j.joca.2022.03.004
164 W Mu, B Xu, H Ma, J Li, B Ji, Z Zhang, A Amat, L Cao. Halofuginone attenuates osteoarthritis by rescuing bone remodeling in subchondral bone through oral gavage. Front Pharmacol 2018; 9: 269–279
https://doi.org/10.3389/fphar.2018.00269
165 G Zhen, C Wen, X Jia, Y Li, JL Crane, SC Mears, FB Askin, FJ Frassica, W Chang, J Yao, JA Carrino, A Cosgarea, D Artemov, Q Chen, Z Zhao, X Zhou, L Riley, P Sponseller, M Wan, WW Lu, X Cao. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712
https://doi.org/10.1038/nm.3143
166 C Lin, Z Chen, D Guo, L Zhou, S Lin, C Li, S Li, X Wang, B Lin, Y Ding. Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model. Aging (Albany NY) 2022; 14(1): 253–271
https://doi.org/10.18632/aging.203707
167 H Xie, Z Cui, L Wang, Z Xia, Y Hu, L Xian, C Li, L Xie, J Crane, M Wan, G Zhen, Q Bian, B Yu, W Chang, T Qiu, M Pickarski, LT Duong, JJ Windle, X Luo, E Liao, X Cao. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 2014; 20(11): 1270–1278
https://doi.org/10.1038/nm.3668
168 L Rochette, A Meloux, E Rigal, M Zeller, Y Cottin, C Vergely. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 2019; 20(3): 705
https://doi.org/10.3390/ijms20030705
169 J Zupan, P Vrtačnik, A Cör, G Haring, G Weryha, S Visvikis-Siest, J Marc. VEGF-A is associated with early degenerative changes in cartilage and subchondral bone. Growth Factors 2018; 36(5–6): 263–273
https://doi.org/10.1080/08977194.2019.1570926
170 AR Upton, CA Holding, AA Dharmapatni, DR Haynes. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol Int 2012; 32(2): 535–540
https://doi.org/10.1007/s00296-010-1733-6
171 S Kwan Tat, N Amiable, JP Pelletier, C Boileau, D Lajeunesse, N Duval, J Martel-Pelletier. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 2009; 48(12): 1482–1490
https://doi.org/10.1093/rheumatology/kep300
172 G Hashimoto, I Inoki, Y Fujii, T Aoki, E Ikeda, Y Okada. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 2002; 277(39): 36288–36295
https://doi.org/10.1074/jbc.M201674200
173 DJ Wilkinson, AMD Falconer, HL Wright, H Lin, K Yamamoto, K Cheung, SH Charlton, MDC Arques, S Janciauskiene, R Refaie, KS Rankin, DA Young, AD Rowan. Matrix metalloproteinase-13 is fully activated by neutrophil elastase and inactivates its serpin inhibitor, alpha-1 antitrypsin: implications for osteoarthritis. FEBS J 2022; 289(1): 121–139
https://doi.org/10.1111/febs.16127
174 C Boileau, N Amiable, J Martel-Pelletier, H Fahmi, N Duval, JP Pelletier. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 2007; 9(6): R121–R131
https://doi.org/10.1186/ar2329
175 M Xue, H Lin, HPH Liang, K McKelvey, R Zhao, L March, C Jackson. Deficiency of protease-activated receptor (PAR) 1 and PAR2 exacerbates collagen-induced arthritis in mice via differing mechanisms. Rheumatology (Oxford) 2021; 60(6): 2990–3003
https://doi.org/10.1093/rheumatology/keaa701
176 N Amiable, SK Tat, D Lajeunesse, N Duval, JP Pelletier, J Martel-Pelletier, C Boileau. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 2009; 44(6): 1143–1150
https://doi.org/10.1016/j.bone.2009.02.015
177 BN França, LM Gasparoni, ES Rovai, LMB Ambrósio, NF Mendonça, MH Hagy, AH Mendoza, CR Sipert, M Holzhausen. Protease-activated receptor type 2 activation downregulates osteogenesis in periodontal ligament stem cells. Braz Oral Res 2023; 37: e002
https://doi.org/10.1590/1807-3107bor-2023.vol37.0002
178 K Tashiro, H Tada, R Heilker, M Shirozu, T Nakano, T Honjo. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 1993; 261(5121): 600–603
https://doi.org/10.1126/science.8342023
