Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  , Vol. Issue (): 0   https://doi.org/10.1007/s11684-024-1080-8
  本期目录
Ferroptosis contributes to immunosuppression
Nina He1,2,3,4, Dun Yuan1, Minjie Luo1,2,3,4, Qing Xu1,2,3,4, Zhongchi Wen1,2,3,4, Ziqin Wang1,2,3,4, Jie Zhao1,2,3,4(), Ying Liu1,2,3,4()
. Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
. Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China
. Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, China
. National Medicine Functional Experimental Teaching Center, Changsha 410008, China
 全文: PDF(4162 KB)   HTML
Abstract

As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term “immunosuppression” refers to various factors that can directly harm immune cells’ structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.

Key wordsferroptosis    immunosuppression    immune cells
收稿日期: 2023-12-26     
Corresponding Author(s): Jie Zhao,Ying Liu   
 引用本文:   
. [J]. Frontiers of Medicine, 10.1007/s11684-024-1080-8.
Nina He, Dun Yuan, Minjie Luo, Qing Xu, Zhongchi Wen, Ziqin Wang, Jie Zhao, Ying Liu. Ferroptosis contributes to immunosuppression. Front. Med., , (): 0.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-024-1080-8
https://academic.hep.com.cn/fmd/CN/Y/V/I/0
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 SJ Dixon , KM Lemberg , MR Lamprecht , R Skouta , EM Zaitsev , CE Gleason , DN Patel , AJ Bauer , AM Cantley , WS Yang , B III Morrison , BR Stockwell . Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072
https://doi.org/10.1016/j.cell.2012.03.042
2 HZ Feng , BR Stockwell . Unsolved mysteries: how does lipid peroxidation cause ferroptosis. PLoS Biol 2018; 16(5): e2006203
https://doi.org/10.1371/journal.pbio.2006203
3 BR Stockwell , JPF Angeli , H Bayir , AI Bush , M Conrad , SJ Dixon , S Fulda , S Gascón , SK Hatzios , VE Kagan , K Noel , XJ Jiang , A Linkermann , ME Murphy , M Overholtzer , A Oyagi , GC Pagnussat , J Park , Q Ran , CS Rosenfeld , K Salnikow , DL Tang , FM Torti , SV Torti , S Toyokuni , KA Woerpel , DD Zhang . Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273–285
https://doi.org/10.1016/j.cell.2017.09.021
4 E Nakamura , M Sato , HL Yang , F Miyagawa , M Harasaki , K Tomita , S Matsuoka , A Noma , K Iwai , N Minato . 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 1999; 274(5): 3009–3016
https://doi.org/10.1074/jbc.274.5.3009
5 P Koppula , YL Zhang , L Zhuang , BY Gan . Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 2018; 38(1): 12
https://doi.org/10.1186/s40880-018-0288-x
6 X Sun , Z Ou , R Chen , X Niu , D Chen , R Kang , D Tang . Activation of the p62-Keap1–NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016; 63(1): 173–184
https://doi.org/10.1002/hep.28251
7 M Conrad , H Sato . The oxidative stress-inducible cystine/glutamate antiporter, system xc−: cystine supplier and beyond. Amino Acids 2012; 42(1): 231–246
https://doi.org/10.1007/s00726-011-0867-5
8 WS Yang , R SriRamaratnam , ME Welsch , K Shimada , R Skouta , VS Viswanathan , JH Cheah , PA Clemons , AF Shamji , CB Clish , LM Brown , AW Girotti , VW Cornish , SL Schreiber , BR Stockwell . Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156(1–2): 317–331
https://doi.org/10.1016/j.cell.2013.12.010
9 BR Stockwell , JP Friedmann Angeli , H Bayir , AI Bush , M Conrad , SJ Dixon , S Fulda , S Gascon , SK Hatzios , VE Kagan , K Noel , X Jiang , A Linkermann , ME Murphy , M Overholtzer , A Oyagi , GC Pagnussat , J Park , Q Ran , CS Rosenfeld , K Salnikow , D Tang , FM Torti , SV Torti , S Toyokuni , KA Woerpel , DD Zhang . Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273–285
https://doi.org/10.1016/j.cell.2017.09.021
10 L Galluzzi , I Vitale , SA Aaronson , JM Abrams , D Adam , P Agostinis , ES Alnemri , L Altucci , I Amelio , DW Andrews , M Annicchiarico-Petruzzelli , AV Antonov , E Arama , EH Baehrecke , NA Barlev , NG Bazan , F Bernassola , MJM Bertrand , K Bianchi , MV Blagosklonny , K Blomgren , C Borner , P Boya , C Brenner , M Campanella , E Candi , D Carmona-Gutierrez , F Cecconi , FK Chan , NS Chandel , EH Cheng , JE Chipuk , JA Cidlowski , A Ciechanover , GM Cohen , M Conrad , JR Cubillos-Ruiz , PE Czabotar , V D’Angiolella , TM Dawson , VL Dawson , Laurenzi V De , Maria R De , KM Debatin , RJ DeBerardinis , M Deshmukh , Daniele N Di , Virgilio F Di , VM Dixit , SJ Dixon , CS Duckett , BD Dynlacht , WS El-Deiry , JW Elrod , GM Fimia , S Fulda , AJ Garcia-Saez , AD Garg , C Garrido , E Gavathiotis , P Golstein , E Gottlieb , DR Green , LA Greene , H Gronemeyer , A Gross , G Hajnoczky , JM Hardwick , IS Harris , MO Hengartner , C Hetz , H Ichijo , M Jaattela , B Joseph , PJ Jost , PP Juin , WJ Kaiser , M Karin , T Kaufmann , O Kepp , A Kimchi , RN Kitsis , DJ Klionsky , RA Knight , S Kumar , SW Lee , JJ Lemasters , B Levine , A Linkermann , SA Lipton , RA Lockshin , C Lopez-Otin , SW Lowe , T Luedde , E Lugli , M MacFarlane , F Madeo , M Malewicz , W Malorni , G Manic , JC Marine , SJ Martin , JC Martinou , JP Medema , P Mehlen , P Meier , S Melino , EA Miao , JD Molkentin , UM Moll , C Munoz-Pinedo , S Nagata , G Nunez , A Oberst , M Oren , M Overholtzer , M Pagano , T Panaretakis , M Pasparakis , JM Penninger , DM Pereira , S Pervaiz , ME Peter , M Piacentini , P Pinton , JHM Prehn , H Puthalakath , GA Rabinovich , M Rehm , R Rizzuto , CMP Rodrigues , DC Rubinsztein , T Rudel , KM Ryan , E Sayan , L Scorrano , F Shao , Y Shi , J Silke , HU Simon , A Sistigu , BR Stockwell , A Strasser , G Szabadkai , SWG Tait , D Tang , N Tavernarakis , A Thorburn , Y Tsujimoto , B Turk , Berghe T Vanden , P Vandenabeele , Heiden MG Vander , A Villunger , HW Virgin , KH Vousden , D Vucic , EF Wagner , H Walczak , D Wallach , Y Wang , JA Wells , W Wood , J Yuan , Z Zakeri , B Zhivotovsky , L Zitvogel , G Melino , G Kroemer . Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25(3): 486–541
https://doi.org/10.1038/s41418-017-0012-4
11 A Roveri , M Maiorino , F Ursini . Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Methods Enzymol 1994; 233: 202–212
https://doi.org/10.1016/S0076-6879(94)33023-9
12 Y Liu , L Zhou , C Lv , L Liu , S Miao , Y Xu , K Li , Y Zhao , J Zhao . PGE2 pathway mediates oxidative stress-induced ferroptosis in renal tubular epithelial cells. FEBS J 2023; 290(2): 533–549
https://doi.org/10.1111/febs.16609
13 JPF Angeli , M Schneider , B Proneth , YY Tyurina , VA Tyurin , VJ Hammond , N Herbach , M Aichler , A Walch , E Eggenhofer , D Basavarajappa , O Rådmark , S Kobayashi , T Seibt , H Beck , F Neff , I Esposito , R Wanke , H Förster , O Yefremova , M Heinrichmeyer , GW Bornkamm , EK Geissler , SB Thomas , BR Stockwell , VB O’Donnell , VE Kagan , JA Schick , M Conrad . Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16(12): 1180–1191
https://doi.org/10.1038/ncb3064
14 SJ Wang , DW Li , Y Ou , L Jiang , Y Chen , YM Zhao , W Gu . Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 2016; 17(2): 366–373
https://doi.org/10.1016/j.celrep.2016.09.022
15 T Luedde , N Kaplowitz , RF Schwabe . Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147(4): 765–783.e4
https://doi.org/10.1053/j.gastro.2014.07.018
16 LJ Chen , WS Hambright , R Na , QT Ran . Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 2015; 290(47): 28097–28106
https://doi.org/10.1074/jbc.M115.680090
17 Van B Do , F Gouel , A Jonneaux , K Timmerman , P Gelé , M Pétrault , M Bastide , C Laloux , C Moreau , R Bordet , D Devos , JC Devedjian . Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 2016; 94: 169–178
https://doi.org/10.1016/j.nbd.2016.05.011
18 Y Zhao , Y Liu , Y Xu , K Li , L Zhou , H Qiao , Q Xu , J Zhao . The role of ferroptosis in blood-brain barrier injury. Cell Mol Neurobiol 2023; 43(1): 223–236
https://doi.org/10.1007/s10571-022-01197-5
19 L Galluzzi , JM Bravo-San Pedro , G Kroemer . Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death Differ 2015; 22(8): 1237–1238
https://doi.org/10.1038/cdd.2015.54
20 N Guo . Identification of ACSL4 as a biomarker and contributor of ferroptosis in clear cell renal cell carcinoma. Transl Cancer Res 2022; 11(8): 2688–2699
https://doi.org/10.21037/tcr-21-2157
21 Y Yu , Y Yan , FL Niu , YJ Wang , XY Chen , GD Su , YR Liu , XL Zhao , L Qian , P Liu , YY Xiong . Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7: 193
https://doi.org/10.1038/s41420-021-00579-w
22 Y Xu , K Li , Y Zhao , L Zhou , Y Liu , J Zhao . Role of ferroptosis in stroke. Cell Mol Neurobiol 2023; 43: 205–222
https://doi.org/10.1007/s10571-022-01196-6
23 Y Cui , Y Zhang , XL Zhao , LM Shao , GP Liu , CJ Sun , R Xu , ZL Zhang . ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 2021; 93: 312–321
https://doi.org/10.1016/j.bbi.2021.01.003
24 ZN Xiao , DM Shen , T Lan , C Wei , ZL Luo , W Chen , YR Zhang , CG Zhang , YM Wang , YB Lu , PP Wang , F Yang , Q Li , LY Hu , WH Wu . Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol 2022; 50: 102256
https://doi.org/10.1016/j.redox.2022.102256
25 Y Xu , Y Liu , K Li , D Yuan , S Yang , L Zhou , Y Zhao , S Miao , C Lv , J Zhao . COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol 2022; 59(3): 1619–1631
https://doi.org/10.1007/s12035-021-02706-1
26 Y Li , DC Feng , ZY Wang , Y Zhao , RM Sun , DH Tian , DS Liu , F Zhang , SL Ning , JH Yao , XF Tian . Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 2019; 26(11): 2284–2299
https://doi.org/10.1038/s41418-019-0299-4
27 YL Rong , J Fan , CY Ji , ZH Wang , XH Ge , JX Wang , W Ye , GY Yin , WH Cai , W Liu . USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ 2022; 29(6): 1164–1175
https://doi.org/10.1038/s41418-021-00907-8
28 DP Del Re , D Amgalan , A Linkermann , QH Liu , RN Kitsis . Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 2019; 99(4): 1765–1817
https://doi.org/10.1152/physrev.00022.2018
29 P Aisen , C Enns , M Wessling-Resnick . Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 2001; 33(10): 940–959
https://doi.org/10.1016/S1357-2725(01)00063-2
30 MP Soares , I Hamza . Macrophages and iron metabolism. Immunity 2016; 44(3): 492–504
https://doi.org/10.1016/j.immuni.2016.02.016
31 P Li , M Jiang , K Li , H Li , Y Zhou , X Xiao , Y Xu , S Krishfield , PE Lipsky , GC Tsokos , X Zhang . Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 2021; 22(9): 1107–1117
https://doi.org/10.1038/s41590-021-00993-3
32 Y Ren , JL Tang , MY Mok , AWK Chan , A Wu , CS Lau . Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 2003; 48(10): 2888–2897
https://doi.org/10.1002/art.11237
33 T Rothe , F Gruber , S Uderhardt , N Ipseiz , S Rossner , O Oskolkova , S Bluml , N Leitinger , W Bicker , VN Bochkov , M Yamamoto , A Steinkasserer , G Schett , E Zinser , G Kronke . 12/15-lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest 2015; 125(5): 1944–1954
https://doi.org/10.1172/JCI78490
34 E Dai , L Han , J Liu , Y Xie , G Kroemer , DJ Klionsky , HJ Zeh , R Kang , J Wang , D Tang . Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020; 16(11): 2069–2083
https://doi.org/10.1080/15548627.2020.1714209
35 EM Burton , J Voyer , BE Gewurz . Epstein-Barr virus latency programs dynamically sensitize B cells to ferroptosis. Proc Natl Acad Sci USA 2022; 119(11): e2118300119
https://doi.org/10.1073/pnas.2118300119
36 Y Zhao , Z Liu , G Liu , Y Zhang , S Liu , D Gan , W Chang , X Peng , ES Sung , K Gilbert , Y Zhu , X Wang , Z Zeng , H Baldwin , G Ren , J Weaver , A Huron , T Mayberry , Q Wang , Y Wang , ME Diaz-Rubio , X Su , MS Stack , S Zhang , X Lu , RD Sheldon , J Li , C Zhang , J Wan , X Lu . Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab 2023; 35(10): 1688–1703.e10
https://doi.org/10.1016/j.cmet.2023.09.004
37 SM Poznanski , K Singh , TM Ritchie , JA Aguiar , IY Fan , AL Portillo , EA Rojas , F Vahedi , A El-Sayes , S Xing , M Butcher , Y Lu , AC Doxey , JD Schertzer , HW Hirte , AA Ashkar . Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab 2021; 33(6): 1205–1220.e5
https://doi.org/10.1016/j.cmet.2021.03.023
38 S Akira , S Uematsu , O Takeuchi . Pathogen recognition and innate immunity. Cell 2006; 124(4): 783–801
https://doi.org/10.1016/j.cell.2006.02.015
39 F Ginhoux , M Guilliams . Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016; 44(3): 439–449
https://doi.org/10.1016/j.immuni.2016.02.024
40 PJ Murray , TA Wynn . Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11(11): 723–737
https://doi.org/10.1038/nri3073
41 A Shapouri-Moghaddam , S Mohammadian , H Vazini , M Taghadosi , SA Esmaeili , F Mardani , B Seifi , A Mohammadi , JT Afshari , A Sahebkar . Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425–6440
https://doi.org/10.1002/jcp.26429
42 PJ Murray . Macrophage polarization. Annu Rev Physiol 2017; 79(1): 541–566
https://doi.org/10.1146/annurev-physiol-022516-034339
43 VH Perry , J Teeling . Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35(5): 601–612
https://doi.org/10.1007/s00281-013-0382-8
44 Y Lavin , A Mortha , A Rahman , M Merad . Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 2015; 15(12): 731–744
https://doi.org/10.1038/nri3920
45 N Yagoda , M von Rechenberg , E Zaganjor , AJ Bauer , WS Yang , DJ Fridman , AJ Wolpaw , I Smukste , JM Peltier , JJ Boniface , R Smith , SL Lessnick , S Sahasrabudhe , BR Stockwell . RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447(7146): 865–868
https://doi.org/10.1038/nature05859
