1. Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China 3. The Center of Functional Experiment Teaching, School of Basic Medicine, Harbin Medical University, Harbin 150081, China 4. State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II–induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator–activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α–mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.
LHH Aung, JCC Jumbo, Y Wang, P Li. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: a concise review. Mol Ther Nucleic Acids 2021; 25: 416–443 https://doi.org/10.1016/j.omtn.2021.06.006
2
AK Shah, SK Bhullar, V Elimban, NS Dhalla. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel) 2021; 10(6): 931 https://doi.org/10.3390/antiox10060931
KT Nijholt, PI Sánchez-Aguilera, SN Voorrips, Boer RA de, BD Westenbrink. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure?. Eur J Heart Fail 2022; 24(2): 287–298 https://doi.org/10.1002/ejhf.2407
5
N Abbas, F Perbellini, T Thum. Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115(5): 52 https://doi.org/10.1007/s00395-020-0816-0
6
L Xie, Q Zhang, J Mao, J Zhang, L Li. The roles of lncRNA in myocardial infarction: molecular mechanisms, diagnosis biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2021; 9: 680713 https://doi.org/10.3389/fcell.2021.680713
T Sallam, J Sandhu, P Tontonoz. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 2018; 122(1): 155–166 https://doi.org/10.1161/CIRCRESAHA.117.311802
9
J Viereck, R Kumarswamy, A Foinquinos, K Xiao, P Avramopoulos, M Kunz, M Dittrich, T Maetzig, K Zimmer, J Remke, A Just, J Fendrich, K Scherf, E Bolesani, A Schambach, F Weidemann, R Zweigerdt, LJ de Windt, S Engelhardt, T Dandekar, S Batkai, T Thum. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 2016; 8(326): 326ra22 https://doi.org/10.1126/scitranslmed.aaf1475
10
L Zhang, F Li, X Su, Y Li, Y Wang, R Fang, Y Guo, T Jin, H Shan, X Zhao, R Yang, H Shan, H Liang. Melatonin prevents lung injury by regulating apelin 13 to improve mitochondrial dysfunction. Exp Mol Med 2019; 51(7): 1–12 https://doi.org/10.1038/s12276-019-0273-8
11
A Jusic, Y; EU-CardioRNA COST Action (CA17129) Devaux. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115(3): 23 https://doi.org/10.1007/s00395-020-0783-5
12
SK Bhullar, NS Dhalla. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells 2022; 11(21): 3336 https://doi.org/10.3390/cells11213336
13
J Nah, A Shirakabe, R Mukai, P Zhai, EA Sung, A Ivessa, W Mizushima, Y Nakada, T Saito, C Hu, YK Jung, J Sadoshima. Ulk1-dependent alternative mitophagy plays a protective role during pressure overload in the heart. Cardiovasc Res 2022; 118(12): 2638–2651 https://doi.org/10.1093/cvr/cvac003
P Anand, Y Akhter. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212: 474–494 https://doi.org/10.1016/j.ijbiomac.2022.05.124
16
H Bugger, M Schwarzer, D Chen, A Schrepper, PA Amorim, M Schoepe, TD Nguyen, FW Mohr, O Khalimonchuk, BC Weimer, T Doenst. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 2010; 85(2): 376–384 https://doi.org/10.1093/cvr/cvp344
17
DF Dai, EJ Hsieh, Y Liu, T Chen, RP Beyer, MT Chin, MJ MacCoss, PS Rabinovitch. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res 2012; 93(1): 79–88 https://doi.org/10.1093/cvr/cvr274
18
B Kadenbach. Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins: role of NDUFA4. Trends Endocrinol Metab 2017; 28(11): 761–770 https://doi.org/10.1016/j.tem.2017.09.003
19
L Chen, Y Qin, B Liu, M Gao, A Li, X Li, G Gong. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Front Cell Dev Biol 2022; 10: 871357 https://doi.org/10.3389/fcell.2022.871357
20
LK Russell, CM Mansfield, JJ Lehman, A Kovacs, M Courtois, JE Saffitz, DM Medeiros, ML Valencik, JA McDonald, DP Kelly. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004; 94(4): 525–533 https://doi.org/10.1161/01.RES.0000117088.36577.EB
JM Huss, K Imahashi, CR Dufour, CJ Weinheimer, M Courtois, A Kovacs, V Giguère, E Murphy, DP Kelly. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 2007; 6(1): 25–37 https://doi.org/10.1016/j.cmet.2007.06.005
23
X Hu, X Xu, Y Huang, J Fassett, TP Flagg, Y Zhang, CG Nichols, RJ Bache, Y Chen. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Circ Res 2008; 103(9): 1009–1017 https://doi.org/10.1161/CIRCRESAHA.107.170795
24
S Luo, M Zhang, H Wu, X Ding, D Li, X Dong, X Hu, S Su, W Shang, J Wu, H Xiao, W Yang, Q Zhang, J Zhang, Y Lu, Z Pan. SAIL: a new conserved anti-fibrotic lncRNA in the heart. Basic Res Cardiol 2021; 116(1): 15 https://doi.org/10.1007/s00395-021-00854-y
25
R Yang, L Li, Y Hou, Y Li, J Zhang, N Yang, Y Zhang, W Ji, T Yu, L Lv, H Liang, X Li, T Li, H Shan. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023; 14(5): 344 https://doi.org/10.1038/s41419-023-05852-7
26
Y Zhang, X Zhang, B Cai, Y Li, Y Jiang, X Fu, Y Zhao, H Gao, Y Yang, J Yang, S Li, H Wu, X Jin, G Xue, J Yang, W Ma, Q Han, T Tian, Y Li, B Yang, Y Lu, Z Pan. The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia-reperfusion injury. Nat Commun 2021; 12(1): 522 https://doi.org/10.1038/s41467-020-20844-3
27
YX Luo, X Tang, XZ An, XM Xie, XF Chen, X Zhao, DL Hao, HZ Chen, DP Liu. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 2017; 38(18): 1389–1398
28
R Gao, L Wang, Y Bei, X Wu, J Wang, Q Zhou, L Tao, S Das, X Li, J Xiao. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 2021; 144(4): 303–317 https://doi.org/10.1161/CIRCULATIONAHA.120.050446
29
Y Zhang, Y Ye, X Tang, H Wang, T Tanaka, R Tian, X Yang, L Wang, Y Xiao, X Hu, Y Jin, H Pang, T Du, H Liu, L Sun, S Xiao, R Dong, L Ferrucci, Z Tian, S Zhang. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure. J Exp Med 2022; 219(8): e20200418 https://doi.org/10.1084/jem.20200418
30
K Yousefi, CI Irion, LM Takeuchi, W Ding, G Lambert, T Eisenberg, S Sukkar, HL Granzier, M Methawasin, DI Lee, VS Hahn, DA Kass, KE Hatzistergos, JM Hare, KA Webster, LA Shehadeh. Osteopontin promotes left ventricular diastolic dysfunction through a mitochondrial pathway. J Am Coll Cardiol 2019; 73(21): 2705–2718 https://doi.org/10.1016/j.jacc.2019.02.074
31
M Nakamura, J Sadoshima. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387–407 https://doi.org/10.1038/s41569-018-0007-y
S Geldon, E Fernandez-Vizarra, K Tokatlidis. Redox-mediated regulation of mitochondrial biogenesis, dynamics, and respiratory chain assembly in yeast and human cells. Front Cell Dev Biol 2021; 9: 720656 https://doi.org/10.3389/fcell.2021.720656
35
Y Zhang, L Sun, L Xuan, Z Pan, X Hu, H Liu, Y Bai, L Jiao, Z Li, L Cui, X Wang, S Wang, T Yu, B Feng, Y Guo, Z Liu, W Meng, H Ren, J Zhu, X Zhao, C Yang, Y Zhang, C Xu, Z Wang, Y Lu, H Shan, B Yang. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat Commun 2018; 9(1): 4176 https://doi.org/10.1038/s41467-018-06637-9
36
L Lv, T Li, X Li, C Xu, Q Liu, H Jiang, Y Li, Y Liu, H Yan, Q Huang, Y Zhou, M Zhang, H Shan, H Liang. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 2018; 10: 387–397 https://doi.org/10.1016/j.omtn.2017.12.018
37
M Zhang, Y Jiang, X Guo, B Zhang, J Wu, J Sun, H Liang, H Shan, Y Zhang, J Liu, Y Wang, L Wang, R Zhang, B Yang, C Xu. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 2019; 23(11): 7685–7698 https://doi.org/10.1111/jcmm.14641
38
E Nývltová, JV Dietz, J Seravalli, O Khalimonchuk, A Barrientos. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13(1): 3615 https://doi.org/10.1038/s41467-022-31413-1
39
A Buchwald, H Till, C Unterberg, R Oberschmidt, HR Figulla, V Wiegand. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J 1990; 11(6): 509–516 https://doi.org/10.1093/oxfordjournals.eurheartj.a059743
40
J Wang, H Wilhelmsson, C Graff, H Li, A Oldfors, P Rustin, JC Brüning, CR Kahn, DA Clayton, GS Barsh, P Thorén, NG Larsson. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999; 21(1): 133–137 https://doi.org/10.1038/5089
41
M Hayashi, K Imanaka-Yoshida, T Yoshida, M Wood, C Fearns, RJ Tatake, JD Lee. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 2006; 12(1): 128–132 https://doi.org/10.1038/nm1327
L Liu, X An, Z Li, Y Song, L Li, S Zuo, N Liu, G Yang, H Wang, X Cheng, Y Zhang, X Yang, J Wang. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 2016; 111(1): 56–65 https://doi.org/10.1093/cvr/cvw078