179 T Nagasawa, H Kikutani, T Kishimoto. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 1994; 91(6): 2305–2309
https://doi.org/10.1073/pnas.91.6.2305
180 T Nagasawa. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 2014; 92(5): 433–439
https://doi.org/10.1007/s00109-014-1123-8
181 FM Roversi, MLP Bueno, FV Pericole, STO Saad. Hematopoietic cell kinase (HCK) is a player of the crosstalk between hematopoietic cells and bone marrow niche through CXCL12/CXCR4 axis. Front Cell Dev Biol 2021; 9: 634044
https://doi.org/10.3389/fcell.2021.634044
182 G D’Amato, R Phansalkar, JA Naftaly, X Fan, ZA Amir, Coronado PE Rios, DO Cowley, KE Quinn, B Sharma, KM Caron, A Vigilante, K Red-Horse. Endocardium-to-coronary artery differentiation during heart development and regeneration involves sequential roles of Bmp2 and Cxcl12/Cxcr4. Dev Cell 2022; 57(22): 2517–2532.e6
https://doi.org/10.1016/j.devcel.2022.10.007
183 A Gao, F Yan, E Zhou, L Wu, L Li, J Chen, Y Lei, J Ye. Molecular characterization and expression analysis of chemokine (CXCL12) from Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020; 104: 314–323
https://doi.org/10.1016/j.fsi.2020.06.003
184 Q Chen, C Zheng, Y Li, S Bian, H Pan, X Zhao, WW Lu. Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl Mater Interfaces 2018; 10(28): 23700–23710
https://doi.org/10.1021/acsami.8b08606
185 CC Bleul, RC Fuhlbrigge, JM Casasnovas, A Aiuti, TA Springer. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184(3): 1101–1109
https://doi.org/10.1084/jem.184.3.1101
186 M Janowski. Functional diversity of SDF-1 splicing variants. Cell Adhes Migr 2009; 3(3): 243–249
https://doi.org/10.4161/cam.3.3.8260
187 Y Yang, J Li, W Lei, H Wang, Y Ni, Y Liu, H Yan, Y Tian, Z Wang, Z Yang, S Yang, Y Yang, Q Wang. CXCL12-CXCR4/CXCR7 axis in cancer: from mechanisms to clinical applications. Int J Biol Sci 2023; 19(11): 3341–3359
https://doi.org/10.7150/ijbs.82317
188 A Mousavi. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2020; 217: 91–115
https://doi.org/10.1016/j.imlet.2019.11.007
189 ND Staudt, A Maurer, B Spring, H Kalbacher, WK Aicher, G Klein. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev 2012; 21(11): 1924–1935
https://doi.org/10.1089/scd.2011.0307
190 SY Cho, M Xu, J Roboz, M Lu, J Mascarenhas, R Hoffman. The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms. Cancer Res 2010; 70(8): 3402–3410
https://doi.org/10.1158/0008-5472.CAN-09-3977
191 Y Yan, J Xiong, F Xu, C Wang, Z Zeng, H Tang, Z Lu, Q Huang. SDF-1α/CXCR4 pathway mediates hemodynamics-induced formation of intracranial aneurysm by modulating the phenotypic transformation of vascular smooth muscle cells. Transl Stroke Res 2022; 13(2): 276–286
https://doi.org/10.1007/s12975-021-00925-1
192 G Wang, Y Li, X Meng, X Yang, Y Xiang. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs. J Orthop Surg Res 2020; 15(1): 195–202
https://doi.org/10.1186/s13018-020-01646-1
193 R Janssens, S Struyf, P Proost. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44: 51–68
https://doi.org/10.1016/j.cytogfr.2018.10.004
194 KE McGrath, AD Koniski, KM Maltby, JK McGann, J Palis. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999; 213(2): 442–456
https://doi.org/10.1006/dbio.1999.9405
195 MP Wescott, I Kufareva, C Paes, JR Goodman, Y Thaker, BA Puffer, E Berdougo, JB Rucker, TM Handel, BJ Doranz. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci USA 2016; 113(35): 9928–9933
https://doi.org/10.1073/pnas.1601278113