46 SJ Dixon , KM Lemberg , MR Lamprecht , R Skouta , EM Zaitsev , CE Gleason , DN Patel , AJ Bauer , AM Cantley , WS Yang , B 3rd Morrison , BR Stockwell . Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072
https://doi.org/10.1016/j.cell.2012.03.042
47 Y Cui , ZL Zhang , X Zhou , ZY Zhao , R Zhao , XY Xu , XY Kong , JY Ren , XJ Yao , Q Wen , FF Guo , SL Gao , JD Sun , Q Wan . Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation 2021; 18(1): 249
https://doi.org/10.1186/s12974-021-02231-x
48 L Cassetta , JW Pollard . Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018; 17(12): 887–904
https://doi.org/10.1038/nrd.2018.169
49 A Mantovani , T Schioppa , C Porta , P Allavena , A Sica . Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006; 25(3): 315–322
https://doi.org/10.1007/s10555-006-9001-7
50 A Sica , V Bronte . Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117(5): 1155–1166
https://doi.org/10.1172/JCI31422
51 Y Xia , L Rao , H Yao , Z Wang , P Ning , X Chen . Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater 2020; 32(40): 2002054
https://doi.org/10.1002/adma.202002054
52 E Dai , L Han , J Liu , Y Xie , HJ Zeh , R Kang , L Bai , D Tang . Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 2020; 11(1): 6339
https://doi.org/10.1038/s41467-020-20154-8
53 J Wu , Z Feng , L Chen , Y Li , HJ Bian , JJ Geng , ZH Zheng , XH Fu , Z Pei , YF Qin , L Yang , YL Zhao , K Wang , R Chen , Q He , G Nan , XJ Jiang , ZN Chen , P Zhu . TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun 2022; 13(1): 676
https://doi.org/10.1038/s41467-021-27948-4
54 SM Ouyang , HX Li , LL Lou , QY Huang , ZH Zhang , JS Mo , M Li , JY Lu , K Zhu , YJ Chu , W Ding , JZ Zhu , ZY Lin , L Zhong , JJ Wang , PB Yue , J Turkson , PQ Liu , YX Wang , XL Zhang . Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol 2022; 52: 102317
https://doi.org/10.1016/j.redox.2022.102317
55 G Corna , L Campana , E Pignatti , A Castiglioni , E Tagliafico , L Bosurgi , A Campanella , S Brunelli , AA Manfredi , P Apostoli , L Silvestri , C Camaschella , P Rovere-Querini . Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 2010; 95(11): 1814–1822
https://doi.org/10.3324/haematol.2010.023879
56 S Recalcati , M Locati , A Marini , P Santambrogio , F Zaninotto , M De Pizzol , L Zammataro , D Girelli , G Cairo . Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 2010; 40(3): 824–835
https://doi.org/10.1002/eji.200939889
57 AA Kapralov , Q Yang , HH Dar , YY Tyurina , TS Anthonymuthu , R Kim , CM St Croix , K Mikulska-Ruminska , B Liu , IH Shrivastava , VA Tyurin , HC Ting , YL Wu , Y Gao , GV Shurin , MA Artyukhova , LA Ponomareva , PS Timashev , RM Domingues , DA Stoyanovsky , JS Greenberger , RK Mallampalli , I Bahar , DI Gabrilovich , H Bayir , VE Kagan . Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol 2020; 16(3): 278–290
https://doi.org/10.1038/s41589-019-0462-8
58 A Kumar , KP Singh , P Bali , S Anwar , A Kaul , OP Singh , BK Gupta , N Kumari , MN Alam , M Raziuddin , MP Sinha , S Gourinath , AK Sharma , M Sohail . iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol 2018; 15: 192–206
https://doi.org/10.1016/j.redox.2017.12.005
59 ZL Cui , WK Li , YD Wang , MR Zhao , KL Liu , Y Yang , S Teng , N Zhang , L Min , P Li , ST Zhang , JX Xu , J Wu . M2 macrophage-derived exosomal ferritin heavy chain promotes colon cancer cell proliferation. Biol Trace Elem Res 2023; 201(8): 3717–3728
https://doi.org/10.1007/s12011-022-03488-w
60 K Kashfi , J Kannikal , N Nath . Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 2021; 10(11): 3194
https://doi.org/10.3390/cells10113194
61 KM Giger , TA Kalfa . Phylogenetic and ontogenetic view of erythroblastic islands. BioMed Res Int 2015; 2015: 873628
https://doi.org/10.1155/2015/873628
62 MD Knutson , M Oukka , LM Koss , F Aydemir , M Wessling-Resnick . Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 2005; 102(5): 1324–1328
https://doi.org/10.1073/pnas.0409409102
63 LA Youssef , A Rebbaa , S Pampou , SP Weisberg , BR Stockwell , EA Hod , SL Spitalnik . Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood 2018; 131(23): 2581–2593
https://doi.org/10.1182/blood-2017-12-822619
64 H Yuan , XM Li , XY Zhang , R Kang , DL Tang . Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 2016; 478(3): 1338–1343
https://doi.org/10.1016/j.bbrc.2016.08.124
65 SH Liu , ZS Gao , WQ He , YT Wu , JW Liu , S Zhang , LP Yan , SY Mao , XZ Shi , WT Fan , SQ Song . The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free Radic Biol Med 2022; 193: 213–226
https://doi.org/10.1016/j.freeradbiomed.2022.10.270
66 L Gao , JS Zhang , TT Yang , L Jiang , XQ Liu , S Wang , X Wang , YB Huang , HY Wang , MY Zhang , TT Gong , LJ Ma , C Li , CY He , XM Meng , YG Wu . STING/ACSL4 axis-dependent ferroptosis and inflammation promote hypertension-associated chronic kidney disease. Mol Ther 2023; 31(10): 3084–3103
https://doi.org/10.1016/j.ymthe.2023.07.026
67 CY Niu , DM Jiang , YN Guo , ZL Wang , Q Sun , X Wang , WK Ling , XG An , CW Ji , S Li , H Zhao , B Kang . Spermidine suppresses oxidative stress and ferroptosis by Nrf2/HO-1/GPX4 and Akt/FHC/ACSL4 pathway to alleviate ovarian damage. Life Sci 2023; 332: 122109
https://doi.org/10.1016/j.lfs.2023.122109
68 H Zheng , L Jiang , T Tsuduki , M Conrad , S Toyokuni . Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol 2021; 48: 102175
https://doi.org/10.1016/j.redox.2021.102175
69 ZY Wu , D Li , DY Tian , XJ Liu , ZM Wu . Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition. PLoS One 2022; 17(12): e0279010
https://doi.org/10.1371/journal.pone.0279010
70 EP Amaral , DL Costa , S Namasivayam , N Riteau , O Kamenyeva , L Mittereder , KD Mayer-Barber , BB Andrade , A Sher . A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med 2019; 216(3): 556–570
https://doi.org/10.1084/jem.20181776
71 DE Kennedy , KL Knight . Inhibition of B lymphopoiesis by adipocytes and IL-1-producing myeloid-derived suppressor cells. J Immunol 2015; 195(6): 2666–2674
https://doi.org/10.4049/jimmunol.1500957
72 SM Behar , M Divangahi , HG Remold . Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy. Nat Rev Microbiol 2010; 8(9): 668–674
https://doi.org/10.1038/nrmicro2387
73 HH Dar , YY Tyurina , K Mikulska-Ruminska , I Shrivastava , HC Ting , VA Tyurin , J Krieger , CM St Croix , S Watkins , E Bayir , G Mao , CR Armbruster , A Kapralov , H Wang , MR Parsek , TS Anthonymuthu , AF Ogunsola , BA Flitter , CJ Freedman , JR Gaston , TR Holman , JM Pilewski , JS Greenberger , RK Mallampalli , Y Doi , JS Lee , I Bahar , JM Bomberger , H Bayir , VE Kagan . Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest 2018; 128(10): 4639–4653
https://doi.org/10.1172/JCI99490
