State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
Antibody–drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
First ADC approved for clinical use; heterogeneity; low potency payload; unstable hydrazone linker; high immunogenicity of antibody moiety
2000.05 FDA
[14]
Brentuximab vedotin
CD30
IgG1
Val-Cit dipeptide
MMAE
4
Hodgkin lymphoma
Stable dipeptide linker; potent payload MMAE
2011.08 FDA
[15]
Trastuzumab emtansine
HER2
IgG1
SMCC; noncleavable
DM1
3.5
HER2-positive breast cancer
First ADC approved for solid tumor treatment; no bystander effect; HER2 signal inhibition; ADCC; CDC effects
2013.02 FDA
[16–18]
Inotuzumab ozogamicin
CD22
IgG4
Hydrazone
Calicheamicin
2.5
Acute lymphoblastic leukemia (ALL)
Humanized antibody; similar linker and payload to those of gemtuzumab ozogamicin
2017.08 FDA
[19, 20]
Moxetumomab pasudotoxb
CD22
Mouse Fv
Hydrazone
Pseudomonas exotoxin A, PE38
NA
Hairy cell leukemia (HCL)
First new drug approved for HCL treatment
2018.09 FDA
[21]
Polatuzumab vedotin
CD79β
IgG1
Val-Cit dipeptide
MMAE
4
Diffuse large B cell lymphoma (DLBCL)
First ADC for the treatment of DLBCL
2019.06 FDA
[22]
Enfortumab vedotin
Nectin-4
IgG1
Val-Cit dipeptide
MMAE
4
Urothelial malignancies
Fully human anti-nectin-4 antibody; serious skin reactions in some patients; prolonged median OS (12.9 months) compared to chemotherapy (9 months)
2019.12 FDA
[23, 24]
Trastuzumab deruxtecan
HER2
IgG1
GGFG tetrapeptide
Dxd
8
HER2-positive breast cancer, gastric or gastresophageal junction adenocarcinoma
Novel topoisomerase I inhibitor payload (DXd); stable tetrapeptide-based linker; improved DAR of 7-8; superior PFS and ORR compared to T-DM1
2019.12 FDA
[25–27]
Sacituzumab govitecan
Trop2
IgG1
CL2A; pH sensitivity
SN38
7.6
Triple-negative breast cancer
Potent payload SN38; pH-sensitive stable linker; median PFS 4.8 months vs. 1.7 months for chemotherapy; median OS 11.8 months vs. 6.9 months for chemotherapy
2020.04 FDA
[28]
Belantamab mafodotinc
BCMA
IgG1
MC; noncleavable
MMAF
4
Multiple myeloma
No bystander effect; noncleavable linker and impermeable payload MMAF; BCMA-targeted therapy for multiple myeloma
2020.08 FDA
[29, 30]
Cetuximab saratolacan
EGFR
IgG1
NA
IRDye700DX
NA
Head and neck cancer
Photosensitizing dye-based payload; laser-activated cancer cell-killing mechanism; approved by PMDA in Japan
2020.09 PMDA
[31]
Loncastuximab tesirine
CD19
IgG1
Val-Ala dipeptide
PBD
2.3
DLBCL
High-potency payload PBD
2021.04 FDA
[32]
Disitamab vedotin
HER2
IgG1
Val-Cit dipeptide
MMAE
4
HER2-positive gastric cancer
Approved by NMPA in China; third HER2-targeted ADC on the market; patients received disitamab vedotin 2.5 mg/kg and ORR was 18.1%
2021.06 NMPA
[33]
Tisotumab vedotin
TF
IgG1
Val-Cit dipeptide
MMAE
4
Cervical cancer
Fully humanized anti-TF antibody; ADCC and ADCP effects; first TF-targeted ADC
2021.09 FDA
[34, 35]
Mirvetuximab soravtansine
FRα
IgG1
sulfo-SPDB
DM4
3.5
FRα-positive epithelial ovarian, fallopian tube or primary peritoneal cancer
First FRα-targeted ADC; novel cleavable sulfo-SPDB linker; efficacy in patients with high FRα expression
2022.11 FDA
[36]
Tab.1
Fig.1
Drugs (INN)
Target
Mechanism
Indications
First approval time
References
Catumaxomab
CD3/EpCAM
To redirect cytotoxic T cells to tumor cells, ADCC, ADCP
Malignant ascites; various solid tumors
2009.04 EMA (delisting announced in 2017)
[52]
Blinatumomab
CD3/CD19
To redirect cytotoxic T cells to tumor cells
ALL
2014.12 FDA
[53]
Emicizumab
Factor X/factor IXa
To combine activated factors IX and X to restore the function of activated factor VIII, which is deficient in hemophilia patients
Advanced solid tumors, NSCLC, head and neck neoplasms
NCT05647122
Tab.4
1
K Strebhardt, A Ullrich. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473–480 https://doi.org/10.1038/nrc2394
Y Chu, X Zhou, X Wang. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14(1): 88 https://doi.org/10.1186/s13045-021-01097-z
4
S Rosner, A Valdivia, HJ Hoe, JC Murray, B Levy, E Felip, BJ Solomon. Antibody-drug conjugates for lung cancer: payloads and progress. Am Soc Clin Oncol Educ Book 2023; 43: e389968 https://doi.org/10.1200/EDBK_389968
5
H Liu, J Bolleddula, A Nichols, L Tang, Z Zhao, C Prakash. Metabolism of bioconjugate therapeutics: why, when, and how?. Drug Metab Rev 2020; 52(1): 66–124 https://doi.org/10.1080/03602532.2020.1716784
6
Z Su, D Xiao, F Xie, L Liu, Y Wang, S Fan, X Zhou, S Li. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B 2021; 11(12): 3889–3907 https://doi.org/10.1016/j.apsb.2021.03.042
7
Z Fu, S Li, S Han, C Shi, Y Zhang. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther 2022; 7(1): 93 https://doi.org/10.1038/s41392-022-00947-7
S Ali, HM Dunmore, D Karres, JL Hay, T Salmonsson, C Gisselbrecht, SB Sarac, OW Bjerrum, D Hovgaard, Y Barbachano, N Nagercoil, F Pignatti. The EMA review of Mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia. Oncologist 2019; 24(5): e171–e179 https://doi.org/10.1634/theoncologist.2019-0025
10
CD Godwin, RP Gale, RB Walter. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31(9): 1855–1868 https://doi.org/10.1038/leu.2017.187
11
K Tsuchikama, Z An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018; 9(1): 33–46 https://doi.org/10.1007/s13238-016-0323-0
12
A Beck, L Goetsch, C Dumontet, N Corvaïa. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017; 16(5): 315–337 https://doi.org/10.1038/nrd.2016.268
13
N Epaillard, J Bassil, B Pistilli. Current indications and future perspectives for antibody-drug conjugates in brain metastases of breast cancer. Cancer Treat Rev 2023; 119: 102597 https://doi.org/10.1016/j.ctrv.2023.102597
14
S Castaigne, C Pautas, C Terré, E Raffoux, D Bordessoule, JN Bastie, O Legrand, X Thomas, P Turlure, O Reman, Revel T de, L Gastaud, Gunzburg N de, N Contentin, E Henry, JP Marolleau, A Aljijakli, P Rousselot, P Fenaux, C Preudhomme, S Chevret, H; Acute Leukemia French Association Dombret. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012; 379(9825): 1508–1516 https://doi.org/10.1016/S0140-6736(12)60485-1
15
A Younes, AK Gopal, SE Smith, SM Ansell, JD Rosenblatt, KJ Savage, R Ramchandren, NL Bartlett, BD Cheson, S de Vos, A Forero-Torres, CH Moskowitz, JM Connors, A Engert, EK Larsen, DA Kennedy, EL Sievers, R Chen. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012; 30(18): 2183–2189 https://doi.org/10.1200/JCO.2011.38.0410
16
S Verma, D Miles, L Gianni, IE Krop, M Welslau, J Baselga, M Pegram, DY Oh, V Diéras, E Guardino, L Fang, MW Lu, S Olsen, K; EMILIA Study Group Blackwell. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783–1791 https://doi.org/10.1056/NEJMoa1209124
17
Minckwitz G von, CS Huang, MS Mano, S Loibl, EP Mamounas, M Untch, N Wolmark, P Rastogi, A Schneeweiss, A Redondo, HH Fischer, W Jacot, AK Conlin, C Arce-Salinas, IL Wapnir, C Jackisch, MP DiGiovanna, PA Fasching, JP Crown, P Wülfing, Z Shao, Caremoli E Rota, H Wu, LH Lam, D Tesarowski, M Smitt, H Douthwaite, SM Singel, CE Jr; KATHERINE Investigators Geyer. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2019; 380(7): 617–628 https://doi.org/10.1056/NEJMoa1814017
18
L Amiri-Kordestani, GM Blumenthal, QC Xu, L Zhang, SW Tang, L Ha, WC Weinberg, B Chi, R Candau-Chacon, P Hughes, AM Russell, SP Miksinski, XH Chen, WD McGuinn, T Palmby, SJ Schrieber, Q Liu, J Wang, P Song, N Mehrotra, L Skarupa, K Clouse, A Al-Hakim, R Sridhara, A Ibrahim, R Justice, R Pazdur, P Cortazar. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 2014; 20(17): 4436–4441 https://doi.org/10.1158/1078-0432.CCR-14-0012