196 CC Chang, JW Liou, KTP Dass, YT Li, SJ Jiang, SF Pan, YC Yeh, HJ Hsu. Internal water channel formation in CXCR4 is crucial for Gi-protein coupling upon activation by CXCL12. Commun Chem 2020; 3(1): 133–145
https://doi.org/10.1038/s42004-020-00383-0
197 L Pawig, C Klasen, C Weber, J Bernhagen, H Noels. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 2015; 6: 429–452
https://doi.org/10.3389/fimmu.2015.00429
198 J Imitola, K Raddassi, KI Park, FJ Mueller, M Nieto, YD Teng, D Frenkel, J Li, RL Sidman, CA Walsh, EY Snyder, SJ Khoury. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101(52): 18117–18122
https://doi.org/10.1073/pnas.0408258102
199 WW Tong, C Zhang, T Hong, DH Liu, C Wang, J Li, XK He, WD Xu. Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep 2018; 8(1): 3241–3253
https://doi.org/10.1038/s41598-018-21674-6
200 ME Ziegler, MM Hatch, N Wu, SA Muawad, CC Hughes. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis 2016; 19(3): 359–371
https://doi.org/10.1007/s10456-016-9509-6
201 N Kawaguchi, TT Zhang, T Nakanishi. Involvement of CXCR4 in normal and abnormal development. Cells 2019; 8(2): 185–199
https://doi.org/10.3390/cells8020185
202 MA Chetram, V Odero-Marah, CV Hinton. Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res 2011; 9(1): 90–102
https://doi.org/10.1158/1541-7786.MCR-10-0235
203 EM García-Cuesta, CA Santiago, J Vallejo-Díaz, Y Juarranz, JM Rodríguez-Frade, M Mellado. The role of the CXCL12/CXCR4/ACKR3 Axis in autoimmune diseases. Front Endocrinol (Lausanne) 2019; 10: 585–601
https://doi.org/10.3389/fendo.2019.00585
204 Y Li, M Xue, X Deng, L Dong, LXT Nguyen, L Ren, L Han, C Li, J Xue, Z Zhao, W Li, Y Qing, C Shen, B Tan, Z Chen, K Leung, K Wang, S Swaminathan, L Li, M Wunderlich, JC Mulloy, X Li, H Chen, B Zhang, D Horne, ST Rosen, G Marcucci, M Xu, Z Li, M Wei, J Tian, B Shen, R Su, J Chen. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30(8): 1072–1090.e10
https://doi.org/10.1016/j.stem.2023.07.001
205 JM Hong, JW Lee, DS Seen, JY Jeong, WK Huh. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21(1): 257–280
https://doi.org/10.1186/s12964-023-01261-7
206 É Midavaine, J Côté, P Sarret. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40(2): 427–445
https://doi.org/10.1007/s10555-021-09974-2
207 K Kanbe, K Takagishi, Q Chen. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46(1): 130–137
https://doi.org/10.1002/1529-0131(200201)46:1<130::AID-ART10020>3.0.CO;2-D
208 Q Xu, XC Sun, XP Shang, HS Jiang. Association of CXCL12 levels in synovial fluid with the radiographic severity of knee osteoarthritis. J Investig Med 2012; 60(6): 898–901
https://doi.org/10.2310/JIM.0b013e31825f9f69
209 S Wang, A Mobasheri, Y Zhang, Y Wang, T Dai, Z Zhang. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology 2021; 29(3): 695–704
https://doi.org/10.1007/s10787-021-00814-x
210 LM Wright, W Maloney, X Yu, L Kindle, P Collin-Osdoby, P Osdoby. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 2005; 36(5): 840–853
https://doi.org/10.1016/j.bone.2005.01.021
211 A Sucur, Z Jajic, M Artukovic, MI Matijasevic, B Anic, D Flegar, A Markotic, T Kelava, S Ivcevic, N Kovacic, V Katavic, D Grcevic. Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Res Ther 2017; 19(1): 142–158
https://doi.org/10.1186/s13075-017-1337-6
212 X Yu, Y Huang, P Collin-Osdoby, P Osdoby. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 2003; 18(8): 1404–1418
https://doi.org/10.1359/jbmr.2003.18.8.1404
213 Y Dong, H Liu, X Zhang, F Xu, L Qin, P Cheng, H Huang, F Guo, Q Yang, A Chen. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis. Int J Mol Sci 2016; 17(6): 943–955
https://doi.org/10.3390/ijms17060943