74 X Luo , HB Gong , HY Gao , YP Wu , WY Sun , ZQ Li , G Wang , B Liu , L Liang , H Kurihara , WJ Duan , YF Li , RR He . Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ 2021; 28(6): 1971–1989
https://doi.org/10.1038/s41418-020-00719-2
75 Y Cui , Z Zhang , X Zhou , Z Zhao , R Zhao , X Xu , X Kong , J Ren , X Yao , Q Wen , F Guo , S Gao , J Sun , Q Wan . Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation 2021; 18(1): 249
https://doi.org/10.1186/s12974-021-02231-x
76 C Summers , SM Rankin , AM Condliffe , N Singh , AM Peters , ER Chilvers . Neutrophil kinetics in health and disease. Trends Immunol 2010; 31(8): 318–324
https://doi.org/10.1016/j.it.2010.05.006
77 RS Hotchkiss , LL Moldawer , SM Opal , K Reinhart , IR Turnbull , JL Vincent . Sepsis and septic shock. Nat Rev Dis Primers 2016; 2(1): 16045
https://doi.org/10.1038/nrdp.2016.45
78 FVS Castanheira , P Kubes . Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019; 133(20): 2178–2185
https://doi.org/10.1182/blood-2018-11-844530
79 W Cai , T Yang , H Liu , LJ Han , K Zhang , XM Hu , XJ Zhang , KJ Yin , YQ Gao , MVL Bennett , RK Leak , J Chen . Peroxisome proliferator-activated receptor γ (PPARγ): a master gatekeeper in CNS injury and repair. Prog Neurobiol 2018; 163–164: 27–58
https://doi.org/10.1016/j.pneurobio.2017.10.002
80 D Zhao , C Xue , Y Yang , J Li , X Wang , Y Chen , S Zhang , Y Chen , Y Duan , X Yang , J Han . Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153: 113444
https://doi.org/10.1016/j.biopha.2022.113444
81 X Xue , T Dai , J Chen , Y Xu , Z Yang , J Huang , W Xu , S Li , Q Meng . PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J Orthop Surg Res 2023; 18(1): 620
https://doi.org/10.1186/s13018-023-04092-x
82 ML Kruzel , M Zimecki , JK Actor . Lactoferrin in a context of inflammation-induced pathology. Front Immunol 2017; 8: 1438
https://doi.org/10.3389/fimmu.2017.01438
83 B Wang , YP Timilsena , E Blanch , B Adhikari . Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2019; 59(4): 580–596
https://doi.org/10.1080/10408398.2017.1381583
84 JK Actor , SA Hwang , ML Kruzel . Lactoferrin as a natural immune modulator. Curr Pharm Des 2009; 15(17): 1956–1973
https://doi.org/10.2174/138161209788453202
85 GS Gullotta , Feo D De , E Friebel , A Semerano , GM Scotti , A Bergamaschi , E Butti , E Brambilla , A Genchi , A Capotondo , M Gallizioli , S Coviello , M Piccoli , T Vigo , Valle P Della , P Ronchi , G Comi , A D’Angelo , N Maugeri , L Roveri , A Uccelli , B Becher , G Martino , M Bacigaluppi . Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol 2023; 24(6): 925–940
https://doi.org/10.1038/s41590-023-01505-1
86 LY Wei , C Liu , J Wang , X Zheng , Q Peng , QR Ye , ZL Qin , ZS Li , XY Zhang , YG Wu , YQ Wen , XM Zhang , Q Yan , J Ma . Lactoferrin is required for early B cell development in C57BL/6 mice. J Hematol Oncol 2021; 14(1): 58
https://doi.org/10.1186/s13045-021-01074-6
87 K Takeda , S Akira . Toll-like receptors in innate immunity. Int Immunol 2005; 17(1): 1–14
https://doi.org/10.1093/intimm/dxh186
88 W Li , G Feng , JM Gauthier , I Lokshina , R Higashikubo , S Evans , X Liu , A Hassan , S Tanaka , M Cicka , HM Hsiao , D Ruiz-Perez , A Bredemeyer , RW Gross , DL Mann , YY Tyurina , AE Gelman , VE Kagan , A Linkermann , KJ Lavine , D Kreisel . Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest 2019; 129(6): 2293–2304
https://doi.org/10.1172/JCI126428
89 F Ito , K Kato , I Yanatori , T Murohara , S Toyokuni . Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol 2021; 47: 102174
https://doi.org/10.1016/j.redox.2021.102174
90 KM Murphy , SL Reiner . The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2(12): 933–944
https://doi.org/10.1038/nri954
91 JF Zhu , H Yamane , WE Paul . Differentiation of effector CD4+ T cell populations. Annu Rev Immunol 2010; 28: 445–489
https://doi.org/10.1146/annurev-immunol-030409-101212
92 TR Mosmann , H Cherwinski , MW Bond , MA Giedlin , RL Coffman . Pillars article: two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 2005; 175(1): 5–14
93 H Park , ZX Li , XO Yang , SH Chang , R Nurieva , YH Wang , Y Wang , L Hood , Z Zhu , Q Tian , C Dong . A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133–1141
https://doi.org/10.1038/ni1261
94 EV Acosta-Rodriguez , L Rivino , J Geginat , D Jarrossay , M Gattorno , A Lanzavecchia , F Sallusto , G Napolitani . Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8(6): 639–646
https://doi.org/10.1038/ni1467
95 CG Vinuesa , MA Linterman , D Yu , IC MacLennan . Follicular helper T cells. Annu Rev Immunol 2016; 34(1): 335–368
https://doi.org/10.1146/annurev-immunol-041015-055605
96 J Shaw , A Chakraborty , A Nag , A Chattopadyay , AK Dasgupta , M Bhattacharyya . Intracellular iron overload leading to DNA damage of lymphocytes and immune dysfunction in thalassemia major patients. Eur J Haematol 2017; 99(5): 399–408
https://doi.org/10.1111/ejh.12936
97 Z Wang , W Yin , L Zhu , J Li , Y Yao , F Chen , M Sun , J Zhang , N Shen , Y Song , X Chang . Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity 2018; 49(1): 80–92.e7
https://doi.org/10.1016/j.immuni.2018.05.008
98 H Matsushita , A Hosoi , S Ueha , J Abe , N Fujieda , M Tomura , R Maekawa , K Matsushima , O Ohara , K Kakimi . Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNγ-dependent cell-cycle arrest. Cancer Immunol Res 2015; 3(1): 26–36
https://doi.org/10.1158/2326-6066.CIR-14-0098
99 TT Wei , MY Zhang , XH Zheng , TH Xie , W Wang , J Zou , Y Li , HY Li , J Cai , X Wang , J Tan , X Yang , Y Yao , L Zhu . Interferon-γ induces retinal pigment epithelial cell ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in age-related macular degeneration. FEBS J 2022; 289(7): 1968–1983
https://doi.org/10.1111/febs.16272
100 T Cao , J Zhou , Q Liu , T Mao , B Chen , Q Wu , L Wang , JL Pathak , N Watanabe , J Li . Interferon-γ induces salivary gland epithelial cell ferroptosis in Sjogren’s syndrome via JAK/STAT1-mediated inhibition of system Xc. Free Radic Biol Med 2023; 205: 116–128
https://doi.org/10.1016/j.freeradbiomed.2023.05.027
101 K Kang , SH Park , J Chen , Y Qiao , E Giannopoulou , K Berg , A Hanidu , J Li , G Nabozny , K Kang , KH Park-Min , LB Ivashkiv . Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 2017; 47(2): 235–250.e4
https://doi.org/10.1016/j.immuni.2017.07.017
102 X Ma , L Xiao , L Liu , L Ye , P Su , E Bi , Q Wang , M Yang , J Qian , Q Yi . CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33(5): 1001–1012.e5
https://doi.org/10.1016/j.cmet.2021.02.015
103 S Xu , O Chaudhary , P Rodriguez-Morales , X Sun , D Chen , R Zappasodi , Z Xu , AFM Pinto , A Williams , I Schulze , Y Farsakoglu , SK Varanasi , JS Low , W Tang , H Wang , B McDonald , V Tripple , M Downes , RM Evans , NA Abumrad , T Merghoub , JD Wolchok , MN Shokhirev , PC Ho , JL Witztum , B Emu , G Cui , SM Kaech . Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 2021; 54(7): 1561–1577.e7
https://doi.org/10.1016/j.immuni.2021.05.003
104 P Jiang , SQ Gu , D Pan , JX Fu , A Sahu , XH Hu , ZY Li , N Traugh , X Bu , B Li , J Liu , GJ Freeman , MA Brown , KW Wucherpfennig , XLS Liu . Signatures of T-cell dysfunction and exclusion predict cancer immunotherapy response. Cancer Immunol Res 2019; 7(2): B077
https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-B077
105 MQ Hao , YX Jiang , Y Zhang , XY Yang , JH Han . Ferroptosis regulation by methylation in cancer. Bba-Rev Cancer 2023; 1878(6): 188972
https://doi.org/10.1016/j.bbcan.2023.188972
106 S Li , Y Huang . Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol 2022; 24(1): 1–12
https://doi.org/10.1007/s12094-021-02669-8
107 D Wang , L Fu , H Sun , L Guo , RN DuBois . Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology 2015; 149(7): 1884–1895e
https://doi.org/10.1053/j.gastro.2015.07.064
108 N Caronni , F La Terza , FM Vittoria , G Barbiera , L Mezzanzanica , V Cuzzola , S Barresi , M Pellegatta , P Canevazzi , G Dunsmore , C Leonardi , E Montaldo , E Lusito , E Dugnani , A Citro , MSF Ng , M Schiavo Lena , D Drago , A Andolfo , S Brugiapaglia , A Scagliotti , A Mortellaro , V Corbo , Z Liu , A Mondino , P Dellabona , L Piemonti , C Taveggia , C Doglioni , P Cappello , F Novelli , M Iannacone , LG Ng , F Ginhoux , S Crippa , M Falconi , C Bonini , L Naldini , M Genua , R Ostuni . IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623(7986): 415–422
https://doi.org/10.1038/s41586-023-06685-2
109 B Piqueras , J Connolly , H Freitas , AK Palucka , J Banchereau . Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 2006; 107(7): 2613–2618
https://doi.org/10.1182/blood-2005-07-2965
110 JH Cha , LC Chan , CW Li , JL Hsu , MC Hung . Mechanisms controlling PD-L1 expression in cancer. Mol Cell 2019; 76(3): 359–370
https://doi.org/10.1016/j.molcel.2019.09.030
111 X Zhou , L Zou , H Liao , J Luo , T Yang , J Wu , W Chen , K Wu , S Cen , D Lv , F Shu , Y Yang , C Li , B Li , X Mao . Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+ T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm Sin B 2022; 12(2): 692–707
https://doi.org/10.1016/j.apsb.2021.07.016
112 VR Juneja , KA McGuire , RT Manguso , MW LaFleur , N Collins , WN Haining , GJ Freeman , AH Sharpe . PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 2017; 214(4): 895–904
https://doi.org/10.1084/jem.20160801
113 JM Drijvers , JE Gillis , T Muijlwijk , TH Nguyen , EF Gaudiano , IS Harris , MW LaFleur , AE Ringel , CH Yao , K Kurmi , VR Juneja , JD Trombley , MC Haigis , AH Sharpe . Pharmacologic screening identifies metabolic vulnerabilities of CD8+ T Cells. Cancer Immunol Res 2021; 9(2): 184–199
https://doi.org/10.1158/2326-6066.CIR-20-0384
114 C Xu , S Sun , T Johnson , R Qi , S Zhang , J Zhang , K Yang . The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 2021; 35(11): 109235
https://doi.org/10.1016/j.celrep.2021.109235
115 HP Wang , F Franco , YC Tsui , X Xie , MP Trefny , R Zappasodi , SR Mohmood , J Fernández-García , CH Tsai , I Schulze , F Picard , E Meylan , R Silverstein , I Goldberg , SM Fendt , JD Wolchok , T Merghoub , C Jandus , A Zippelius , PC Ho . CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol 2020; 21(3): 298–308
https://doi.org/10.1038/s41590-019-0589-5
116 A Sharabi , GC Tsokos . T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 2020; 16(2): 100–112
https://doi.org/10.1038/s41584-019-0356-x
117 RD Michalek , VA Gerriets , SR Jacobs , AN Macintyre , NJ MacIver , EF Mason , SA Sullivan , AG Nichols , JC Rathmell . Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186(6): 3299–3303
https://doi.org/10.4049/jimmunol.1003613
118 F Hao , M Tian , X Zhang , X Jin , Y Jiang , X Sun , Y Wang , P Peng , J Liu , C Xia , Y Feng , M Wei . Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc Natl Acad Sci USA 2021; 118(22): e2014681118
https://doi.org/10.1073/pnas.2014681118
119 EA Tivol , F Borriello , AN Schweitzer , WP Lynch , JA Bluestone , AH Sharpe . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3(5): 541–547
https://doi.org/10.1016/1074-7613(95)90125-6
120 M Berg , N Zavazava . Regulation of CD28 expression on CD8 T cells by CTLA-4. J Leukoc Biol 2008; 83(4): 853–863
https://doi.org/10.1189/jlb.0107065
121 K Wing , Y Onishi , P Prieto-Martin , T Yamaguchi , M Miyara , Z Fehervari , T Nomura , S Sakaguchi . CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322(5899): 271–275
https://doi.org/10.1126/science.1160062
122 AL Mellor , DH Munn . IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4(10): 762–774
https://doi.org/10.1038/nri1457
123 M Tekguc , JB Wing , M Osaki , J Long , S Sakaguchi . Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci USA 2021; 118(30): e2023739118
https://doi.org/10.1073/pnas.2023739118
124 LSK Walker . EFIS Lecture: understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett 2017; 184: 43–50
https://doi.org/10.1016/j.imlet.2017.02.007
125 P Sharma , S Goswami , D Raychaudhuri , BA Siddiqui , P Singh , A Nagarajan , J Liu , SK Subudhi , C Poon , KL Gant , SM Herbrich , S Anandhan , S Islam , M Amit , G Anandappa , JP Allison . Immune checkpoint therapy-current perspectives and future directions. Cell 2023; 186(8): 1652–1669
https://doi.org/10.1016/j.cell.2023.03.006
126 JH Xu , X Wu , XY Wang . Ferroptosis-related genes with regard to CTLA-4 and immune infiltration in hepatocellular carcinoma. Biochem Genet 2023; 61(2): 687–703
https://doi.org/10.1007/s10528-022-10279-4
127 D Yu , S Rao , LM Tsai , SK Lee , Y He , EL Sutcliffe , M Srivastava , M Linterman , L Zheng , N Simpson , JI Ellyard , IA Parish , CS Ma , QJ Li , CR Parish , CR Mackay , CG Vinuesa . The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 2009; 31(3): 457–468
https://doi.org/10.1016/j.immuni.2009.07.002
128 SK Lee , RJ Rigby , D Zotos , LM Tsai , S Kawamoto , JL Marshall , RR Ramiscal , TD Chan , D Gatto , R Brink , D Yu , S Fagarasan , DM Tarlinton , AF Cunningham , CG Vinuesa . B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J Exp Med 2011; 208(7): 1377–1388
https://doi.org/10.1084/jem.20102065
129 U Klein , R Dalla-Favera . Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008; 8(1): 22–33
https://doi.org/10.1038/nri2217
130 Y Yao , Z Chen , H Zhang , C Chen , M Zeng , J Yunis , Y Wei , Y Wan , N Wang , M Zhou , C Qiu , Q Zeng , HS Ong , H Wang , FV Makota , Y Yang , Z Yang , N Wang , J Deng , C Shen , Y Xia , L Yuan , Z Lian , Y Deng , C Guo , A Huang , P Zhou , H Shi , W Zhang , H Yi , D Li , M Xia , J Fu , N Wu , JB de Haan , N Shen , W Zhang , Z Liu , D Yu . Selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol 2021; 22(9): 1127–1139
https://doi.org/10.1038/s41590-021-00996-0
131 D Mougiakakos , CC Johansson , R Jitschin , M Bottcher , R Kiessling . Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood 2011; 117(3): 857–861
https://doi.org/10.1182/blood-2010-09-307041
132 GJ van der Windt , B Everts , CH Chang , JD Curtis , TC Freitas , E Amiel , EJ Pearce , EL Pearce . Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012; 36(1): 68–78
https://doi.org/10.1016/j.immuni.2011.12.007
133 A Pietrangelo . Hemochromatosis: an endocrine liver disease. Hepatology 2007; 46(4): 1291–1301
https://doi.org/10.1002/hep.21886
134 ML Maia , CS Pereira , G Melo , I Pinheiro , MA Exley , G Porto , MF Macedo . Invariant natural killer T cells are reduced in hereditary hemochromatosis patients. J Clin Immunol 2015; 35(1): 68–74
https://doi.org/10.1007/s10875-014-0118-0
135 F Martin , JF Kearney . B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 2001; 13(2): 195–201
https://doi.org/10.1016/S0952-7915(00)00204-1
136 N Baumgarth . The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011; 11(1): 34–46
https://doi.org/10.1038/nri2901
137 D Allman , S Pillai . Peripheral B cell subsets. Curr Opin Immunol 2008; 20(2): 149–157
https://doi.org/10.1016/j.coi.2008.03.014
138 MC Hsu , KM Toellner , CG Vinuesa , ICM MacLennan . B cell clones that sustain long-term plasmablast growth in T-independent extrafollicular antibody responses. Proc Natl Acad Sci USA 2006; 103(15): 5905–5910
https://doi.org/10.1073/pnas.0601502103
139 VD Dang , E Hilgenberg , S Ries , P Shen , S Fillatreau . From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 2014; 28: 77–83
https://doi.org/10.1016/j.coi.2014.02.009
140 M Shapiro-Shelef , K Calame . Regulation of plasma-cell development. Nat Rev Immunol 2005; 5(3): 230–242
https://doi.org/10.1038/nri1572
141 AE Gilbert , P Karagiannis , T Dodev , A Koers , K Lacy , DH Josephs , P Takhar , JL Geh , C Healy , M Harries , KM Acland , SM Rudman , RL Beavil , PJ Blower , AJ Beavil , HJ Gould , J Spicer , FO Nestle , SN Karagiannis . Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One 2011; 6(4): e19330
https://doi.org/10.1371/journal.pone.0019330
142 J Kurai , H Chikumi , K Hashimoto , K Yamaguchi , A Yamasaki , T Sako , H Touge , H Makino , M Takata , M Miyata , M Nakamoto , N Burioka , E Shimizu . Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res 2007; 13(5): 1552–1561
https://doi.org/10.1158/1078-0432.CCR-06-1726
143 JY Shi , Q Gao , ZC Wang , J Zhou , XY Wang , ZH Min , YH Shi , GM Shi , ZB Ding , AW Ke , Z Dai , SJ Qiu , K Song , J Fan . Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res 2013; 19(21): 5994–6005
https://doi.org/10.1158/1078-0432.CCR-12-3497
144 C Mlynarczyk , M Teater , J Pae , CR Chin , L Wang , T Arulraj , D Barisic , A Papin , KB Hoehn , E Kots , J Ersching , A Bandyopadhyay , E Barin , HX Poh , CM Evans , A Chadburn , Z Chen , H Shen , HM Isles , B Pelzer , I Tsialta , AS Doane , H Geng , MH Rehman , J Melnick , W Morgan , DTT Nguyen , O Elemento , MG Kharas , SR Jaffrey , DW Scott , G Khelashvili , M Meyer-Hermann , GD Victora , A Melnick . BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science 2023; 379(6629): eabj7412
https://doi.org/10.1126/science.abj7412
145 IJ Cho , D Kim , EO Kim , KH Jegal , JK Kim , SM Park , R Zhao , SH Ki , SC Kim , SK Ku . Cystine and methionine deficiency promotes ferroptosis by inducing B-cell translocation gene 1. Antioxidants 2021; 10(10): 1543
https://doi.org/10.3390/antiox10101543
146 MH Falk , T Meier , RD Issels , M Brielmeier , B Scheffer , GW Bornkamm . Apoptosis in Burkitt lymphoma cells is prevented by promotion of cysteine uptake. Int J Cancer 1998; 75(4): 620–625
https://doi.org/10.1002/(SICI)1097-0215(19980209)75:4<620::AID-IJC21>3.0.CO;2-B
147 J Han , SH Back , J Hur , YH Lin , R Gildersleeve , J Shan , CL Yuan , D Krokowski , S Wang , M Hatzoglou , MS Kilberg , MA Sartor , RJ Kaufman . ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 2013; 15(5): 481–490
https://doi.org/10.1038/ncb2738
148 L Yuniati , LT van der Meer , E Tijchon , DV Schenau , L van Emst , M Levers , SAL Palit , C Rodenbach , G Poelmans , PM Hoogerbrugge , JX Shan , MS Kilberg , B Scheijen , FN van Leeuwen . Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget 2016; 7(3): 3128–3143
https://doi.org/10.18632/oncotarget.6519
149 W Zhang , J Wang , Z Liu , L Zhang , J Jing , L Han , A Gao . Iron-dependent ferroptosis participated in benzene-induced anemia of inflammation through IRP1-DHODH-ALOX12 axis. Free Radic Biol Med 2022; 193(Pt 1): 122–133
https://doi.org/10.1016/j.freeradbiomed.2022.10.273
150 AJ Clarke , T Riffelmacher , D Braas , RJ Cornall , AK Simon . B1a B cells require autophagy for metabolic homeostasis and self-renewal. J Exp Med 2018; 215(2): 399–413
https://doi.org/10.1084/jem.20170771
151 J Muri , H Thut , GW Bornkamm , M Kopf . B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep 2019; 29(9): 2731–2744.e4
https://doi.org/10.1016/j.celrep.2019.10.070
152 E Vivier , E Tomasello , M Baratin , T Walzer , S Ugolini . Functions of natural killer cells. Nat Immunol 2008; 9(5): 503–510
https://doi.org/10.1038/ni1582
153 LN Bodduluru , ER Kasala , RMR Madhana , CS Sriram . Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett 2015; 357(2): 454–467
https://doi.org/10.1016/j.canlet.2014.12.020
154 AR French , WM Yokoyama . Natural killer cells and viral infections. Curr Opin Immunol 2003; 15(1): 45–51
https://doi.org/10.1016/S095279150200002X
155 MA Cooper , TA Fehniger , MA Caligiuri . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22(11): 633–640
https://doi.org/10.1016/S1471-4906(01)02060-9
156 A Jewett , J Kos , Y Fong , MW Ko , T Safaei , M Perisic Nanut , K Kaur . NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Cancer Biol 2018; 53: 178–188
https://doi.org/10.1016/j.semcancer.2018.08.001
157 CA Biron , L Brossay . NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 2001; 13(4): 458–464
https://doi.org/10.1016/S0952-7915(00)00241-7
158 B Cózar , M Greppi , S Carpentier , E Narni-Mancinelli , L Chiossone , E Vivier . Tumor-infiltrating natural killer cells. Cancer Discov 2021; 11(1): 34–44
https://doi.org/10.1158/2159-8290.CD-20-0655
159 SQ Crome , LT Nguyen , S Lopez-Verges , SYC Yang , B Martin , JY Yam , DJ Johnson , J Nie , M Pniak , PH Yen , A Milea , R Sowamber , SR Katz , MQ Bernardini , BA Clarke , PA Shaw , PA Lang , HK Berman , TJ Pugh , LL Lanier , PS Ohashi . A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med 2017; 23(3): 368–375