19
H Kantarjian, D Thomas, J Jorgensen, E Jabbour, P Kebriaei, M Rytting, S York, F Ravandi, M Kwari, S Faderl, MB Rios, J Cortes, L Fayad, R Tarnai, SA Wang, R Champlin, A Advani, S O’Brien. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012; 13(4): 403–411 https://doi.org/10.1016/S1470-2045(11)70386-2
20
HM Kantarjian, DJ DeAngelo, M Stelljes, G Martinelli, M Liedtke, W Stock, N Gökbuget, S O’Brien, K Wang, T Wang, ML Paccagnella, B Sleight, E Vandendries, AS Advani. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016; 375(8): 740–753 https://doi.org/10.1056/NEJMoa1509277
21
RJ Kreitman, C Dearden, PL Zinzani, J Delgado, L Karlin, T Robak, DE Gladstone, P le Coutre, S Dietrich, M Gotic, L Larratt, F Offner, G Schiller, R Swords, L Bacon, M Bocchia, K Bouabdallah, DA Breems, A Cortelezzi, S Dinner, M Doubek, BT Gjertsen, M Gobbi, A Hellmann, S Lepretre, F Maloisel, F Ravandi, P Rousselot, M Rummel, T Siddiqi, T Tadmor, X Troussard, CA Yi, G Saglio, GJ Roboz, K Balic, N Standifer, P He, S Marshall, W Wilson, I Pastan, NS Yao, F Giles. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018; 32(8): 1768–1777 https://doi.org/10.1038/s41375-018-0210-1
22
LH Sehn, AF Herrera, CR Flowers, MK Kamdar, A McMillan, M Hertzberg, S Assouline, TM Kim, WS Kim, M Ozcan, J Hirata, E Penuel, JN Paulson, J Cheng, G Ku, MJ Matasar. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2020; 38(2): 155–165 https://doi.org/10.1200/JCO.19.00172
23
T Powles, JE Rosenberg, GP Sonpavde, Y Loriot, I Durán, JL Lee, N Matsubara, C Vulsteke, D Castellano, C Wu, M Campbell, M Matsangou, DP Petrylak. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med 2021; 384(12): 1125–1135 https://doi.org/10.1056/NEJMoa2035807
24
J Rosenberg, SS Sridhar, J Zhang, D Smith, D Ruether, TW Flaig, J Baranda, J Lang, ER Plimack, R Sangha, EI Heath, J Merchan, DI Quinn, S Srinivas, M Milowsky, C Wu, EM Gartner, P Zuo, A Melhem-Bertrandt, DP Petrylak. EV-101: a phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J Clin Oncol 2020; 38(10): 1041–1049 https://doi.org/10.1200/JCO.19.02044
25
J Cortés, SB Kim, WP Chung, SA Im, YH Park, R Hegg, MH Kim, LM Tseng, V Petry, CF Chung, H Iwata, E Hamilton, G Curigliano, B Xu, CS Huang, JH Kim, JWY Chiu, JL Pedrini, C Lee, Y Liu, J Cathcart, E Bako, S Verma, SA; DESTINY-Breast03 Trial Investigators Hurvitz. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 2022; 386(12): 1143–1154 https://doi.org/10.1056/NEJMoa2115022
26
K Shitara, YJ Bang, S Iwasa, N Sugimoto, MH Ryu, D Sakai, HC Chung, H Kawakami, H Yabusaki, J Lee, K Saito, Y Kawaguchi, T Kamio, A Kojima, M Sugihara, K; DESTINY-Gastric01 Investigators Yamaguchi. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 2020; 382(25): 2419–2430 https://doi.org/10.1056/NEJMoa2004413
27
K Yamaguchi, YJ Bang, S Iwasa, N Sugimoto, MH Ryu, D Sakai, HC Chung, H Kawakami, H Yabusaki, J Lee, T Shimoyama, KW Lee, K Saito, Y Kawaguchi, T Kamio, A Kojima, M Sugihara, K Shitara. Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase II trial. J Clin Oncol 2023; 41(4): 816–825 https://doi.org/10.1200/JCO.22.00575
28
A Bardia, SA Hurvitz, SM Tolaney, D Loirat, K Punie, M Oliveira, A Brufsky, SD Sardesai, K Kalinsky, AB Zelnak, R Weaver, T Traina, F Dalenc, P Aftimos, F Lynce, S Diab, J Cortés, J O’Shaughnessy, V Diéras, C Ferrario, P Schmid, LA Carey, L Gianni, MJ Piccart, S Loibl, DM Goldenberg, Q Hong, MS Olivo, LM Itri, HS; ASCENT Clinical Trial Investigators Rugo. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 2021; 384(16): 1529–1541 https://doi.org/10.1056/NEJMoa2028485
29
S Lonial, HC Lee, A Badros, S Trudel, AK Nooka, A Chari, AO Abdallah, N Callander, N Lendvai, D Sborov, A Suvannasankha, K Weisel, L Karlin, E Libby, B Arnulf, T Facon, C Hulin, KM Kortüm, P Rodríguez-Otero, SZ Usmani, P Hari, R Baz, H Quach, P Moreau, PM Voorhees, I Gupta, A Hoos, E Zhi, J Baron, T Piontek, E Lewis, RC Jewell, EJ Dettman, R Popat, SD Esposti, J Opalinska, P Richardson, AD Cohen. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol 2020; 21(2): 207–221 https://doi.org/10.1016/S1470-2045(19)30788-0
LC Gomes-da-Silva, O Kepp, G Kroemer. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. OncoImmunology 2020; 9(1): 1841393 https://doi.org/10.1080/2162402X.2020.1841393
32
PF Caimi, W Ai, JP Alderuccio, KM Ardeshna, M Hamadani, B Hess, BS Kahl, J Radford, M Solh, A Stathis, PL Zinzani, K Havenith, J Feingold, S He, Y Qin, D Ungar, X Zhang, C Carlo-Stella. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2021; 22(6): 790–800 https://doi.org/10.1016/S1470-2045(21)00139-X
RL Coleman, D Lorusso, C Gennigens, A González-Martín, L Randall, D Cibula, B Lund, L Woelber, S Pignata, F Forget, A Redondo, SD Vindeløv, M Chen, JR Harris, M Smith, LV Nicacio, MSL Teng, A Laenen, R Rangwala, L Manso, M Mirza, BJ Monk, I; innovaTV 204/GOG-3023/ENGOT-cx6 Collaborators Vergote. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2021; 22(5): 609–619 https://doi.org/10.1016/S1470-2045(21)00056-5
35
DS Hong, N Concin, I Vergote, JS de Bono, BM Slomovitz, Y Drew, HT Arkenau, JP Machiels, JF Spicer, R Jones, MD Forster, N Cornez, C Gennigens, ML Johnson, FC Thistlethwaite, RA Rangwala, S Ghatta, K Windfeld, JR Harris, UN Lassen, RL Coleman. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220–1228 https://doi.org/10.1158/1078-0432.CCR-19-2962
C Nieto-Jiménez, A Sanvicente, C Díaz-Tejeiro, V Moreno, de Sá A Lopez, E Calvo, J Martínez-López, P Pérez-Segura, A Ocaña. Uncovering therapeutic opportunities in the clinical development of antibody-drug conjugates. Clin Transl Med 2023; 13(9): e1329 https://doi.org/10.1002/ctm2.1329
38
H Maecker, V Jonnalagadda, S Bhakta, V Jammalamadaka, JR Junutula. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15(1): 2229101 https://doi.org/10.1080/19420862.2023.2229101
39
K Weisel, VT Hungria, A Radinoff, S Delimpasi, G Mikala, T Masszi, J Li, M Capra, M Matsumoto, N Sule, M Li, A McKeown, W He, S Bright, B Currie, J Boyle, J Opalinska, MA Dimopoulos. A phase 3, open-label, randomized study to evaluate the efficacy and safety of single-agent belantamab mafodotin (belamaf) compared to pomalidomide plus low-dose dexamethasone (Pd) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): DREAMM-3. J Clin Oncol 2023; 41(16 suppl): 8007 https://doi.org/10.1200/JCO.2023.41.16_suppl.8007
PK Mahalingaiah, R Ciurlionis, KR Durbin, RL Yeager, BK Philip, B Bawa, SR Mantena, BP Enright, MJ Liguori, TR Van Vleet. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200: 110–125 https://doi.org/10.1016/j.pharmthera.2019.04.008
42
FV Suurs, MN Lub-de Hooge, EGE de Vries, DJA de Groot. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 2019; 201: 103–119 https://doi.org/10.1016/j.pharmthera.2019.04.006
43
A Cavaliere, S Sun, S Lee, J Bodner, Z Li, Y Huang, SL Moores, B Marquez-Nostra. Development of [89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2021; 48(2): 383–394 https://doi.org/10.1007/s00259-020-04978-6
44
X Cui, H Jia, H Xin, L Zhang, S Chen, S Xia, X Li, W Xu, X Chen, Y Feng, X Wei, H Yu, Y Wang, Y Zhan, X Zhu, X Zhang. A novel bispecific antibody targeting PD-L1 and VEGF with combined anti-tumor activities. Front Immunol 2021; 12: 778978 https://doi.org/10.3389/fimmu.2021.778978
45
J Neijssen, RMF Cardoso, KM Chevalier, L Wiegman, T Valerius, GM Anderson, SL Moores, J Schuurman, PWHI Parren, WR Strohl, ML Chiu. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296: 100641 https://doi.org/10.1016/j.jbc.2021.100641
46
Q Wu, Y Zhen, L Shi, P Vu, P Greninger, R Adil, J Merritt, R Egan, MJ Wu, X Yin, CR Ferrone, V Deshpande, I Baiev, CJ Pinto, DE McLoughlin, CS Walmsley, JR Stone, JD Gordan, AX Zhu, D Juric, L Goyal, CH Benes, N Bardeesy. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2022; 12(5): 1378–1395 https://doi.org/10.1158/2159-8290.CD-21-1168
47
J Cheng, M Liang, MF Carvalho, N Tigue, R Faggioni, LK Roskos, I Vainshtein. Molecular mechanism of HER2 rapid internalization and redirected trafficking induced by anti-HER2 biparatopic antibody. Antibodies (Basel) 2020; 9(3): 49 https://doi.org/10.3390/antib9030049
48
SJ Dovedi, MJ Elder, C Yang, SI Sitnikova, L Irving, A Hansen, J Hair, DC Jones, S Hasani, B Wang, SA Im, B Tran, DS Subramaniam, SD Gainer, K Vashisht, A Lewis, X Jin, S Kentner, K Mulgrew, Y Wang, MG Overstreet, J Dodgson, Y Wu, A Palazon, M Morrow, GJ Rainey, GJ Browne, F Neal, TV Murray, AD Toloczko, W Dall’Acqua, I Achour, DJ Freeman, RW Wilkinson, Y Mazor. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov 2021; 11(5): 1100–1117 https://doi.org/10.1158/2159-8290.CD-20-1445
49
Y Wang, H Ni, S Zhou, K He, Y Gao, W Wu, M Wu, Z Wu, X Qiu, Y Zhou, B Chen, D Pan, C Huang, M Li, Y Bian, M Yang, L Miao, J Liu. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother 2021; 70(2): 365–376 https://doi.org/10.1007/s00262-020-02679-5
50
MK Robinson, KM Hodge, E Horak, AL Sundberg, M Russeva, CC Shaller, M von Mehren, I Shchaveleva, HH Simmons, JD Marks, GP Adams. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 2008; 99(9): 1415–1425 https://doi.org/10.1038/sj.bjc.6604700
51
H Zhao, F Luo, J Xue, S Li, RH Xu. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828 https://doi.org/10.1007/s11684-021-0886-x
H Kantarjian, A Stein, N Gökbuget, AK Fielding, AC Schuh, JM Ribera, A Wei, H Dombret, R Foà, R Bassan, Ö Arslan, MA Sanz, J Bergeron, F Demirkan, E Lech-Maranda, A Rambaldi, X Thomas, HA Horst, M Brüggemann, W Klapper, BL Wood, A Fleishman, D Nagorsen, C Holland, Z Zimmerman, MS Topp. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376(9): 836–847 https://doi.org/10.1056/NEJMoa1609783
54
J Oldenburg, JN Mahlangu, B Kim, C Schmitt, MU Callaghan, G Young, E Santagostino, R Kruse-Jarres, C Negrier, C Kessler, N Valente, E Asikanius, GG Levy, J Windyga, M Shima. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017; 377(9): 809–818 https://doi.org/10.1056/NEJMoa1703068
55
C Zhou, KJ Tang, BC Cho, B Liu, L Paz-Ares, S Cheng, S Kitazono, M Thiagarajan, JW Goldman, JK Sabari, RE Sanborn, AS Mansfield, JY Hung, M Boyer, S Popat, Dias J Mourão, E Felip, M Majem, M Gumus, SW Kim, A Ono, J Xie, A Bhattacharya, T Agrawal, SM Shreeve, RE Knoblauch, K Park, N; PAPILLON Investigators Girard. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N Engl J Med 2023; 389(22): 2039–2051 https://doi.org/10.1056/NEJMoa2306441
56
P Nathan, JC Hassel, P Rutkowski, JF Baurain, MO Butler, M Schlaak, RJ Sullivan, S Ochsenreither, R Dummer, JM Kirkwood, AM Joshua, JJ Sacco, AN Shoushtari, M Orloff, JM Piulats, M Milhem, AKS Salama, B Curti, L Demidov, L Gastaud, C Mauch, M Yushak, RD Carvajal, O Hamid, SE Abdullah, C Holland, H Goodall, S; IMCgp100-202 Investigators Piperno-Neumann. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 2021; 385(13): 1196–1206 https://doi.org/10.1056/NEJMoa2103485
57
JS Heier, AM Khanani, Ruiz C Quezada, K Basu, PJ Ferrone, C Brittain, MS Figueroa, H Lin, FG Holz, V Patel, TYY Lai, D Silverman, C Regillo, B Swaminathan, F Viola, CMG Cheung, TY; TENAYA Wong, Investigators LUCERNE. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022; 399(10326): 729–740 https://doi.org/10.1016/S0140-6736(22)00010-1
58
CC Wykoff, F Abreu, AP Adamis, K Basu, DA Eichenbaum, Z Haskova, H Lin, A Loewenstein, S Mohan, IA Pearce, T Sakamoto, PG Schlottmann, D Silverman, JK Sun, JA Wells, JR Willis, R; YOSEMITE Tadayoni, Investigators RHINE. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022; 399(10326): 741–755 https://doi.org/10.1016/S0140-6736(22)00018-6
59
LE Budde, LH Sehn, M Matasar, SJ Schuster, S Assouline, P Giri, J Kuruvilla, M Canales, S Dietrich, K Fay, M Ku, L Nastoupil, CY Cheah, MC Wei, S Yin, CC Li, H Huang, A Kwan, E Penuel, NL Bartlett. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol 2022; 23(8): 1055–1065 https://doi.org/10.1016/S1470-2045(22)00335-7
P Moreau, AL Garfall, de Donk NWCJ van, H Nahi, JF San-Miguel, A Oriol, AK Nooka, T Martin, L Rosinol, A Chari, L Karlin, L Benboubker, MV Mateos, N Bahlis, R Popat, B Besemer, J Martínez-López, S Sidana, M Delforge, L Pei, D Trancucci, R Verona, S Girgis, SXW Lin, Y Olyslager, M Jaffe, C Uhlar, T Stephenson, Rampelbergh R Van, A Banerjee, JD Goldberg, R Kobos, A Krishnan, SZ Usmani. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022; 387(6): 495–505 https://doi.org/10.1056/NEJMoa2203478
62
T Takeuchi, M Kawanishi, M Nakanishi, H Yamasaki, Y Tanaka. Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis Rheumatol 2022; 74(11): 1776–1785 https://doi.org/10.1002/art.42273
63
C Thieblemont, T Phillips, H Ghesquieres, CY Cheah, MR Clausen, D Cunningham, YR Do, T Feldman, R Gasiorowski, W Jurczak, TM Kim, DJ Lewis, M van der Poel, ML Poon, M Cota Stirner, N Kilavuz, C Chiu, M Chen, M Sacchi, B Elliott, T Ahmadi, M Hutchings, PJ Lugtenburg. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J Clin Oncol 2023; 41(12): 2238–2247 https://doi.org/10.1200/JCO.22.01725
64
MJ Dickinson, C Carlo-Stella, F Morschhauser, E Bachy, P Corradini, G Iacoboni, C Khan, T Wróbel, F Offner, M Trněný, SJ Wu, G Cartron, M Hertzberg, A Sureda, D Perez-Callejo, L Lundberg, J Relf, M Dixon, E Clark, K Humphrey, M Hutchings. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2022; 387(24): 2220–2231 https://doi.org/10.1056/NEJMoa2206913
65
AM Lesokhin, MH Tomasson, B Arnulf, NJ Bahlis, Prince H Miles, R Niesvizky, P Rodrίguez-Otero, J Martinez-Lopez, G Koehne, C Touzeau, Y Jethava, H Quach, J Depaus, H Yokoyama, AE Gabayan, DA Stevens, AK Nooka, S Manier, N Raje, S Iida, MS Raab, E Searle, E Leip, ST Sullivan, U Conte, M Elmeliegy, A Czibere, A Viqueira, M Mohty. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med 2023; 29(9): 2259–2267 https://doi.org/10.1038/s41591-023-02528-9
66
A Chari, MC Minnema, JG Berdeja, A Oriol, de Donk NWCJ van, P Rodríguez-Otero, E Askari, MV Mateos, LJ Costa, J Caers, R Verona, S Girgis, S Yang, RB Goldsmith, X Yao, K Pillarisetti, BW Hilder, J Russell, JD Goldberg, A Krishnan. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med 2022; 387(24): 2232–2244 https://doi.org/10.1056/NEJMoa2204591
67
AF Labrijn, ML Janmaat, JM Reichert, PWHI Parren. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18(8): 585–608 https://doi.org/10.1038/s41573-019-0028-1
68
BA Khaw, KS Gada, V Patil, R Panwar, S Mandapati, A Hatefi, S Majewski, A Weisenberger. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts: targeted polymer drug conjugates for cancer diagnosis and therapy. Eur J Nucl Med Mol Imaging 2014; 41(8): 1603–1616 https://doi.org/10.1007/s00259-014-2738-2
69
RM Sharkey, CM van Rij, H Karacay, EA Rossi, C Frielink, C Regino, TM Cardillo, WJ McBride, CH Chang, OC Boerman, DM Goldenberg. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 2012; 53(10): 1625–1632 https://doi.org/10.2967/jnumed.112.104364