214 K Kanbe, K Takagishi, Q Chen. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46(1): 130–137
https://doi.org/10.1002/1529-0131(200201)46:1<130::AID-ART10020>3.0.CO;2-D
215 K Kanbe, T Takemura, K Takeuchi, Q Chen, K Takagishi, K Inoue. Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. J Bone Joint Surg Br 2004; 86(2): 296–300
https://doi.org/10.1302/0301-620X.86B2.14474
216 C Lin, L Liu, C Zeng, ZK Cui, Y Chen, P Lai, H Wang, Y Shao, H Zhang, R Zhang, C Zhao, H Fang, D Cai, X Bai. Correction to: Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7(1): 26–39
https://doi.org/10.1038/s41413-019-0065-8
217 F Wei, DC Moore, L Wei, Y Li, G Zhang, X Wei, JK Lee, Q Chen. Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res Ther 2012; 14(4): R177–R188
https://doi.org/10.1186/ar3930
218 L Wei, X Sun, K Kanbe, Z Wang, C Sun, R Terek, Q Chen. Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J Rheumatol 2006; 33(9): 1818–1826
219 P Li, J Deng, X Wei, CT Jayasuriya, J Zhou, Q Chen, J Zhang, L Wei, F Wei. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13. Mol Med Rep 2016; 14(2): 1475–1482
https://doi.org/10.3892/mmr.2016.5419
220 J Li, H Chen, L Cai, D Guo, D Zhang, X Zhou, J Xie. SDF-1α promotes chondrocyte autophagy through CXCR4/mTOR signaling axis. Int J Mol Sci 2023; 24(2): 1710–1723
https://doi.org/10.3390/ijms24021710
221 RJ Lories, FP Luyten. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011; 7(1): 43–49
https://doi.org/10.1038/nrrheum.2010.197
222 J Pan, B Wang, W Li, X Zhou, T Scherr, Y Yang, C Price, L Wang. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 2012; 51(2): 212–217
https://doi.org/10.1016/j.bone.2011.11.030
223 DM Findlay, JS Kuliwaba. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 2016; 4(1): 16028
https://doi.org/10.1038/boneres.2016.28
224 A Jiang, P Xu, S Sun, Z Zhao, Q Tan, W Li, C Song, H Leng. Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies. Connect Tissue Res 2021; 62(6): 709–719
https://doi.org/10.1080/03008207.2020.1870969
225 HJ Qin, T Xu, HT Wu, ZL Yao, YL Hou, YH Xie, JW Su, CY Cheng, KF Yang, XR Zhang, Y Chai, B Yu, Z Cui. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone 2019; 125: 140–150
https://doi.org/10.1016/j.bone.2019.05.010
226 J Lei, Y Fu, Y Zhuang, K Zhang. Sema4D aggravated LPS-induced injury via activation of the MAPK signaling pathway in ATDC5 chondrocytes. BioMed Res Int 2020; 2020: 8691534
https://doi.org/10.1155/2020/8691534
227 H Qin, X Zhao, YJ Hu, S Wang, Y Ma, S He, K Shen, H Wan, Z Cui, B Yu. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis. BioMed Res Int 2021; 2021: 8852574
https://doi.org/10.1155/2021/8852574
228 W Su, G Liu, X Liu, Y Zhou, Q Sun, G Zhen, X Wang, Y Hu, P Gao, S Demehri, X Cao, M Wan. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5(8): e135446
https://doi.org/10.1172/jci.insight.135446
229 A Hoeben, B Landuyt, MS Highley, H Wildiers, AT Van Oosterom, EA De Bruijn. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549–580
https://doi.org/10.1124/pr.56.4.3
230 X Lin, RD Bell, SE Catheline, T Takano, A McDavid, JH Jonason, EM Schwarz, L Xing. Targeting synovial lymphatic function as a novel therapeutic intervention for age-related osteoarthritis in mice. Arthritis Rheumatol 2023; 75(6): 923–936
https://doi.org/10.1002/art.42441
231 S Wang, C Zhou, H Zheng, Z Zhang, Y Mei, JA Martin. Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1. Osteoarthritis Cartilage 2017; 25(5): 742–749
https://doi.org/10.1016/j.joca.2016.10.017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed