1. Guangdong Cardiovsacular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China 2. The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Department of Laboratory Medicine/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China 3. Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China 4. Department of Stomatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China 5. Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou 510080, China 6. School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China 7. Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518055, China
CD39 serves as a crucial biomarker for neoantigen-specific CD8+ T cells and is associated with antitumor activity and exhaustion. However, the relationship between CD39 expression levels and the function of chimeric antigen receptor T (CAR-T) cells remains controversial. This study aimed to investigate the role of CD39 in the functional performance of CAR-T cells against hepatocellular carcinoma (HCC) and explore the therapeutic potential of CD39 modulators, such as mitochondrial division inhibitor-1 (mdivi-1), or knockdown CD39 through short hairpin RNA. Our findings demonstrated that glypican-3-CAR-T cells with moderate CD39 expression exhibited a strong antitumor activity, while high and low levels of CD39 led to an impaired cellular function. Methods modulating the proportion of CD39 intermediate (CD39int)-phenotype CAR-T cells such as mdivi-1 and CD39 knockdown enhanced and impaired T cell function, respectively. The combination of mdivi-1 and CD39 knockdown in CAR-T cells yielded the highest proportion of infiltrated CD39int CAR-T cells and demonstrated a robust antitumor activity in vivo. In conclusion, this study revealed the crucial role of CD39 in CAR-T cell function, demonstrated the potential therapeutic efficacy of combining mdivi-1 with CD39 knockdown in HCC, and provided a novel treatment strategy for HCC patients in the field of cellular immunotherapy.
JD Yang, P Hainaut, GJ Gores, A Amadou, A Plymoth, LR Roberts. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604 https://doi.org/10.1038/s41575-019-0186-y
2
JM Llovet, F Castet, M Heikenwalder, MK Maini, V Mazzaferro, DJ Pinato, E Pikarsky, AX Zhu, RS Finn. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 2022; 19(3): 151–172 https://doi.org/10.1038/s41571-021-00573-2
3
F Zhou, W Shang, X Yu, J Tian. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2018; 38(2): 741–767 https://doi.org/10.1002/med.21455
4
M Taniguchi, S Mizuno, T Yoshikawa, N Fujinami, M Sugimoto, S Kobayashi, S Takahashi, M Konishi, N Gotohda, T Nakatsura. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis. Cancer Sci 2020; 111(8): 2747–2759 https://doi.org/10.1111/cas.14497
5
Y Sawada, T Yoshikawa, D Nobuoka, H Shirakawa, T Kuronuma, Y Motomura, S Mizuno, H Ishii, K Nakachi, M Konishi, T Nakagohri, S Takahashi, N Gotohda, T Takayama, K Yamao, K Uesaka, J Furuse, T Kinoshita, T Nakatsura. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res 2012; 18(13): 3686–3696 https://doi.org/10.1158/1078-0432.CCR-11-3044
6
N Pang, J Shi, L Qin, A Chen, Y Tang, H Yang, Y Huang, Q Wu, X Li, B He, T Li, B Liang, J Zhang, B Cao, M Liu, Y Feng, X Ye, X Chen, L Wang, Y Tian, H Li, J Li, H Hu, J He, Y Hu, C Zhi, Z Tang, Y Gong, F Xu, L Xu, W Fan, M Zhao, D Chen, H Lian, L Yang, P Li, Z Zhang. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J Hematol Oncol 2021; 14(1): 118 https://doi.org/10.1186/s13045-021-01128-9
B Allard, MS Longhi, SC Robson, J Stagg. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 2017; 276(1): 121–144 https://doi.org/10.1111/imr.12528
9
S Krishna, FJ Lowery, AR Copeland, E Bahadiroglu, R Mukherjee, L Jia, JT Anibal, A Sachs, SO Adebola, D Gurusamy, Z Yu, V Hill, JJ Gartner, YF Li, M Parkhurst, B Paria, P Kvistborg, MC Kelly, SL Goff, G Altan-Bonnet, PF Robbins, SA Rosenberg. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 2020; 370(6522): 1328–1334 https://doi.org/10.1126/science.abb9847
10
T Liu, J Tan, M Wu, W Fan, J Wei, B Zhu, J Guo, S Wang, P Zhou, H Zhang, L Shi, J Li. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+CD8+ T cells. Gut 2021; 70(10): 1965–1977 https://doi.org/10.1136/gutjnl-2020-322196
11
PK Gupta, J Godec, D Wolski, E Adland, K Yates, KE Pauken, C Cosgrove, C Ledderose, WG Junger, SC Robson, EJ Wherry, G Alter, PJ Goulder, P Klenerman, AH Sharpe, GM Lauer, WN Haining. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog 2015; 11(10): e1005177 https://doi.org/10.1371/journal.ppat.1005177
12
A Chow, FZ Uddin, M Liu, A Dobrin, BY Nabet, L Mangarin, Y Lavin, H Rizvi, SE Tischfield, A Quintanal-Villalonga, JM Chan, N Shah, V Allaj, P Manoj, M Mattar, M Meneses, R Landau, M Ward, A Kulick, C Kwong, M Wierzbicki, J Yavner, J Egger, SS Chavan, A Farillas, A Holland, H Sridhar, M Ciampricotti, D Hirschhorn, X Guan, AL Richards, G Heller, J Mansilla-Soto, M Sadelain, CA Klebanoff, MD Hellmann, T Sen, E de Stanchina, JD Wolchok, T Merghoub, CM Rudin. The ectonucleotidase CD39 identifies tumor-reactive CD8+ T cells predictive of immune checkpoint blockade efficacy in human lung cancer. Immunity 2023; 56(1): 93–106.e6 https://doi.org/10.1016/j.immuni.2022.12.001
13
F Zou, J Tan, T Liu, B Liu, Y Tang, H Zhang, J Li. The CD39+ HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8+ T cells exhibit potent anti-HCC activity. Mol Ther 2021; 29(5): 1794–1807 https://doi.org/10.1016/j.ymthe.2021.01.021
14
M Cui, H Ding, F Chen, Y Zhao, Q Yang, Q Dong. Mdivi-1 protects against ischemic brain injury via elevating extracellular adenosine in a cAMP/CREB-CD39-dependent manner. Mol Neurobiol 2016; 53(1): 240–253 https://doi.org/10.1007/s12035-014-9002-4
15
R Bao, X Shui, J Hou, J Li, X Deng, X Zhu, T Yang. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice. Int J Mol Med 2016; 38(3): 969–975 https://doi.org/10.3892/ijmm.2016.2679
16
H Liao, MC Hyman, AE Baek, K Fukase, DJ Pinsky. cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J Biol Chem 2010; 285(19): 14791–14805 https://doi.org/10.1074/jbc.M110.116905
17
F Zou, L Lu, J Liu, B Xia, W Zhang, Q Hu, W Liu, Y Zhang, Y Lin, S Jing, M Huang, B Huang, B Liu, H Zhang. Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun 2019; 10(1): 4109 https://doi.org/10.1038/s41467-019-11893-4
18
L Broutier, G Mastrogiovanni, MM Verstegen, HE Francies, LM Gavarró, CR Bradshaw, GE Allen, R Arnes-Benito, O Sidorova, MP Gaspersz, N Georgakopoulos, BK Koo, S Dietmann, SE Davies, RK Praseedom, R Lieshout, JNM IJzermans, SJ Wigmore, K Saeb-Parsy, MJ Garnett, der Laan LJ van, M Huch. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017; 23(12): 1424–1435 https://doi.org/10.1038/nm.4438
19
S Nuciforo, I Fofana, MS Matter, T Blumer, D Calabrese, T Boldanova, S Piscuoglio, S Wieland, F Ringnalda, G Schwank, LM Terracciano, CKY Ng, MH Heim. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 2018; 24(5): 1363–1376 https://doi.org/10.1016/j.celrep.2018.07.001
20
Y Qiao, J Chen, X Wang, S Yan, J Tan, B Xia, Y Chen, K Lin, F Zou, B Liu, X He, Y Zhang, X Zhang, H Zhang, X Wu, L Lu. Enhancement of CAR-T cell activity against cholangiocarcinoma by simultaneous knockdown of six inhibitory membrane proteins. Cancer Commun (Lond) 2023; 43(7): 788–807 https://doi.org/10.1002/cac2.12452
21
Y Simoni, E Becht, M Fehlings, CY Loh, SL Koo, KWW Teng, JPS Yeong, R Nahar, T Zhang, H Kared, K Duan, N Ang, M Poidinger, YY Lee, A Larbi, AJ Khng, E Tan, C Fu, R Mathew, M Teo, WT Lim, CK Toh, BH Ong, T Koh, AM Hillmer, A Takano, TKH Lim, EH Tan, W Zhai, DSW Tan, IB Tan, EW Newell. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018; 557(7706): 575–579 https://doi.org/10.1038/s41586-018-0130-2
22
M Qiao, F Zhou, X Liu, T Jiang, H Wang, Y Jia, X Li, C Zhao, L Cheng, X Chen, S Ren, H Liu, C Zhou. Interleukin-10 induces expression of CD39 on CD8+ T cells to potentiate anti-PD1 efficacy in EGFR-mutated non-small cell lung cancer. J Immunother Cancer 2022; 10(12): e005436 https://doi.org/10.1136/jitc-2022-005436
23
G Oliveira, K Stromhaug, S Klaeger, T Kula, DT Frederick, PM Le, J Forman, T Huang, S Li, W Zhang, Q Xu, N Cieri, KR Clauser, SA Shukla, D Neuberg, S Justesen, G MacBeath, SA Carr, EF Fritsch, N Hacohen, M Sade-Feldman, KJ Livak, GM Boland, PA Ott, DB Keskin, CJ Wu. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 2021; 596(7870): 119–125 https://doi.org/10.1038/s41586-021-03704-y
24
N Xie, C Wang, Y Lian, C Wu, H Zhang, Q Zhang. Inhibition of mitochondrial fission attenuates Aβ-induced microglia apoptosis. Neuroscience 2014; 256: 36–42 https://doi.org/10.1016/j.neuroscience.2013.10.011
25
LF Fan, PY He, YC Peng, QH Du, YJ Ma, JX Jin, HZ Xu, JR Li, ZJ Wang, SL Cao, T Li, F Yan, C Gu, L Wang, G Chen. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 2017; 112: 336–349 https://doi.org/10.1016/j.freeradbiomed.2017.08.003