JBB Ridgway, LG Presta, P Carter. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996; 9(7): 617–621 https://doi.org/10.1093/protein/9.7.617
72
JH Davis, C Aperlo, Y Li, E Kurosawa, Y Lan, KM Lo, JS Huston. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202 https://doi.org/10.1093/protein/gzp094
73
EA Rossi, DM Goldenberg, CH Chang. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23(3): 309–323 https://doi.org/10.1021/bc2004999
74
H Shim. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules 2020; 10(3): 360 https://doi.org/10.3390/biom10030360
B Li, Y Meng, L Zheng, X Zhang, Q Tong, W Tan, S Hu, H Li, Y Chen, J Song, G Zhang, L Zhao, D Zhang, S Hou, W Qian, Y Guo. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res 2013; 73(21): 6471–6483 https://doi.org/10.1158/0008-5472.CAN-13-0657
77
R Castoldi, V Ecker, L Wiehle, M Majety, R Busl-Schuller, M Asmussen, A Nopora, U Jucknischke, F Osl, S Kobold, W Scheuer, M Venturi, C Klein, G Niederfellner, C Sustmann. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32(50): 5593–5601 https://doi.org/10.1038/onc.2013.245
78
YJ Kim, DS Baek, S Lee, D Park, HN Kang, BC Cho, YS Kim. Dual-targeting of EGFR and neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett 2019; 466: 23–34 https://doi.org/10.1016/j.canlet.2019.09.005
79
TD Nguyen, BM Bordeau, JP Balthasar. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel) 2023; 15(3): 713 https://doi.org/10.3390/cancers15030713
JD Bargh, A Isidro-Llobet, JS Parker, DR Spring. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev 2019; 48(16): 4361–4374 https://doi.org/10.1039/C8CS00676H
82
N Coleman, TA Yap, JV Heymach, F Meric-Bernstam, X Le. Antibody-drug conjugates in lung cancer: dawn of a new era. NPJ Precis Oncol 2023; 7(1): 5 https://doi.org/10.1038/s41698-022-00338-9
83
Y Ogitani, K Hagihara, M Oitate, H Naito, T Agatsuma. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016; 107(7): 1039–1046 https://doi.org/10.1111/cas.12966
84
F Giugliano, C Corti, P Tarantino, F Michelini, G Curigliano. Bystander effect of antibody-drug conjugates: fact or fiction. Curr Oncol Rep 2022; 24(7): 809–817 https://doi.org/10.1007/s11912-022-01266-4
85
YV Kovtun, CA Audette, Y Ye, H Xie, MF Ruberti, SJ Phinney, BA Leece, T Chittenden, WA Blättler, VS Goldmacher. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006; 66(6): 3214–3221 https://doi.org/10.1158/0008-5472.CAN-05-3973
86
SD Pronk, E Schooten, J Heinen, E Helfrich, S Oliveira, PMP van Bergen en Henegouwen. Single domain antibodies as carriers for intracellular drug delivery: a proof of principle study. Biomolecules 2021; 11(7): 927 https://doi.org/10.3390/biom11070927
87
S Xu. Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm Res 2015; 32(11): 3577–3583 https://doi.org/10.1007/s11095-015-1729-8
88
C Kelton, JS Wesolowski, M Soloviev, R Schweickhardt, D Fischer, E Kurosawa, SD McKenna, AW Gross. Anti-EGFR biparatopic-SEED antibody has enhanced combination-activity in a single molecule. Arch Biochem Biophys 2012; 526(2): 219–225 https://doi.org/10.1016/j.abb.2012.03.005
89
LM Friedman, A Rinon, B Schechter, L Lyass, S Lavi, SS Bacus, M Sela, Y Yarden. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 2005; 102(6): 1915–1920 https://doi.org/10.1073/pnas.0409610102
90
JB Spangler, JR Neil, S Abramovitch, Y Yarden, FM White, DA Lauffenburger, KD Wittrup. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107(30): 13252–13257 https://doi.org/10.1073/pnas.0913476107
91
F ComerC GaoS Coats. Bispecific and biparatopic antibody drug conjugates. In: Damelin M. Innovations for Next-Generation Antibody-Drug Conjugates. Cham: Springer International Publishing, 2018: 267–280
92
FW Hunter, HR Barker, B Lipert, F Rothé, G Gebhart, MJ Piccart-Gebhart, C Sotiriou, SMF Jamieson. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2020; 122(5): 603–612 https://doi.org/10.1038/s41416-019-0635-y
93
MD Pegram, D Miles, CK Tsui, Y Zong. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin Cancer Res 2020; 26(4): 775–786 https://doi.org/10.1158/1078-0432.CCR-18-1976
94
NE Weisser, M Sanches, E Escobar-Cabrera, J O’Toole, E Whalen, PWY Chan, G Wickman, L Abraham, K Choi, B Harbourne, A Samiotakis, AH Rojas, G Volkers, J Wong, CE Atkinson, J Baardsnes, LJ Worrall, D Browman, EE Smith, P Baichoo, CW Cheng, J Guedia, S Kang, A Mukhopadhyay, L Newhook, A Ohrn, P Raghunatha, M Zago-Schmitt, JD Schrag, J Smith, P Zwierzchowski, JM Scurll, V Fung, S Black, NCJ Strynadka, MR Gold, LG Presta, G Ng, S Dixit. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14(1): 1394 https://doi.org/10.1038/s41467-023-37029-3
95
JJ Harding, J Fan, DY Oh, HJ Choi, JW Kim, HM Chang, L Bao, HC Sun, T Macarulla, F Xie, JP Metges, J Ying, J Bridgewater, MA Lee, MA Tejani, EY Chen, DU Kim, H Wasan, M Ducreux, Y Bao, L Boyken, J Ma, P Garfin, S; HERIZON-BTC-01 study group Pant. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol 2023; 24(7): 772–782 https://doi.org/10.1016/S1470-2045(23)00242-5
S Huang, F Li, H Liu, P Ye, X Fan, X Yuan, Z Wu, J Chen, C Jin, B Shen, J Feng, B Zhang. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. MAbs 2018; 10(6): 864–875 https://doi.org/10.1080/19420862.2018.1486946
98
NK Lee, Y Su, S Bidlingmaier, B Liu. Manipulation of cell-type selective antibody internalization by a guide-effector bispecific design. Mol Cancer Ther 2019; 18(6): 1092–1103 https://doi.org/10.1158/1535-7163.MCT-18-1313
99
BE de Goeij, T Vink, H Ten Napel, EC Breij, D Satijn, R Wubbolts, D Miao, PW Parren. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther 2016; 15(11): 2688–2697 https://doi.org/10.1158/1535-7163.MCT-16-0364
RM DeVay, K Delaria, G Zhu, C Holz, D Foletti, J Sutton, G Bolton, R Dushin, C Bee, J Pons, A Rajpal, H Liang, D Shelton, SH Liu, P Strop. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem 2017; 28(4): 1102–1114 https://doi.org/10.1021/acs.bioconjchem.7b00013
102
U Rupp, E Schoendorf-Holland, M Eichbaum, F Schuetz, I Lauschner, P Schmidt, A Staab, G Hanft, J Huober, HP Sinn, C Sohn, A Schneeweiss. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 2007; 18(4): 477–485 https://doi.org/10.1097/CAD.0b013e32801403f4
103
JE Rosenberg, PH O’Donnell, AV Balar, BA McGregor, EI Heath, EY Yu, MD Galsky, NM Hahn, EM Gartner, JM Pinelli, SY Liang, A Melhem-Bertrandt, DP Petrylak. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol 2019; 37(29): 2592–2600 https://doi.org/10.1200/JCO.19.01140
104
MN Saleh, S Sugarman, J Murray, JB Ostroff, D Healey, D Jones, CR Daniel, D LeBherz, H Brewer, N Onetto, AF LoBuglio. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol 2000; 18(11): 2282–2292 https://doi.org/10.1200/JCO.2000.18.11.2282
105
E Dheilly, V Moine, L Broyer, S Salgado-Pires, Z Johnson, A Papaioannou, L Cons, S Calloud, S Majocchi, R Nelson, F Rousseau, W Ferlin, M Kosco-Vilbois, N Fischer, K Masternak. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther 2017; 25(2): 523–533 https://doi.org/10.1016/j.ymthe.2016.11.006
106
A Baruch, C Wong, LW Chinn, A Vaze, J Sonoda, T Gelzleichter, S Chen, N Lewin-Koh, L Morrow, S Dheerendra, R Boismenu, J Gutierrez, E Wakshull, ME Wilson, PS Arora. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc Natl Acad Sci USA 2020; 117(46): 28992–29000 https://doi.org/10.1073/pnas.2012073117
107
L Geng, KSL Lam, A Xu. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16(11): 654–667 https://doi.org/10.1038/s41574-020-0386-0
108
S Liu, W Lyu, S Yin, Y Lei, Q Zhuo, L Zheng, B Sun, S Tan, L Jiang, T Zhang, B Gao, R Xu, D Huang, Y Li, Z Wu, D Wu, Y Wen. Abstract 6307: a novel pegylated bispecific antibody-drug conjugate (P-BsADCpb-adc) targeting cancers co-expressing PD-L1 and CD47. Cancer Res 2023; 83(7 Supplement): 6307 https://doi.org/10.1158/1538-7445.AM2023-6307
109
JM Baas, LL Krens, HJ Guchelaar, J Ouwerkerk, FA de Jong, AP Lavrijsen, H Gelderblom. Recommendations on management of EGFR inhibitor-induced skin toxicity: a systematic review. Cancer Treat Rev 2012; 38(5): 505–514 https://doi.org/10.1016/j.ctrv.2011.09.004
110
ME Lacouture. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006; 6(10): 803–812 https://doi.org/10.1038/nrc1970
111
C Knuehl, L Toleikis, J Dotterweich, J Ma, S Kumar, E Ross, C Wilm, M Schmitt, HJ Grote, C Amendt. Abstract 5284: M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res 2022; 82(12 Supplement): 5284 https://doi.org/10.1158/1538-7445.AM2022-5284
112
Y Ma, Y Huang, Y Zhao, S Zhao, J Xue, Y Yang, W Fang, Y Guo, Y Han, K Yang, Y Li, J Yang, Z Fu, G Chen, L Chen, N Zhou, T Zhou, Y Zhang, H Zhou, Q Liu, Y Zhu, H Zhu, S Xiao, L Zhang, H Zhao. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol 2024; 29: S1470–2045(24)00159–1 https://doi.org/10.1016/S1470-2045(24)00159-1
113
L McGrath, Y Zheng, S Christ, CC Sachs, S Khelifa, C Windmüller, S Sweet, YJ Kim, D Sutton, M Sulikowski, A Lewis, I Inigo, N Floch, E Rosfjord, F Arnaldez, F Comer. Abstract 5737: Evaluation of the relationship between target expression and in vivo anti-tumor efficacy of AZD9592, an EGFR/c-MET targeted bispecific antibody drug conjugate. Cancer Res 2023; 83(7 Supplement): 5737 https://doi.org/10.1158/1538-7445.AM2023-5737
114
R Khoury, K Saleh, N Khalife, M Saleh, C Chahine, R Ibrahim, A Lecesne. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci 2023; 24(11): 9674 https://doi.org/10.3390/ijms24119674
115
E Díaz-Rodríguez, L Gandullo-Sánchez, A Ocaña, A Pandiella. Novel ADCs and strategies to overcome resistance to anti-HER2 ADCs. Cancers (Basel) 2021; 14(1): 154 https://doi.org/10.3390/cancers14010154
116
O Ab, LM Bartle, L Lanieri, JF Ponte, QF Qiu, S Sikka, JA Costoplus, W Deats, NC Yoder, WC Widdison, K Mucciarone, K Selvitelli, Y Chen, N Kohli, T Chittenden, R Gregory, Y Setiady, EH Westin. IMGN151-A next generation folate receptor alpha targeting antibody drug conjugate active against tumors with low, medium and high receptor expression. Cancer Res 2020; 80(16 Supplement): 2890 https://doi.org/10.1158/1538-7445.AM2020-2890
117
JO DaSilva, K Yang, AE Perez Bay, J Andreev, P Ngoi, E Pyles, MC Franklin, D Dudgeon, A Rafique, A Dore, FJ Delfino, TB Potocky, R Babb, G Chen, D MacDonald, WC Olson, G Thurston, C Daly. A biparatopic antibody that modulates MET trafficking exhibits enhanced efficacy compared with parental antibodies in MET-driven tumor models. Clin Cancer Res 2020; 26(6): 1408–1419 https://doi.org/10.1158/1078-0432.CCR-19-2428
118
OM Filho, G Viale, S Stein, L Trippa, DA Yardley, IA Mayer, VG Abramson, CL Arteaga, LM Spring, AG Waks, E Wrabel, MK DeMeo, A Bardia, P Dell’Orto, L Russo, TA King, K Polyak, F Michor, EP Winer, IE Krop. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov 2021; 11(10): 2474–2487 https://doi.org/10.1158/2159-8290.CD-20-1557
119
KN Moore, AM Oza, N Colombo, A Oaknin, G Scambia, D Lorusso, GE Konecny, S Banerjee, CG Murphy, JL Tanyi, H Hirte, JA Konner, PC Lim, M Prasad-Hayes, BJ Monk, P Pautier, J Wang, A Berkenblit, I Vergote, MJ Birrer. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol 2021; 32(6): 757–765 https://doi.org/10.1016/j.annonc.2021.02.017
120
J Fan, X Zhuang, X Yang, Y Xu, Z Zhou, L Pan, S Chen. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther 2021; 6(1): 320 https://doi.org/10.1038/s41392-021-00666-5
121
MT Larsen, M Kuhlmann, ML Hvam, KA Howard. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 2016; 4(1): 3 https://doi.org/10.1186/s40591-016-0048-8
122
MS Dennis, H Jin, D Dugger, R Yang, L McFarland, A Ogasawara, S Williams, MJ Cole, S Ross, R Schwall. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 2007; 67(1): 254–261 https://doi.org/10.1158/0008-5472.CAN-06-2531
123
Q Li, A Barrett, B Vijayakrishnan, A Tiberghien, R Beard, KW Rickert, KL Allen, RJ Christie, M Marelli, J Harper, P Howard, H Wu, WF Dall’Acqua, P Tsui, C Gao, MJ Borrok. Improved inhibition of tumor growth by diabody-drug conjugates via half-life extension. Bioconjug Chem 2019; 30(4): 1232–1243 https://doi.org/10.1021/acs.bioconjchem.9b00170
124
Z Han, C Shang, W Dai, G An, E Zhang, Q Lin, Y Yang. Abstract LB213: Identification of DM004, a first-in-class anti-5T4/MET bispecific antibody-drug conjugate. Cancer Res 2023; 83(8 Supplement): LB213 https://doi.org/10.1158/1538-7445.AM2023-LB213
125
Z Li, C Shang, X Guan, G An, Y Guo, E Zhang, Q Lin, Y Yang. Abstract LB215: A first-in-class anti-TROP2/EGFR bispecific antibody-drug conjugate, DM001, exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(8 Supplement): LB215 https://doi.org/10.1158/1538-7445.AM2023-LB215
126
Z Li, C Shang, X Guan, Z Han, G An, E Zhang, Q Lin, Y Yang. Abstract LB212: BCG022: A novel bispecific antibody-drug conjugate targeting HER3 and MET. Cancer Res 2023; 83(8 Supplement): LB212 https://doi.org/10.1158/1538-7445.AM2023-LB212
127
C Shang, G An, Y Guo, E Zhang, Q Lin, Y Yang. Abstract 2977: A first-in-class anti-HER2/TROP2 bispecific antibody-drug conjugate (YH012) exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(7 Supplement): 2977 https://doi.org/10.1158/1538-7445.AM2023-2977
128
S Yao, C Shang, G An, E Zhang, Q Lin, Y Yang. Abstract LB216: Discovery of BCG033, a novel anti-PTK7 x TROP2 bispecific antibody-drug conjugate with promising efficacy against triple-negative breast cancer. Cancer Res 2023; 83(8 Supplement): LB216 https://doi.org/10.1158/1538-7445.AM2023-LB216
129
Y Zhang, C Shang, N Wang, G An, E Zhang, Q Lin, Y Yang. Abstract LB214: A first-in-class bispecific antibody-drug conjugate (DM002) targeting HER3 and the juxtamembrane domain of MUC1. Cancer Res 2023; 83(8 Supplement): LB214 https://doi.org/10.1158/1538-7445.AM2023-LB214
130
P Jiménez-Labaig, A Rullan, A Hernando-Calvo, S Llop, S Bhide, B O'Leary, I Braña, KJ Harrington. A systematic review of antibody-drug conjugates and bispecific antibodies in head and neck squamous cell carcinoma and nasopha-ryngeal carcinoma: Charting the course of future therapies. Cancer Treat Rev 2024; 128: 102772 https://doi.org/10.1016/j.ctrv.2024.102772
J Uliano, C Corvaja, G Curigliano, P Tarantino. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8(1): 100790 https://doi.org/10.1016/j.esmoop.2023.100790
133
K Matsumoto, T Nakamura. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 2006; 119(3): 477–483 https://doi.org/10.1002/ijc.21808
134
K Matsumoto, M Umitsu, DM De Silva, A Roy, DP Bottaro. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108(3): 296–307 https://doi.org/10.1111/cas.13156
135
AM Dulak, CT Gubish, LP Stabile, C Henry, JM Siegfried. HGF-independent potentiation of EGFR action by c-Met. Oncogene 2011; 30(33): 3625–3635 https://doi.org/10.1038/onc.2011.84
136
LV Sequist, JY Han, MJ Ahn, BC Cho, H Yu, SW Kim, JC Yang, JS Lee, WC Su, D Kowalski, S Orlov, M Cantarini, RB Verheijen, A Mellemgaard, L Ottesen, P Frewer, X Ou, G Oxnard. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol 2020; 21(3): 373–386 https://doi.org/10.1016/S1470-2045(19)30785-5
137
SI Ou, L Young, AB Schrock, A Johnson, SJ Klempner, VW Zhu, VA Miller, SM Ali. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol 2017; 12(1): 137–140 https://doi.org/10.1016/j.jtho.2016.09.119
138
GGY Lai, TH Lim, J Lim, PJR Liew, XL Kwang, R Nahar, ZW Aung, A Takano, YY Lee, DPX Lau, GS Tan, SH Tan, WL Tan, MK Ang, CK Toh, BS Tan, A Devanand, CW Too, A Gogna, BH Ong, TPT Koh, R Kanesvaran, QS Ng, A Jain, T Rajasekaran, J Yuan, TKH Lim, AST Lim, AM Hillmer, WT Lim, NG Iyer, WL Tam, W Zhai, EH Tan, DSW Tan. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol 2019; 37(11): 876–884 https://doi.org/10.1200/JCO.18.00177
139
S Baldacci, Z Kherrouche, V Cockenpot, L Stoven, MC Copin, E Werkmeister, N Marchand, M Kyheng, D Tulasne, AB Cortot. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer 2018; 125: 57–67 https://doi.org/10.1016/j.lungcan.2018.09.008
140
SY Oh, YW Lee, EJ Lee, JH Kim, Y Park, SG Heo, MR Yu, MH Hong, J DaSilva, C Daly, BC Cho, SM Lim, MR Yun. Preclinical study of a biparatopic METxMET antibody-drug conjugate, REGN5093-M114, overcomes MET-driven acquired resistance to EGFR TKIs in EGFR-mutant NSCLC. Clin Cancer Res 2023; 29(1): 221–232 https://doi.org/10.1158/1078-0432.CCR-22-2180
141
JO DaSilva, K Yang, O Surriga, T Nittoli, A Kunz, MC Franklin, FJ Delfino, S Mao, F Zhao, JT Giurleo, MP Kelly, S Makonnen, C Hickey, P Krueger, R Foster, Z Chen, MW Retter, R Slim, TM Young, WC Olson, G Thurston, C Daly. A biparatopic antibody-drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol Cancer Ther 2021; 20(10): 1966–1976 https://doi.org/10.1158/1535-7163.MCT-21-0009
142
AE Perez Bay, D Faulkner, JO DaSilva, TM Young, K Yang, JT Giurleo, D Ma, FJ Delfino, WC Olson, G Thurston, C Daly, J Andreev. A bispecific METxMET antibody-drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol Cancer Ther 2023; 22(3): 357–370 https://doi.org/10.1158/1535-7163.MCT-22-0414
143
JY Li, SR Perry, V Muniz-Medina, X Wang, LK Wetzel, MC Rebelatto, MJ Hinrichs, BZ Bezabeh, RL Fleming, N Dimasi, H Feng, D Toader, AQ Yuan, L Xu, J Lin, C Gao, H Wu, R Dixit, JK Osbourn, SR Coats. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 2016; 29(1): 117–129 https://doi.org/10.1016/j.ccell.2015.12.008
144
K HamblettS BarnscherR DaviesP HammondA HernandezG WickmanV FungT Ding G GarnettA GaleyP ZwierzchowskiB ClavetteG Winters J RichG RowseJ BabcookD Hausman. Abstract P6–17–13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Cancer Res 2019; 79(4_Supplement): P6–17–13
145
MD Pegram, EP Hamilton, AR Tan, AM Storniolo, K Balic, AI Rosenbaum, M Liang, P He, S Marshall, A Scheuber, M Das, MR Patel. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther 2021; 20(8): 1442–1453 https://doi.org/10.1158/1535-7163.MCT-20-0014
146
K Jhaveri, H Han, E Dotan, DY Oh, C Ferrario, A Tolcher, KW Lee, CY Liao, YK Kang, YH Kim, E Hamilton, A Spira, N Patel, C Karapetis, SY Rha, L Boyken, J Woolery, P Bedard. Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann Oncol 2022; 33(7): S749–S750 https://doi.org/10.1016/j.annonc.2022.07.589
P Wang, K Guo, J Peng, J Sun, T Xu. JSKN003, a novel biparatopic anti-HER2 antibody-drug conjugate, exhibits potent antitumor efficacy. Antib Ther 2023; 6: tbad014.009 https://doi.org/10.1093/abt/tbad014.009
150
A Kharbanda, H Rajabi, C Jin, J Tchaicha, E Kikuchi, KK Wong, D Kufe. Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells. Clin Cancer Res 2014; 20(21): 5423–5434 https://doi.org/10.1158/1078-0432.CCR-13-3168
151
T Piyush, AR Chacko, P Sindrewicz, J Hilkens, JM Rhodes, LG Yu. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 2017; 24(11): 1937–1947 https://doi.org/10.1038/cdd.2017.119
152
JH Davis, C Aperlo, Y Li, E Kurosawa, Y Lan, KM Lo, JS Huston. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202 https://doi.org/10.1093/protein/gzp094
153
Y Zhang, C Shang, A Wang, J Zhang, Y Liu, H Li, X Li, G An, L Hui, F An, Y Yang. Abstract 6325: A novel EGFR x MUC1 bispecific antibody-drug conjugate, BSA01, targets MUC1 transmembrane cleavage products and improves tumor selectivity. Cancer Res 2023; 83(7 Supplement): 6325 https://doi.org/10.1158/1538-7445.AM2023-6325
154
Q Dong, Y Du, H Li, C Liu, Y Wei, MK Chen, X Zhao, YY Chu, Y Qiu, L Qin, H Yamaguchi, MC Hung. EGFR and c-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res 2019; 79(4): 819–829 https://doi.org/10.1158/0008-5472.CAN-18-1273
155
YL Wu, RA Soo, G Locatelli, U Stammberger, G Scagliotti, K Park. Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer. Cancer Treat Rev 2017; 61: 70–81 https://doi.org/10.1016/j.ctrv.2017.10.003
SL Moores, ML Chiu, BS Bushey, K Chevalier, L Luistro, K Dorn, RJ Brezski, P Haytko, T Kelly, SJ Wu, PL Martin, J Neijssen, PW Parren, J Schuurman, RM Attar, S Laquerre, MV Lorenzi, GM Anderson. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res 2016; 76(13): 3942–3953 https://doi.org/10.1158/0008-5472.CAN-15-2833
158
DW Wu, TC Chen, HS Huang, H Lee. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis 2016; 7(6): e2290 https://doi.org/10.1038/cddis.2016.192
159
YL Wu, L Zhang, DW Kim, X Liu, DH Lee, JC Yang, MJ Ahn, JF Vansteenkiste, WC Su, E Felip, V Chia, S Glaser, P Pultar, S Zhao, B Peng, M Akimov, DSW Tan. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol 2018; 36(31): 3101–3109 https://doi.org/10.1200/JCO.2018.77.7326
160
M Scaranti, E Cojocaru, S Banerjee, U Banerji. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 2020; 17(6): 349–359 https://doi.org/10.1038/s41571-020-0339-5
161
A Cheung, HJ Bax, DH Josephs, KM Ilieva, G Pellizzari, J Opzoomer, J Bloomfield, M Fittall, A Grigoriadis, M Figini, S Canevari, JF Spicer, AN Tutt, SN Karagiannis. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574 https://doi.org/10.18632/oncotarget.9651
162
O Ab, KR Whiteman, LM Bartle, X Sun, R Singh, D Tavares, A LaBelle, G Payne, RJ Lutz, J Pinkas, VS Goldmacher, T Chittenden, JM Lambert. IMGN853, a folate receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol Cancer Ther 2015; 14(7): 1605–1613 https://doi.org/10.1158/1535-7163.MCT-14-1095
163
D Romero. Mirvetuximab soravtansine has activity in platinum-sensitive epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21(6): 402 https://doi.org/10.1038/s41571-024-00888-w
164
UA Matulonis, D Lorusso, A Oaknin, S Pignata, A Dean, H Denys, N Colombo, T Van Gorp, JA Konner, MR Marin, P Harter, CG Murphy, J Wang, E Noble, B Esteves, M Method, RL Coleman. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol 2023; 41(13): 2436–2445 https://doi.org/10.1200/JCO.22.01900
165
KN Moore, TV Gorp, J Wang, B Esteves, PA Zweidler-McKay. MIRASOL (GOG 3045/ENGOT OV-55): a randomized, open-label, phase III study of mirvetuximab soravtansine versus investigator’s choice of chemotherapy in advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate-alpha (FRα) expression. J Clin Oncol 2020; 38(15 suppl): TPS6103 https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS6103
166
J Gong, X Hu, J Zhang, Y Du, R Huang, Y Teng, W Tan, L Shen. Phase Ia study of CBP-1008, a bi-specific ligand drug conjugate targeting FRα and TRPV6, in patients with advanced solid tumors. J Clin Oncol 2021; 39(15 suppl): 3077 https://doi.org/10.1200/JCO.2021.39.15_suppl.3077