https://doi.org/10.1038/nm.4278
160 A Bruno , C Focaccetti , A Pagani , AS Imperatori , M Spagnoletti , N Rotolo , AR Cantelmo , F Franzi , C Capella , G Ferlazzo , L Mortara , A Albini , DM Noonan . The Proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013; 15(2): 133–142
https://doi.org/10.1593/neo.121758
161 I Levi , H Amsalem , A Nissan , M Darash-Yahana , T Peretz , O Mandelboim , J Rachmilewitz . Characterization of tumor infiltrating natural killer cell subset. Oncotarget 2015; 6(15): 13835–13843
https://doi.org/10.18632/oncotarget.3453
162 P Kalinski . Regulation of immune responses by prostaglandin E2. J Immunol 2012; 188(1): 21–28
https://doi.org/10.4049/jimmunol.1101029
163 JP Böttcher , E Bonavita , P Chakravarty , H Blees , M Cabeza-Cabrerizo , S Sammicheli , NC Rogers , E Sahai , S Zelenay , e Sousa C Reis . NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018; 172(5): 1022–1037.e14
https://doi.org/10.1016/j.cell.2018.01.004
164 L Yao , J Hou , X Wu , Y Lu , Z Jin , Z Yu , B Yu , J Li , Z Yang , C Li , M Yan , Z Zhu , B Liu , C Yan , L Su . Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol 2023; 67: 102923
https://doi.org/10.1016/j.redox.2023.102923
165 Merad M. , Sathe P. , Helft J. , Miller J. , Mortha A. . The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31: 563–604
https://doi.org/10.1146/annurev-immunol-020711-074950
166 SE Henrickson , M Perro , SM Loughhead , B Senman , S Stutte , M Quigley , G Alexe , M Iannacone , MP Flynn , S Omid , JL Jesneck , S Imam , TR Mempel , IB Mazo , WN Haining , UH von Andrian . Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity 2013; 39(3): 496–507
https://doi.org/10.1016/j.immuni.2013.08.034
167 M Cabeza-Cabrerizo , A Cardoso , CM Minutti , MP da Costa , CRE Sousa . Dendritic cells revisited. Annu Rev Immunol 2021; 39: 131–166
https://doi.org/10.1146/annurev-immunol-061020-053707
168 JR Cubillos-Ruiz , PC Silberman , MR Rutkowski , S Chopra , A Perales-Puchalt , M Song , S Zhang , SE Bettigole , D Gupta , K Holcomb , LH Ellenson , T Caputo , AH Lee , JR Conejo-Garcia , LH Glimcher . ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 2015; 161(7): 1527–1538
https://doi.org/10.1016/j.cell.2015.05.025
169 PF Liu , YT Feng , HW Li , X Chen , GS Wang , SY Xu , YL Li , L Zhao . Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25(1): 10
https://doi.org/10.1186/s11658-020-00205-0
170 X Chen , J Huang , CH Yu , J Liu , WL Gao , JB Li , XX Song , ZA Zhou , CF Li , YC Xie , G Kroemer , JB Liu , DL Tang , R Kang . A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat Commun 2022; 13(1): 6318
https://doi.org/10.1038/s41467-022-34096-w
171 I Efimova , E Catanzaro , L Van der Meeren , VD Turubanova , H Hammad , TA Mishchenko , MV Vedunova , C Fimognari , C Bachert , F Coppieters , S Lefever , AG Skirtach , O Krysko , DV Krysko . Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 2020; 8(2): e001369
https://doi.org/10.1136/jitc-2020-001369
172 R Förster , A Schubel , D Breitfeld , E Kremmer , I Renner-Muller , E Wolf , M Lipp . CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99(1): 23–33
https://doi.org/10.1016/S0092-8674(00)80059-8
173 B Wiernicki , S Maschalidi , J Pinney , S Adjemian , T Vanden Berghe , KS Ravichandran , P Vandenabeele . Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun 2022; 13(1): 3676
https://doi.org/10.1038/s41467-022-31218-2
174 HF Yan , T Zou , QZ Tuo , S Xu , H Li , AA Belaidi , P Lei . Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6(1): 49
https://doi.org/10.1038/s41392-020-00428-9
175 H Zhu , A Santo , Z Jia , Y Li . GPx4 in bacterial infection and polymicrobial sepsis: involvement of ferroptosis and pyroptosis. Reactive Oxygen Species 2019; 7(21): 154–160
https://doi.org/10.20455/ros.2019.835
176 I Park , M Kim , K Choe , E Song , H Seo , Y Hwang , J Ahn , SH Lee , JH Lee , YH Jo , K Kim , GY Koh , P Kim . Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J 2019; 53(3): 1800786
https://doi.org/10.1183/13993003.00786-2018
177 E Pastille , S Didovic , D Brauckmann , M Rani , H Agrawal , FU Schade , Y Zhang , SB Flohé . Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J Immunol 2011; 186(2): 977–986
https://doi.org/10.4049/jimmunol.1001147
178 SE Wenzel , YY Tyurina , J Zhao , CM St Croix , HH Dar , G Mao , VA Tyurin , TS Anthonymuthu , AA Kapralov , AA Amoscato , K Mikulska-Ruminska , IH Shrivastava , EM Kenny , Q Yang , JC Rosenbaum , LJ Sparvero , DR Emlet , X Wen , Y Minami , F Qu , SC Watkins , TR Holman , AP VanDemark , JA Kellum , I Bahar , H Bayir , VE Kagan . PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017; 171(3): 628–641.e26
https://doi.org/10.1016/j.cell.2017.09.044
179 Y Liu , Y Zhao , K Li , S Miao , Y Xu , J Zhao . WD-40 repeat protein 26 protects against oxidative stress-induced injury in astrocytes via Nrf2/HO-1 pathways. Mol Biol Rep 2022; 49(2): 1045–1056
https://doi.org/10.1007/s11033-021-06925-6
180 HL Hu , YQ Chen , LL Jing , CL Zhai , L Shen . The link between ferroptosis and cardiovascular diseases: a novel target for treatment. Front Cardiovasc Med 2021; 8: 710963
https://doi.org/10.3389/fcvm.2021.710963
181 T Bai , MX Li , YF Liu , ZT Qiao , ZW Wang . Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 2020; 160: 92–102
https://doi.org/10.1016/j.freeradbiomed.2020.07.026
182 YQ Zhou , HX Zhou , L Hua , C Hou , QW Jia , JX Chen , S Zhang , YJ Wang , S He , EZ Jia . Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med 2021; 171: 55–68
https://doi.org/10.1016/j.freeradbiomed.2021.05.009
183 X Lin , SK Shan , F Xu , JY Zhong , F Wu , JY Duan , B Guo , FXZ Li , Y Wang , MH Zheng , QS Xu , LM Lei , WL Ou-Yang , YY Wu , KX Tang , MHE Ullah , XB Liao , LQ Yuan . The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification. Cell Death Dis 2022; 13(7): 650
https://doi.org/10.1038/s41419-022-05064-5
184 A Broder , JJ Chan , C Putterman . Dendritic cells: an important link between antiphospholipid antibodies, endothelial dysfunction, and atherosclerosis in autoimmune and non-autoimmune diseases. Clin Immunol 2013; 146(3): 197–206
https://doi.org/10.1016/j.clim.2012.12.002
185 JE Talmadge , DI Gabrilovich . History of myeloid-derived suppressor cells. Nat Rev Cancer 2013; 13(10): 739–752
https://doi.org/10.1038/nrc3581
186 KR Jordan , P Kapoor , E Spongberg , RP Tobin , DX Gao , VF Borges , MD McCarter . Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother 2017; 66(4): 503–513
https://doi.org/10.1007/s00262-016-1953-z
187 T Condamine , DI Gabrilovich . Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32(1): 19–25
https://doi.org/10.1016/j.it.2010.10.002