167
B Esapa, J Jiang, A Cheung, A Chenoweth, DE Thurston, SN Karagiannis. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers (Basel) 2023; 15(6): 1845 https://doi.org/10.3390/cancers15061845
168
N Joubert, A Beck, C Dumontet, C Denevault-Sabourin. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel) 2020; 13(9): 245 https://doi.org/10.3390/ph13090245
169
Y Sun, X Yu, X Wang, K Yuan, G Wang, L Hu, G Zhang, W Pei, L Wang, C Sun, P Yang. Bispecific antibodies in cancer therapy: target selection and regulatory requirements. Acta Pharm Sin B 2023; 13(9): 3583–3597 https://doi.org/10.1016/j.apsb.2023.05.023
170
T Jiang, T Shi, H Zhang, J Hu, Y Song, J Wei, S Ren, C Zhou. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 2019; 12(1): 93 https://doi.org/10.1186/s13045-019-0787-5
171
RG Gupta, F Li, J Roszik, G Lizée. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov 2021; 11(5): 1024–1039 https://doi.org/10.1158/2159-8290.CD-20-1575
172
M Yarchoan, BA 3rd Johnson, ER Lutz, DA Laheru, EM Jaffee. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17(4): 209–222 https://doi.org/10.1038/nrc.2016.154
173
Z Zhang, PJ Rohweder, C Ongpipattanakul, K Basu, MF Bohn, EJ Dugan, V Steri, B Hann, KM Shokat, CS Craik. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022; 40(9): 1060–1069. e7 https://doi.org/10.1016/j.ccell.2022.07.005
T Hattori, L Maso, KY Araki, A Koide, J Hayman, P Akkapeddi, I Bang, BG Neel, S Koide. Creating MHC-restricted neoantigens with covalent inhibitors that can be targeted by immune therapy. Cancer Discov 2023; 13(1): 132–145 https://doi.org/10.1158/2159-8290.CD-22-1074
176
J Douglass, EH Hsiue, BJ Mog, MS Hwang, SR DiNapoli, AH Pearlman, MS Miller, KM Wright, PA Azurmendi, Q Wang, S Paul, A Schaefer, AD Skora, MD Molin, MF Konig, Q Liu, E Watson, Y Li, MB Murphy, DM Pardoll, C Bettegowda, N Papadopoulos, SB Gabelli, KW Kinzler, B Vogelstein, S Zhou. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6(57): eabd5515 https://doi.org/10.1126/sciimmunol.abd5515
177
EHC Hsiue, KM Wright, J Douglass, MS Hwang, BJ Mog, AH Pearlman, S Paul, SR DiNapoli, MF Konig, Q Wang, A Schaefer, MS Miller, AD Skora, PA Azurmendi, MB Murphy, Q Liu, E Watson, Y Li, DM Pardoll, C Bettegowda, N Papadopoulos, KW Kinzler, B Vogelstein, SB Gabelli, S Zhou. Targeting a neoantigen derived from a common TP53 mutation. Science 2021; 371(6533): eabc8697 https://doi.org/10.1126/science.abc8697
178
Y Shen, X Wei, S Jin, Y Wu, W Zhao, Y Xu, L Pan, Z Zhou, S Chen. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci 2020; 15(6): 777–785 https://doi.org/10.1016/j.ajps.2020.01.002
179
DJ Marshall, SS Harried, JL Murphy, CA Hall, MS Shekhani, C Pain, CA Lyons, A Chillemi, F Malavasi, HL Pearce, JS Thorson, JR Prudent. Extracellular antibody drug conjugates exploiting the proximity of two proteins. Mol Ther 2016; 24(10): 1760–1770 https://doi.org/10.1038/mt.2016.119
180
AG Polson, J Calemine-Fenaux, P Chan, W Chang, E Christensen, S Clark, FJ de Sauvage, D Eaton, K Elkins, JM Elliott, G Frantz, RN Fuji, A Gray, K Harden, GS Ingle, NM Kljavin, H Koeppen, C Nelson, S Prabhu, H Raab, S Ross, DS Slaga, JP Stephan, SJ Scales, SD Spencer, R Vandlen, B Wranik, SF Yu, B Zheng, A Ebens. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 2009; 69(6): 2358–2364 https://doi.org/10.1158/0008-5472.CAN-08-2250
181
SV Govindan, TM Cardillo, SJ Moon, HJ Hansen, DM Goldenberg. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 2009; 15(19): 6052–6061 https://doi.org/10.1158/1078-0432.CCR-09-0586
182
F Javaid, C Pilotti, C Camilli, D Kallenberg, C Bahou, J Blackburn, JR Baker, J Greenwood, SE Moss, V Chudasama. Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chem Biol 2021; 2(4): 1206–1220 https://doi.org/10.1039/D1CB00104C
183
S Sau, A Petrovici, HO Alsaab, K Bhise, AK Iyer. PDL-1 antibody drug conjugate for selective chemo-guided immune modulation of cancer. Cancers (Basel) 2019; 11(2): 232 https://doi.org/10.3390/cancers11020232
184
F Giansanti, E Capone, S Ponziani, E Piccolo, R Gentile, A Lamolinara, A Di Campli, M Sallese, V Iacobelli, A Cimini, V De Laurenzi, R Lattanzio, M Piantelli, R Ippoliti, G Sala, S Iacobelli. Secreted Gal-3BP is a novel promising target for non-internalizing antibody-drug conjugates. J Control Release 2019; 294: 176–184 https://doi.org/10.1016/j.jconrel.2018.12.018
185
N Awasthi, AJ Mikels-Vigdal, E Stefanutti, MA Schwarz, S Monahan, V Smith, RE Schwarz. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer. J Cell Mol Med 2019; 23(6): 3878–3887 https://doi.org/10.1111/jcmm.14242
186
ML Yap, JD McFadyen, X Wang, M Ziegler, YC Chen, A Willcox, CJ Nowell, AM Scott, EK Sloan, PM Hogarth, GA Pietersz, K Peter. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019; 9(4): 1154–1169 https://doi.org/10.7150/thno.29146
187
GJ Bernardes, G Casi, S Trüssel, I Hartmann, K Schwager, J Scheuermann, D Neri. A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl 2012; 51(4): 941–944 https://doi.org/10.1002/anie.201106527
LR Desnoyers, O Vasiljeva, JH Richardson, A Yang, EE Menendez, TW Liang, C Wong, PH Bessette, K Kamath, SJ Moore, JG Sagert, DR Hostetter, F Han, J Gee, J Flandez, K Markham, M Nguyen, M Krimm, KR Wong, S Liu, PS Daugherty, JW West, HB Lowman. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 2013; 5(207): 207ra144 https://doi.org/10.1126/scitranslmed.3006682
190
KA Autio, V Boni, RW Humphrey, A Naing. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res 2020; 26(5): 984–989 https://doi.org/10.1158/1078-0432.CCR-19-1457
191
M Chomet, M Schreurs, M Nguyen, B Howng, R Villanueva, M Krimm, O Vasiljeva, GAMS van Dongen, DJ Vugts. The tumor targeting performance of anti-CD166 probody drug conjugate CX-2009 and its parental derivatives as monitored by 89Zr-immuno-PET in xenograft bearing mice. Theranostics 2020; 10(13): 5815–5828 https://doi.org/10.7150/thno.44334
192
S Singh, L Serwer, A DuPage, K Elkins, N Chauhan, M Ravn, F Buchanan, L Wang, M Krimm, K Wong, J Sagert, K Tipton, SJ Moore, Y Huang, A Jang, E Ureno, A Miller, S Patrick, S Duvur, S Liu, O Vasiljeva, Y Li, T Henriques, I Badagnani, S Jeffries, S Schleyer, R Leanna, C Krebber, S Viswanathan, L Desnoyers, J Terrett, M Belvin, S Morgan-Lappe, WM Kavanaugh, J Richardson. Nonclinical efficacy and safety of CX-2029, an anti-CD71 probody-drug conjugate. Mol Cancer Ther 2022; 21(8): 1326–1336 https://doi.org/10.1158/1535-7163.MCT-21-0193
193
M Johnson, A El-Khoueiry, N Hafez, N Lakhani, H Mamdani, J Rodon, RE Sanborn, J Garcia-Corbacho, V Boni, M Stroh, AL Hannah, S Wang, H Castro, A Spira. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clin Cancer Res 2021; 27(16): 4521–4530 https://doi.org/10.1158/1078-0432.CCR-21-0194
194
Y Li, J Liu, W Chen, W Wang, F Yang, X Liu, Y Sheng, K Du, M He, X Lyu, H Li, L Zhao, Z Wei, F Wang, S Zheng, J Sui. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 2023; 16(1): 2 https://doi.org/10.1186/s13045-023-01399-4
195
M Kamata-Sakurai, Y Narita, Y Hori, T Nemoto, R Uchikawa, M Honda, N Hironiwa, K Taniguchi, M Shida-Kawazoe, S Metsugi, T Miyazaki, NA Wada, Y Ohte, S Shimizu, H Mikami, T Tachibana, N Ono, K Adachi, T Sakiyama, T Matsushita, S Kadono, SI Komatsu, A Sakamoto, S Horikawa, A Hirako, K Hamada, S Naoi, N Savory, Y Satoh, M Sato, Y Noguchi, J Shinozuka, H Kuroi, A Ito, T Wakabayashi, M Kamimura, F Isomura, Y Tomii, N Sawada, A Kato, O Ueda, Y Nakanishi, M Endo, KI Jishage, Y Kawabe, T Kitazawa, T Igawa. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov 2021; 11(1): 158–175 https://doi.org/10.1158/2159-8290.CD-20-0328
196
T Sulea, N Rohani, J Baardsnes, CR Corbeil, C Deprez, Y Cepero-Donates, A Robert, JD Schrag, M Parat, M Duchesne, ML Jaramillo, EO Purisima, JC Zwaagstra. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 2020; 12(1): 1682866 https://doi.org/10.1080/19420862.2019.1682866
197
S Han, KS Lim, BJ Blackburn, J Yun, CW Putnam, DA Bull, YW Won. The potential of topoisomerase inhibitor-based antibody-drug conjugates. Pharmaceutics 2022; 14(8): 1707 https://doi.org/10.3390/pharmaceutics14081707
198
SO Doronina, TD Bovee, DW Meyer, JB Miyamoto, ME Anderson, CA Morris-Tilden, PD Senter. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem 2008; 19(10): 1960–1963 https://doi.org/10.1021/bc800289a
199
RP Lyon, TD Bovee, SO Doronina, PJ Burke, JH Hunter, HD Neff-LaFord, M Jonas, ME Anderson, JR Setter, PD Senter. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 2015; 33(7): 733–735 https://doi.org/10.1038/nbt.3212
200
TN Iwata, C Ishii, S Ishida, Y Ogitani, T Wada, T Agatsuma. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther 2018; 17(7): 1494–1503 https://doi.org/10.1158/1535-7163.MCT-17-0749
201
Y Ogitani, T Aida, K Hagihara, J Yamaguchi, C Ishii, N Harada, M Soma, H Okamoto, M Oitate, S Arakawa, T Hirai, R Atsumi, T Nakada, I Hayakawa, Y Abe, T Agatsuma. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 2016; 22(20): 5097–5108 https://doi.org/10.1158/1078-0432.CCR-15-2822
202
Y Matsuda, BA Mendelsohn. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2021; 21(7): 963–975 https://doi.org/10.1080/14712598.2021.1846714
203
R Sheyi, BG de la Torre, F Albericio. Linkers: an assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022; 14(2): 396 https://doi.org/10.3390/pharmaceutics14020396
204
Y Xu, G Jiang, C Tran, X Li, TH Heibeck, MR Masikat, Q Cai, AR Steiner, AK Sato, TJ Hallam, G Yin. RP-HPLC DAR characterization of site-specific antibody drug conjugates produced in a cell-free expression system. Org Process Res Dev 2016; 20(6): 1034–1043 https://doi.org/10.1021/acs.oprd.6b00072
205
S Barnscher, J Babcook, J Rich, G Winters, G Garnett, A Hernandez, V Fung, K Yin, K Hamblett, R Davies. Abstract 61: Zymelink drug conjugate platform: redefining the therapeutic window for ADCs. Cancer Res 2017; 77(13 Supplement): 61 https://doi.org/10.1158/1538-7445.AM2017-61
206
Y Mazor, KF Sachsenmeier, C Yang, A Hansen, J Filderman, K Mulgrew, H Wu, WF Dall’Acqua. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7(1): 40098 https://doi.org/10.1038/srep40098
207
C Sellmann, A Doerner, C Knuehl, N Rasche, V Sood, S Krah, L Rhiel, A Messemer, J Wesolowski, M Schuette, S Becker, L Toleikis, H Kolmar, B Hock. Balancing selectivity and efficacy of bispecific epidermal growth factor receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J Biol Chem 2016; 291(48): 25106–25119 https://doi.org/10.1074/jbc.M116.753491
208
J Andreev, N Thambi, AE Perez Bay, F Delfino, J Martin, MP Kelly, JR Kirshner, A Rafique, A Kunz, T Nittoli, D MacDonald, C Daly, W Olson, G Thurston. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 2017; 16(4): 681–693 https://doi.org/10.1158/1535-7163.MCT-16-0658
209
S Hu, W Fu, W Xu, Y Yang, M Cruz, SD Berezov, D Jorissen, H Takeda, W Zhu. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res 2015; 75(1): 159–170 https://doi.org/10.1158/0008-5472.CAN-14-1670
210
I Nessler, E Khera, S Vance, A Kopp, Q Qiu, TA Keating, AO Abu-Yousif, T Sandal, J Legg, L Thompson, N Goodwin, GM Thurber. Increased tumor penetration of single-domain antibody-drug conjugates improves in vivo efficacy in prostate cancer models. Cancer Res 2020; 80(6): 1268–1278 https://doi.org/10.1158/0008-5472.CAN-19-2295
211
MP Deonarain, Q Xue. Tackling solid tumour therapy with small-format drug conjugates. Antib Ther 2020; 3(4): 237–245 https://doi.org/10.1093/abt/tbaa024
212
RV Kholodenko, DV Kalinovsky, II Doronin, ED Ponomarev, IV Kholodenko. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 2019; 26(3): 396–426 https://doi.org/10.2174/0929867324666170817152554
213
MP Deonarain, G Yahioglu, I Stamati, A Pomowski, J Clarke, BM Edwards, S Diez-Posada, AC Stewart. Small-format drug conjugates: a viable alternative to ADCs for solid tumours. Antibodies (Basel) 2018; 7(2): 16 https://doi.org/10.3390/antib7020016
214
Y Wu, Q Li, Y Kong, Z Wang, C Lei, J Li, L Ding, C Wang, Y Cheng, Y Wei, Y Song, Z Yang, C Tu, Y Ding, T Ying. A highly stable human single-domain antibody-drug conjugate exhibits superior penetration and treatment of solid tumors. Mol Ther 2022; 30(8): 2785–2799 https://doi.org/10.1016/j.ymthe.2022.04.013
215
H Huang, T Wu, H Shi, Y Wu, H Yang, K Zhong, Y Wang, Y Liu. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun (Camb) 2019; 55(35): 5175–5178 https://doi.org/10.1039/C9CC01391A
216
DA Vallera, H Chen, AR Sicheneder, A Panoskaltsis-Mortari, EP Taras. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33(9): 1233–1242 https://doi.org/10.1016/j.leukres.2009.02.006
217
NN Waldron, SH Barsky, PR Dougherty, DA Vallera. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 2014; 9(3): 239–249 https://doi.org/10.1007/s11523-013-0290-9
218
N Porębska, K Ciura, A Chorążewska, M Zakrzewska, J Otlewski, Ł Opaliński. Multivalent protein-drug conjugates—an emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67: 108213 https://doi.org/10.1016/j.biotechadv.2023.108213
219
L Zhou, F Yang, Z Bai, X Zhou, Z Zhang, Z Li, J Gong, J Yu, L Pan, C Cao, JJ Chou. Self-assembled L-DNA linkers for rapid construction of multi-specific antibody-drug conjugates library. Angew Chem Int Ed Engl 2023; 62(27): e202302805 https://doi.org/10.1002/anie.202302805
220
YE Kim, YN Kim, JA Kim, HM Kim, Y Jung. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6(1): 7134 https://doi.org/10.1038/ncomms8134
221
N Porębska, A Knapik, M Poźniak, MA Krzyścik, M Zakrzewska, J Otlewski, Ł Opaliński. Intrinsically fluorescent oligomeric cytotoxic conjugates toxic for FGFR1-overproducing cancers. Biomacromolecules 2021; 22(12): 5349–5362 https://doi.org/10.1021/acs.biomac.1c01280
222
CM Dundas, D Demonte, S Park. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97(21): 9343–9353 https://doi.org/10.1007/s00253-013-5232-z
223
Q Le, V Nguyen, S Park. Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019; 103(18): 7355–7365 https://doi.org/10.1007/s00253-019-10036-5
224
E Tremante, L Sibilio, F Centola, N Knutti, G Holzapfel, I Manni, M Allegretti, P Lombardi, G Salvo, L Cecchetelli, K Friedrich, J Bertram, P Giacomini. TOOLBOX: Strep-Tagged nano-assemblies of antibody-drug-conjugates (ADC) for modular and conditional cancer drugging. Oncol Rep 2021; 45(5): 77 https://doi.org/10.3892/or.2021.8028
225
R Lázaro-Gorines, J Ruiz-de-la-Herrán, R Navarro, L Sanz, L Álvarez-Vallina, A Martínez-Del-Pozo, JG Gavilanes, J Lacadena. A novel carcinoembryonic antigen (CEA)-targeted trimeric immunotoxin shows significantly enhanced antitumor activity in human colorectal cancer xenografts. Sci Rep 2019; 9(1): 11680 https://doi.org/10.1038/s41598-019-48285-z
226
A Yamaguchi, Y Anami, SYY Ha, TJ Roeder, W Xiong, J Lee, NT Ueno, N Zhang, Z An, K Tsuchikama. Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorg Med Chem 2021; 32: 116013 https://doi.org/10.1016/j.bmc.2021.116013