188 A Trigunaite , A Khan , E Der , A Song , S Varikuti , TN Jorgensen . Gr-1(high) CD11b+ cells suppress B cell differentiation and lupus-like disease in lupus-prone male mice. Arthritis Rheum 2013; 65(9): 2392–2402
https://doi.org/10.1002/art.38048
189 J Ji , J Xu , S Zhao , F Liu , J Qi , Y Song , J Ren , T Wang , H Dou , Y Hou . Myeloid-derived suppressor cells contribute to systemic lupus erythaematosus by regulating differentiation of Th17 cells and Tregs. Clin Sci (Lond) 2016; 130(16): 1453–1467
https://doi.org/10.1042/CS20160311
190 H Wu , Y Zhen , Z Ma , H Li , J Yu , ZG Xu , XY Wang , H Yi , YG Yang . Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016; 8(331): 331ra340
https://doi.org/10.1126/scitranslmed.aae0482
191 A Sobo-Vujanovic , L Vujanovic , AB DeLeo , F Concha-Benavente , RL Ferris , Y Lin , NL Vujanovic . Inhibition of soluble tumor necrosis factor prevents chemically induced carcinogenesis in mice. Cancer Immunol Res 2016; 4(5): 441–451
https://doi.org/10.1158/2326-6066.CIR-15-0104
192 H Lin , S Wei , EM Hurt , MD Green , L Zhao , L Vatan , W Szeliga , R Herbst , PW Harms , LA Fecher , P Vats , AM Chinnaiyan , CD Lao , TS Lawrence , M Wicha , J Hamanishi , M Mandai , I Kryczek , W Zou . Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest 2018; 128(4): 1708
https://doi.org/10.1172/JCI120803
193 C Lu , PS Redd , JR Lee , N Savage , K Liu . The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. OncoImmunology 2016; 5(12): e1247135
https://doi.org/10.1080/2162402X.2016.1247135
194 P Golstein , GM Griffiths . An early history of T cell-mediated cytotoxicity. Nat Rev Immunol 2018; 18(8): 527–535
https://doi.org/10.1038/s41577-018-0009-3
195 H Zhu , JD Klement , C Lu , PS Redd , D Yang , AD Smith , DB Poschel , J Zou , D Liu , PG Wang , D Ostrov , N Coant , YA Hannun , AH Colby , MW Grinstaff , K Liu . Asah2 represses the p53-Hmox1 axis to protect myeloid-derived suppressor cells from ferroptosis. J Immunol 2021; 206(6): 1395–1404
https://doi.org/10.4049/jimmunol.2000500
196 MK Srivastava , P Sinha , VK Clements , P Rodriguez , S Ostrand-Rosenberg . Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70(1): 68–77
https://doi.org/10.1158/0008-5472.CAN-09-2587
197 DI Gabrilovich , S Nagaraj . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
https://doi.org/10.1038/nri2506
198 JI Youn , DI Gabrilovich . The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40(11): 2969–2975
https://doi.org/10.1002/eji.201040895
199 DI Gabrilovich , V Bronte , SH Chen , MP Colombo , A Ochoa , S Ostrand-Rosenberg , H Schreiber . The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007; 67(1): 425
https://doi.org/10.1158/0008-5472.CAN-06-3037
200 S Ostrand-Rosenberg , DW Beury , KH Parker , LA Horn . Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol Immunother 2020; 69(2): 215–221
https://doi.org/10.1007/s00262-019-02388-8
201 R Kim , A Hashimoto , N Markosyan , VA Tyurin , YY Tyurina , G Kar , SY Fu , M Sehgal , L Garcia-Gerique , A Kossenkov , BA Gebregziabher , JW Tobias , K Hicks , RA Halpin , N Cvetesic , H Deng , L Donthireddy , A Greenberg , B Nam , RH Vonderheide , Y Nefedova , VE Kagan , DI Gabrilovich . Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 2022; 612(7939): 338–346
https://doi.org/10.1038/s41586-022-05443-0
202 F Veglia , M Perego , D Gabrilovich . Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108–119
https://doi.org/10.1038/s41590-017-0022-x
203 Q Cheng , LJ Mou , WJ Su , X Chen , T Zhang , YF Xie , J Xue , PY Lee , HX Wu , Y Du . Ferroptosis of CD163+ tissue-infiltrating macrophages and CD10+ PC+ epithelial cells in lupus nephritis. Front Immunol 2023; 14: 1171318
https://doi.org/10.3389/fimmu.2023.1171318
204 D Zhang , J Xu , J Ren , L Ding , G Shi , D Li , H Dou , Y Hou . Myeloid-derived suppressor cells induce podocyte injury through increasing reactive oxygen species in lupus nephritis. Front Immunol 2018; 9: 1443
https://doi.org/10.3389/fimmu.2018.01443
205 PP Yee , Y Wei , SY Kim , T Lu , SY Chih , C Lawson , M Tang , Z Liu , B Anderson , K Thamburaj , MM Young , DG Aregawi , MJ Glantz , BE Zacharia , CS Specht , HG Wang , W Li . Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun 2020; 11(1): 5424
https://doi.org/10.1038/s41467-020-19193-y
206 D Wang , X Li , D Jiao , Y Cai , L Qian , Y Shen , Y Lu , Y Zhou , B Fu , R Sun , Z Tian , X Zheng , H Wei . LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol 2023; 16(1): 30
https://doi.org/10.1186/s13045-023-01429-1
207 H Zhang , J Liu , Y Zhou , M Qu , Y Wang , K Guo , R Shen , Z Sun , JP Cata , S Yang , W Chen , C Miao . Neutrophil extracellular traps mediate m6A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci 2022; 18(8): 3337–3357
https://doi.org/10.7150/ijbs.69141
208 C . Mauri, A. Bosma. Immune regulatory function of B cells. Annu Rev Immunol 2012; 30: 221–241
https://doi.org/10.1146/annurev-immunol-020711-074934
209 NA Carter , R Vasconcellos , EC Rosser , C Tulone , A Muñoz-Suano , M Kamanaka , MR Ehrenstein , RA Flavell , C Mauri . Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 2011; 186(10): 5569–5579
https://doi.org/10.4049/jimmunol.1100284
210 F Flores-Borja , A Bosma , D Ng , V Reddy , MR Ehrenstein , DA Isenberg , C Mauri . CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 2013; 5(173): 173ra123
https://doi.org/10.1126/scitranslmed.3005407
211 NA Carter , EC Rosser , C Mauri . Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res Ther 2012; 14(1): R32
https://doi.org/10.1186/ar3736
212 M Matsumoto , A Baba , T Yokota , H Nishikawa , Y Ohkawa , H Kayama , A Kallies , SL Nutt , S Sakaguchi , K Takeda , T Kurosaki , Y Baba . Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014; 41(6): 1040–1051
https://doi.org/10.1016/j.immuni.2014.10.016
213 CM Sun , E Deriaud , C Leclerc , R Lo-Man . Upon TLR9 signaling, CD5 B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity 2005; 22(4): 467–477
https://doi.org/10.1016/j.immuni.2005.02.008
214 J Tian , D Zekzer , L Hanssen , YX Lu , A Olcott , DL Kaufman . Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167(2): 1081–1089
https://doi.org/10.4049/jimmunol.167.2.1081
215 VV Parekh , DVR Prasad , PP Banerjee , BN Joshi , A Kumar , GC Mishra . B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-β1. J Immunol 2003; 170(12): 5897–5911
https://doi.org/10.4049/jimmunol.170.12.5897
216 Z Pei , YF Qin , XH Fu , FF Yang , F Huo , X Liang , SJ Wang , HY Cui , P Lin , G Zhou , JN Yan , J Wu , ZN Chen , P Zhu . Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol 2022; 57: 102509
https://doi.org/10.1016/j.redox.2022.102509
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed