Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (5): 862-877   https://doi.org/10.1007/s11684-024-1086-2
  本期目录
Identification of susceptibility loci and relevant cell type for IgA nephropathy in Han Chinese by integrative genome-wide analysis
Ming Li1,2,3, Xingjie Hao4, Dianchun Shi1,2,3, Shanshan Cheng4, Zhong Zhong2,5, Lu Cai2,5, Minghui Jiang4, Lin Ding4, Lanbo Ding4, Chaolong Wang4(), Xueqing Yu1,2,3()
. Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
. Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
. Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou 510080, China
. Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
. NHC Key Laboratory of Nephrology (Sun Yat-sen University), and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
 全文: PDF(3352 KB)   HTML
Abstract

Although many susceptibility loci for IgA nephropathy (IgAN) have been identified, they only account for 11.0% of the overall IgAN variance. We performed a large genome-wide meta-analysis of IgAN in Han Chinese with 3616 cases and 10 417 controls to identify additional genetic loci of IgAN. Considering that inflammatory bowel disease (IBD) and asthma might share an etiology of dysregulated mucosal immunity with IgAN, we performed cross-trait integrative analysis by leveraging functional annotations of relevant cell type and the pleiotropic information from IBD and asthma. Among 8 669 456 imputed variants, we identified a novel locus at 4p14 containing the long noncoding RNA LOC101060498. Cell type enrichment analysis based on annotations suggested that PMA-I-stimulated CD4+CD25IL17+ Th17 cell was the most relevant cell type for IgAN, which highlights the essential role of Th17 pathway in the pathogenesis of IgAN. Furthermore, we identified six more novel loci associated with IgAN, which included three loci showing pleiotropic effects with IBD or asthma (2q35/PNKD, 6q25.2/SCAF8, and 22q11.21/UBE2L3) and three loci specific to IgAN (14q32.32/TRAF3, 16q22.2/TXNL4B, and 21q21.3/LINC00113) in the pleiotropic analysis. Our findings support the involvement of mucosal immunity, especially T cell immune response and IL-17 signal pathway, in the development of IgAN and shed light on further investigation of IgAN.

Key wordsIgA nephropathy (IgAN)    genome-wide association study (GWAS)    relevant cell types    integrative analysis    pleiotropy
收稿日期: 2023-11-22      出版日期: 2024-10-29
Corresponding Author(s): Chaolong Wang,Xueqing Yu   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(5): 862-877.
Ming Li, Xingjie Hao, Dianchun Shi, Shanshan Cheng, Zhong Zhong, Lu Cai, Minghui Jiang, Lin Ding, Lanbo Ding, Chaolong Wang, Xueqing Yu. Identification of susceptibility loci and relevant cell type for IgA nephropathy in Han Chinese by integrative genome-wide analysis. Front. Med., 2024, 18(5): 862-877.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-024-1086-2
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I5/862
Fig.1  
Locus Lead varianta Dataset AFb OR (95% CI)c P value
4p14LOC101060498 rs11736377 Dataset 1 0.617 0.88 (0.76, 1.00) 5.49 × 10−2
chr4:40301264 Dataset 2 0.593 0.77 (0.71, 0.84) 4.58 × 10−9
T/C Dataset 3 0.601 0.94 (0.83, 1.07) 3.64 × 10−1
Intergenic Meta 0.83 (0.78, 0.89) 4.17 × 10−8
MHC rs9270599 Dataset 1 0.554 1.41 (1.24, 1.60) 1.78 × 10−7
chr6:32561656 Dataset 2 0.572 1.78 (1.56, 2.02) 1.42 × 10−18
A/G Dataset 3 0.631 1.47 (1.29, 1.69) 2.47 × 10−8
Upstream Meta 1.55 (1.43, 1.67) 3.94 × 10−28
8p23.1DEFA rs11137085 Dataset 1 0.543 1.35 (1.18, 1.54) 1.17 × 10−5
chr8:6877468 Dataset 2 0.504 1.30 (1.19, 1.41) 6.14 × 10−9
C/G Dataset 3 0.505 1.39 (1.22, 1.59) 1.13 × 10−6
Upstream Meta 1.33 (1.25, 1.42) 3.00 × 10−17
16p11.2ITGAX-ITGAM rs13332545 Dataset 1 0.226 0.83 (0.72, 0.96) 1.44 × 10−2
chr16:31377390 Dataset 2 0.293 0.80 (0.72, 0.89) 6.26 × 10−5
C/T Dataset 3 0.317 0.78 (0.68, 0.89) 3.45 × 10−4
Intron Meta 0.80 (0.75, 0.86) 1.29 × 10−8
17p13.1TNFSF13 rs11078696 Dataset 1 0.680 0.84 (0.72, 0.97) 1.93 × 10−2
chr17:7459299 Dataset 2 0.641 0.82 (0.74, 0.90) 2.17 × 10−5
T/G Dataset 3 0.632 0.72 (0.63, 0.83) 6.78 × 10−6
Intron Meta 0.80 (0.75, 0.86) 4.63 × 10−10
22q12.2HORMAD2 rs12537 Dataset 1 0.230 0.73 (0.63, 0.85) 3.09 × 10−5
chr22:30423460 Dataset 2 0.177 0.72 (0.64, 0.81) 5.94 × 10−8
T/C Dataset 3 0.168 0.79 (0.66, 0.94) 6.51 × 10−3
3'UTR Meta 0.74 (0.68, 0.80) 1.37 × 10−12
Tab.1  
Fig.2  
Fig.3  
Loci Type FDRa Lead SNP PIgAN PIBD PAsthma Genes
2q35 IgAN and IBD 0.013 rs1473901 2.05 × 10−5 5.35 × 10−8 0.017 PNKD
22q11.21 IgAN and IBD 0.043 rs1811069 1.68 × 10−4 6.21 × 10−10 0.331 UBE2L3
6q25.2 IgAN and asthma 0.036 rs10872710 3.32 × 10−5 0.655 1.33 × 10−4 SCAF8
16q22.2 IgAN 0.045 rs77303550 2.10 × 10−5 0.004 0.023 TXNL4B
21q21.3 IgAN 0.032 rs80271593 8.60 × 10−6 0.007 0.418 LINC00113
14q32.32 IgAN 0.028 rs8004192 3.20 × 10−5 0.663 0.002 TRAF3
Tab.2  
Fig.4  
SNP/Locus eQTLa Associated diseasesb Gene function
rs11736377, 4p14, intergenic variant close to LOC101060498 No evidence for effects on gene expression levels Vitiligo, Graves’ disease, psoriasis, and autoimmune traits LOC101060498 is chromatin interacted with the adjacent immune-related gene RHOH, which is important for the development, migration, and signaling of T cells [40]. The involvement of RHOH in autoimmune-related diseases might be due to its ability to regulate T helper cell-induced cytokine production, especially in the Th17-cell differentiation [40]
rs1473901, 2q35, intron variant of PNKD Associated with expression level of PNKD in blood, thyroid, skin, spleen, and liver Inflammatory bowel disease, hematological traits (i.e., granulocyte count) PNKD plays a role in regulation of myofibrillogenesis. The dysfunctional PNKD can reduce glutathione levels in cells and result in increasing oxidative stress levels, which has been linked to inflammation [69]
rs10872710, 6q25.2, intron variant of SCAF8 No evidence for effects on gene expression levels Estimated glomerular filtration rate and diabetic nephropathy SCAF8 is the anti-terminator protein required to prevent early mRNA termination during transcription. SCAF8 can suppress the use of early, alternative poly(A) sites, which prevents the accumulation of nonfunctional truncated proteins. SCAF8 also acts as a positive regulator of transcript elongation [70]
rs1811069, 22q11.21, intergenic variant close to UBE2L3 Associated with expression level of UBE2L3 in blood, mucosa, and muscularis of esophagus and skin Inflammatory bowel disease, hepatitis B, systemic lupus erythematosus, and rheumatoid arthritis UBE2L3 encodes a member of the E2 ubiquitin-conjugating enzyme family involved in ubiquitin/proteasome-dependent degradation. The ubiquitin/proteasome pathway is involved in the development of multiple kidney diseases [53]
rs8004192, 14q32.32, intron variant of TRAF3 Associated with expression level of TRAF3 in mucosa of esophagus, brain, and thyroid Hematological traits, serum IgA level, systemic lupus erythematosus, multiple sclerosis, eczema, and asthma TRAF3 encoding a member of the TNF receptor associated factor protein family participates in the signal transduction of CD40 and plays a role in T cell dependent immune responses and the regulation of antiviral responses [61]. TRAF3 is required for normal signaling by the T cell antigen receptor, and cytoplasmic TRAF3 restrains nuclear factor κB activation in T and B cells [71]
rs77303550, 16q22.2, intron variant of TXNL4B Associated with expression level of TXNL4B in cultured fibroblasts Cardiovascular disease and type II diabetes mellitus TXNL4B plays an essential role in pre-mRNA splicing and is required in cell cycle progression for S/G(2) transition [72]
rs80271593, 21q21.3, intergenic variant close to LINC00113 No evidence for effects on gene expression levels Chronic renal failure LINC00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis [73]. It is downregulated in clear cell renal cell carcinoma samples compared with normal samples [74]
Tab.3  
1 H Zhang, J Barratt. Is IgA nephropathy the same disease in different parts of the world. Semin Immunopathol 2021; 43(5): 707–715
https://doi.org/10.1007/s00281-021-00884-7
2 R Coppo, A Amore, R Hogg, S Emancipator. Idiopathic nephropathy with IgA deposits. Pediatr Nephrol 2000; 15(1–2): 139–150
https://doi.org/10.1007/s004670000309
3 R Magistroni, VD D’Agati, GB Appel, K Kiryluk. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int 2015; 88(5): 974–989
https://doi.org/10.1038/ki.2015.252
4 FP Schena, I Nistor. Epidemiology of IgA nephropathy: a global perspective. Semin Nephrol 2018; 38(5): 435–442
https://doi.org/10.1016/j.semnephrol.2018.05.013
5 M Li, L Wang, DC Shi, JN Foo, Z Zhong, CC Khor, C Lanzani, L Citterio, E Salvi, PR Yin, JX Bei, L Wang, YH Liao, J Chen, QK Chen, G Xu, GR Jiang, JX Wan, MH Chen, N Chen, H Zhang, YX Zeng, ZH Liu, JJ Liu, XQ Yu. Genome-wide meta-analysis identifies three novel susceptibility loci and reveals ethnic heterogeneity of genetic susceptibility for IgA nephropathy. J Am Soc Nephrol 2020; 31(12): 2949–2963
https://doi.org/10.1681/ASN.2019080799
6 J Feehally, M Farrall, A Boland, DP Gale, I Gut, S Heath, A Kumar, JF Peden, PH Maxwell, DL Morris, S Padmanabhan, TJ Vyse, A Zawadzka, AJ Rees, M Lathrop, PJ Ratcliffe. HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol 2010; 21(10): 1791–1797
https://doi.org/10.1681/ASN.2010010076
7 XQ Yu, M Li, H Zhang, HQ Low, X Wei, JQ Wang, LD Sun, KS Sim, Y Li, JN Foo, W Wang, ZJ Li, XY Yin, XQ Tang, L Fan, J Chen, RS Li, JX Wan, ZS Liu, TQ Lou, L Zhu, XJ Huang, XJ Zhang, ZH Liu, JJ Liu. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 2012; 44(2): 178–182
https://doi.org/10.1038/ng.1047
8 K Kiryluk, Y Li, F Scolari, S Sanna-Cherchi, M Choi, M Verbitsky, D Fasel, S Lata, S Prakash, S Shapiro, C Fischman, HJ Snyder, G Appel, C Izzi, BF Viola, N Dallera, Vecchio L Del, C Barlassina, E Salvi, FE Bertinetto, A Amoroso, S Savoldi, M Rocchietti, A Amore, L Peruzzi, R Coppo, M Salvadori, P Ravani, R Magistroni, GM Ghiggeri, G Caridi, M Bodria, F Lugani, L Allegri, M Delsante, M Maiorana, A Magnano, G Frasca, E Boer, G Boscutti, C Ponticelli, R Mignani, C Marcantoni, Landro D Di, D Santoro, A Pani, R Polci, S Feriozzi, S Chicca, M Galliani, M Gigante, L Gesualdo, P Zamboli, GG Battaglia, M Garozzo, D Maixnerová, V Tesar, F Eitner, T Rauen, J Floege, T Kovacs, J Nagy, K Mucha, L Pączek, M Zaniew, M Mizerska-Wasiak, M Roszkowska-Blaim, K Pawlaczyk, D Gale, J Barratt, L Thibaudin, F Berthoux, G Canaud, A Boland, M Metzger, U Panzer, H Suzuki, S Goto, I Narita, Y Caliskan, J Xie, P Hou, N Chen, H Zhang, RJ Wyatt, J Novak, BA Julian, J Feehally, B Stengel, D Cusi, RP Lifton, AG Gharavi. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014; 46(11): 1187–1196
https://doi.org/10.1038/ng.3118
9 M Li, JN Foo, JQ Wang, HQ Low, XQ Tang, KY Toh, PR Yin, CC Khor, YF Goh, ID Irwan, RC Xu, AK Andiappan, JX Bei, O Rotzschke, MH Chen, CY Cheng, LD Sun, GR Jiang, TY Wong, HL Lin, T Aung, YH Liao, SM Saw, K Ye, RP Ebstein, QK Chen, W Shi, SH Chew, J Chen, FR Zhang, SP Li, G Xu, E Shyong Tai, L Wang, N Chen, XJ Zhang, YX Zeng, H Zhang, ZH Liu, XQ Yu, JJ Liu. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun 2015; 6(1): 7270
https://doi.org/10.1038/ncomms8270
10 AG Gharavi, K Kiryluk, M Choi, Y Li, P Hou, J Xie, S Sanna-Cherchi, CJ Men, BA Julian, RJ Wyatt, J Novak, JC He, H Wang, J Lv, L Zhu, W Wang, Z Wang, K Yasuno, M Gunel, S Mane, S Umlauf, I Tikhonova, I Beerman, S Savoldi, R Magistroni, GM Ghiggeri, M Bodria, F Lugani, P Ravani, C Ponticelli, L Allegri, G Boscutti, G Frasca, A Amore, L Peruzzi, R Coppo, C Izzi, BF Viola, E Prati, M Salvadori, R Mignani, L Gesualdo, F Bertinetto, P Mesiano, A Amoroso, F Scolari, N Chen, H Zhang, RP Lifton. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 2011; 43(4): 321–327
https://doi.org/10.1038/ng.787
11 K Kiryluk, E Sanchez-Rodriguez, XJ Zhou, F Zanoni, L Liu, N Mladkova, A Khan, M Marasa, JY Zhang, O Balderes, S Sanna-Cherchi, AS Bomback, PA Canetta, GB Appel, J Radhakrishnan, H Trimarchi, B Sprangers, DC Cattran, H Reich, Y Pei, P Ravani, K Galesic, D Maixnerova, V Tesar, B Stengel, M Metzger, G Canaud, N Maillard, F Berthoux, L Berthelot, E Pillebout, R Monteiro, R Nelson, RJ Wyatt, W Smoyer, J Mahan, AA Samhar, G Hidalgo, A Quiroga, P Weng, R Sreedharan, D Selewski, K Davis, M Kallash, TL Vasylyeva, M Rheault, A Chishti, D Ranch, SE Wenderfer, D Samsonov, DJ Claes, O Akchurin, D Goumenos, M Stangou, J Nagy, T Kovacs, E Fiaccadori, A Amoroso, C Barlassina, D Cusi, Vecchio L Del, GG Battaglia, M Bodria, E Boer, L Bono, G Boscutti, G Caridi, F Lugani, G Ghiggeri, R Coppo, L Peruzzi, V Esposito, C Esposito, S Feriozzi, R Polci, G Frasca, M Galliani, M Garozzo, A Mitrotti, L Gesualdo, S Granata, G Zaza, F Londrino, R Magistroni, I Pisani, A Magnano, C Marcantoni, P Messa, R Mignani, A Pani, C Ponticelli, D Roccatello, M Salvadori, E Salvi, D Santoro, G Gembillo, S Savoldi, D Spotti, P Zamboli, C Izzi, F Alberici, E Delbarba, M Florczak, N Krata, K Mucha, L Pączek, S Niemczyk, B Moszczuk, M Pańczyk-Tomaszewska, M Mizerska-Wasiak, A Perkowska-Ptasińska, T Bączkowska, M Durlik, K Pawlaczyk, P Sikora, M Zaniew, D Kaminska, M Krajewska, I Kuzmiuk-Glembin, Z Heleniak, B Bullo-Piontecka, T Liberek, A Dębska-Slizien, T Hryszko, A Materna-Kiryluk, M Miklaszewska, M Szczepańska, K Dyga, E Machura, K Siniewicz-Luzeńczyk, M Pawlak-Bratkowska, M Tkaczyk, D Runowski, N Kwella, D Drożdż, I Habura, F Kronenberg, L Prikhodina, Heel D van, B Fontaine, C Cotsapas, C Wijmenga, A Franke, V Annese, PK Gregersen, S Parameswaran, M Weirauch, L Kottyan, JB Harley, H Suzuki, I Narita, S Goto, H Lee, DK Kim, YS Kim, JH Park, B Cho, M Choi, Wijk A Van, A Huerta, E Ars, J Ballarin, S Lundberg, B Vogt, LY Mani, Y Caliskan, J Barratt, T Abeygunaratne, PA Kalra, DP Gale, U Panzer, T Rauen, J Floege, P Schlosser, AB Ekici, KU Eckardt, N Chen, J Xie, RP Lifton, RJF Loos, EE Kenny, I Ionita-Laza, A Köttgen, BA Julian, J Novak, F Scolari, H Zhang, AG Gharavi. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat Genet 2023; 55(7): 1091–1105
https://doi.org/10.1038/s41588-023-01422-x
12 D Shi, Z Zhong, M Wang, L Cai, D Fu, Y Peng, L Guo, H Mao, X Yu, M Li. Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 2020; 65(3): 241–249
https://doi.org/10.1038/s10038-019-0699-9
13 J Floege, J Feehally. The mucosa-kidney axis in IgA nephropathy. Nat Rev Nephrol 2016; 12(3): 147–156
https://doi.org/10.1038/nrneph.2015.208
14 L Gesualdo, V Di Leo, R Coppo. The mucosal immune system and IgA nephropathy. Semin Immunopathol 2021; 43(5): 657–668
https://doi.org/10.1007/s00281-021-00871-y
15 CK Cheung, J Barratt. Further evidence for the mucosal origin of pathogenic IgA in IgA nephropathy. J Am Soc Nephrol 2022; 33(5): 873–875
https://doi.org/10.1681/ASN.2022020201
16 BC Fellström, J Barratt, H Cook, R Coppo, J Feehally, Fijter JW de, J Floege, G Hetzel, AG Jardine, F Locatelli, BD Maes, A Mercer, F Ortiz, M Praga, SS Sørensen, V Tesar, Vecchio L; NEFIGAN Trial Investigators Del. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet 2017; 389(10084): 2117–2127
https://doi.org/10.1016/S0140-6736(17)30550-0
17 D Chung, C Yang, C Li, J Gelernter, H Zhao. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet 2014; 10(11): e1004787
https://doi.org/10.1371/journal.pgen.1004787
18 JZ Liu, Sommeren S van, H Huang, SC Ng, R Alberts, A Takahashi, S Ripke, JC Lee, L Jostins, T Shah, S Abedian, JH Cheon, J Cho, NE Dayani, L Franke, Y Fuyuno, A Hart, RC Juyal, G Juyal, WH Kim, AP Morris, H Poustchi, WG Newman, V Midha, TR Orchard, H Vahedi, A Sood, JY Sung, R Malekzadeh, HJ Westra, K Yamazaki, SK; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium; Barrett JC Yang, BZ Alizadeh, M Parkes, T Bk, MJ Daly, M Kubo, CA Anderson, RK Weersma. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47(9): 979–986
https://doi.org/10.1038/ng.3359
19 Z Zhu, PH Lee, MD Chaffin, W Chung, PR Loh, Q Lu, DC Christiani, L Liang. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet 2018; 50(6): 857–864
https://doi.org/10.1038/s41588-018-0121-0
20 D Wu, J Dou, X Chai, C Bellis, A Wilm, CC Shih, WWJ Soon, N Bertin, CB Lin, CC Khor, M DeGiorgio, S Cheng, L Bao, N Karnani, WYK Hwang, S Davila, P Tan, A Shabbir, A Moh, EK Tan, JN Foo, LL Goh, KP Leong, RSY Foo, CSP Lam, AM Richards, CY Cheng, T Aung, TY Wong, HH; SG10K Consortium; Liu J Ng, C Wang. Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell 2019; 179(3): 736–749.e15
https://doi.org/10.1016/j.cell.2019.09.019
21 CC Chang, CC Chow, LC Tellier, S Vattikuti, SM Purcell, JJ Lee. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015; 4(1): 7
https://doi.org/10.1186/s13742-015-0047-8
22 Genomes Project Consortium; Auton A 1000, LD Brooks, RM Durbin, EP Garrison, HM Kang, JO Korbel, JL Marchini, S McCarthy, GA McVean, GR Abecasis. A global reference for human genetic variation. Nature 2015; 526(7571): 68–74
https://doi.org/10.1038/nature15393
23 PR Loh, P Danecek, PF Palamara, C Fuchsberger, YA Reshef, HK Finucane, S Schoenherr, L Forer, S McCarthy, GR Abecasis, R Durbin, AL Price. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 2016; 48(11): 1443–1448
https://doi.org/10.1038/ng.3679
24 S Das, L Forer, S Schönherr, C Sidore, AE Locke, A Kwong, SI Vrieze, EY Chew, S Levy, M McGue, D Schlessinger, D Stambolian, PR Loh, WG Iacono, A Swaroop, LJ Scott, F Cucca, F Kronenberg, M Boehnke, GR Abecasis, C Fuchsberger. Next-generation genotype imputation service and methods. Nat Genet 2016; 48(10): 1284–1287
https://doi.org/10.1038/ng.3656
25 P Danecek, JK Bonfield, J Liddle, J Marshall, V Ohan, MO Pollard, A Whitwham, T Keane, SA McCarthy, RM Davies, H Li. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10(2): giab008
https://doi.org/10.1093/gigascience/giab008
26 CJ Willer, Y Li, GR Abecasis. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010; 26(17): 2190–2191
https://doi.org/10.1093/bioinformatics/btq340
27 BK Bulik-Sullivan, PR Loh, HK Finucane, S Ripke, J; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Patterson N Yang, MJ Daly, AL Price, BM Neale. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 2015; 47(3): 291–295
https://doi.org/10.1038/ng.3211
28 K Watanabe, E Taskesen, A van Bochoven, D Posthuma. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 2017; 8(1): 1826
https://doi.org/10.1038/s41467-017-01261-5
29 Consortium GTEx. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015; 348(6235): 648–660
https://doi.org/10.1126/science.1262110
30 Q Lu, RL Powles, S Abdallah, D Ou, Q Wang, Y Hu, Y Lu, W Liu, B Li, S Mukherjee, PK Crane, H Zhao. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease. PLoS Genet 2017; 13(7): e1006933
https://doi.org/10.1371/journal.pgen.1006933
31 HK Finucane, B Bulik-Sullivan, A Gusev, G Trynka, Y Reshef, PR Loh, V Anttila, H Xu, C Zang, K Farh, S Ripke, FR; ReproGen Consortium; Schizophrenia Working Group of the Psychiatric Genomics Consortium; RACI Consortium; Purcell S Day, E Stahl, S Lindstrom, JR Perry, Y Okada, S Raychaudhuri, MJ Daly, N Patterson, BM Neale, AL Price. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 2015; 47(11): 1228–1235
https://doi.org/10.1038/ng.3404
32 Epigenomics Consortium; Kundaje A Roadmap, W Meuleman, J Ernst, M Bilenky, A Yen, A Heravi-Moussavi, P Kheradpour, Z Zhang, J Wang, MJ Ziller, V Amin, JW Whitaker, MD Schultz, LD Ward, A Sarkar, G Quon, RS Sandstrom, ML Eaton, YC Wu, AR Pfenning, X Wang, M Claussnitzer, Y Liu, C Coarfa, RA Harris, N Shoresh, CB Epstein, E Gjoneska, D Leung, W Xie, RD Hawkins, R Lister, C Hong, P Gascard, AJ Mungall, R Moore, E Chuah, A Tam, TK Canfield, RS Hansen, R Kaul, PJ Sabo, MS Bansal, A Carles, JR Dixon, KH Farh, S Feizi, R Karlic, AR Kim, A Kulkarni, D Li, R Lowdon, G Elliott, TR Mercer, SJ Neph, V Onuchic, P Polak, N Rajagopal, P Ray, RC Sallari, KT Siebenthall, NA Sinnott-Armstrong, M Stevens, RE Thurman, J Wu, B Zhang, X Zhou, AE Beaudet, LA Boyer, Jager PL De, PJ Farnham, SJ Fisher, D Haussler, SJ Jones, W Li, MA Marra, MT McManus, S Sunyaev, JA Thomson, TD Tlsty, LH Tsai, W Wang, RA Waterland, MQ Zhang, LH Chadwick, BE Bernstein, JF Costello, JR Ecker, M Hirst, A Meissner, A Milosavljevic, B Ren, JA Stamatoyannopoulos, T Wang, M Kellis. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518(7539): 317–330
https://doi.org/10.1038/nature14248
33 C Giambartolomei, D Vukcevic, EE Schadt, L Franke, AD Hingorani, C Wallace, V Plagnol. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 2014; 10(5): e1004383
https://doi.org/10.1371/journal.pgen.1004383
34 B Liu, MJ Gloudemans, AS Rao, E Ingelsson, SB Montgomery. Abundant associations with gene expression complicate GWAS follow-up. Nat Genet 2019; 51(5): 768–769
https://doi.org/10.1038/s41588-019-0404-0
35 IA Adzhubei, S Schmidt, L Peshkin, VE Ramensky, A Gerasimova, P Bork, AS Kondrashov, SR Sunyaev. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248
36 NL Sim, P Kumar, J Hu, S Henikoff, G Schneider, PC Ng. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40(Web Server issue): W452–457
https://doi.org/10.1093/nar/gks539
37 Consortium GTEx. The genotype-tissue expression (GTEx) project. Nat Genet 2013; 45(6): 580–585
https://doi.org/10.1038/ng.2653
38 S Fanucchi, ET Fok, E Dalla, Y Shibayama, K Börner, EY Chang, S Stoychev, M Imakaev, D Grimm, KC Wang, G Li, WK Sung, MM Mhlanga. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet 2019; 51(1): 138–150
https://doi.org/10.1038/s41588-018-0298-2
39 B He, C Chen, L Teng, K Tan. Global view of enhancer-promoter interactome in human cells. Proc Natl Acad Sci USA 2014; 111(21): E2191–E2199
https://doi.org/10.1073/pnas.1320308111
40 AM Ahmad Mokhtar, IF Hashim, M Mohd Zaini Makhtar, NH Salikin, S Amin-Nordin. The role of RhoH in TCR signalling and its involvement in diseases. Cells 2021; 10(4): 950
https://doi.org/10.3390/cells10040950
41 N Tamehiro, K Nishida, Y Sugita, K Hayakawa, H Oda, T Nitta, M Nakano, A Nishioka, R Yanobu-Takanashi, M Goto, T Okamura, R Adachi, K Kondo, A Morita, H Suzuki. Ras homolog gene family H (RhoH) deficiency induces psoriasis-like chronic dermatitis by promoting TH17 cell polarization. J Allergy Clin Immunol 2019; 143(5): 1878–1891
https://doi.org/10.1016/j.jaci.2018.09.032
42 Y Tang, H He, P Hu, X Xu. T lymphocytes in IgA nephropathy. Exp Ther Med 2020; 20(1): 186–194
43 T Schmidt, J Luebbe, C Kilian, JH Riedel, S Hiekmann, N Asada, P Ginsberg, L Robben, N Song, A Kaffke, A Peters, A Borchers, RA Flavell, N Gagliani, P Pelzcar, S Huber, TB Huber, JE Turner, HJ Paust, CF Krebs, U Panzer. IL-17 receptor C signaling controls CD4+ TH17 immune responses and tissue injury in immune-mediated kidney diseases. J Am Soc Nephrol 2021; 32(12): 3081–3098
https://doi.org/10.1681/ASN.2021030426
44 J Ruszkowski, KA Lisowska, M Pindel, Z Heleniak, A Dębska-Ślizień, JM Witkowski. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol 2019; 23(3): 291–303
https://doi.org/10.1007/s10157-018-1665-0
45 L Yang, X Zhang, W Peng, M Wei, W Qin. MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. Int Urol Nephrol 2017; 49(2): 353–361
https://doi.org/10.1007/s11255-016-1444-3
46 W Du, CY Gao, X You, L Li, ZB Zhao, M Fang, Z Ye, M Si, ZX Lian, X Yu. Increased proportion of follicular helper T cells is associated with B cell activation and disease severity in IgA nephropathy. Front Immunol 2022; 13: 901465
https://doi.org/10.3389/fimmu.2022.901465
47 FJ Lin, GR Jiang, JP Shan, C Zhu, J Zou, XR Wu. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest 2012; 72(3): 221–229
https://doi.org/10.3109/00365513.2011.652158
48 JR Lin, J Wen, H Zhang, L Wang, FF Gou, M Yang, JM Fan. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. Ren Fail 2018; 40(1): 60–67
https://doi.org/10.1080/0886022X.2017.1419972
49 P Jiang, C Zheng, Y Xiang, S Malik, D Su, G Xu, M Zhang. The involvement of TH17 cells in the pathogenesis of IBD. Cytokine Growth Factor Rev 2023; 69: 28–42
https://doi.org/10.1016/j.cytogfr.2022.07.005
50 J Jeong, HK Lee. The role of CD4+ T cells and microbiota in the pathogenesis of asthma. Int J Mol Sci 2021; 22(21): 11822
https://doi.org/10.3390/ijms222111822
51 J Qing, C Li, X Hu, W Song, H Tirichen, H Yaigoub, Y Li. Differentiation of T helper 17 cells may mediate the abnormal humoral immunity in IgA nephropathy and inflammatory bowel disease based on shared genetic effects. Front Immunol 2022; 13: 916934
https://doi.org/10.3389/fimmu.2022.916934
52 Y Han, Q Jia, PS Jahani, BP Hurrell, C Pan, P Huang, J Gukasyan, NC Woodward, E Eskin, FD Gilliland, O Akbari, JA Hartiala, H Allayee. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat Commun 2020; 11(1): 1776
https://doi.org/10.1038/s41467-020-15649-3
53 X Zhang, C Huo, Y Liu, R Su, Y Zhao, Y Li. Mechanism and disease association with a ubiquitin conjugating E2 enzyme: UBE2L3. Front Immunol 2022; 13: 793610
https://doi.org/10.3389/fimmu.2022.793610
54 SM Lechner, L Abbad, E Boedec, C Papista, MB Le Stang, C Moal, J Maillard, A Jamin, J Bex-Coudrat, Y Wang, A Li, PG Martini, RC Monteiro, L Berthelot. IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J Am Soc Nephrol 2016; 27(9): 2622–2629
https://doi.org/10.1681/ASN.2015080856
55 K Neubert, S Meister, K Moser, F Weisel, D Maseda, K Amann, C Wiethe, TH Winkler, JR Kalden, RA Manz, RE Voll. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14(7): 748–755
https://doi.org/10.1038/nm1763
56 J Bontscho, A Schreiber, RA Manz, W Schneider, FC Luft, R Kettritz. Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 2011; 22(2): 336–348
https://doi.org/10.1681/ASN.2010010034
57 YY Wan, RA Flavell. TGF-beta and regulatory T cell in immunity and autoimmunity. J Clin Immunol 2008; 28(6): 647–659
https://doi.org/10.1007/s10875-008-9251-y
58 Genetics of Ankylosing Spondylitis Consortium (IGAS); Cortes A International, J Hadler, JP Pointon, PC Robinson, T Karaderi, P Leo, K Cremin, K Pryce, J Harris, S Lee, KB Joo, SC Shim, M Weisman, M Ward, X Zhou, HJ Garchon, G Chiocchia, J Nossent, BA Lie, Ø Førre, J Tuomilehto, K Laiho, L Jiang, Y Liu, X Wu, LA Bradbury, D Elewaut, R Burgos-Vargas, S Stebbings, L Appleton, C Farrah, J Lau, TJ Kenna, N Haroon, MA Ferreira, J Yang, J Mulero, JL Fernandez-Sueiro, MA Gonzalez-Gay, C Lopez-Larrea, P Deloukas, P; Australo-Anglo-American Spondyloarthritis Consortium (TASC); Groupe Française d'Etude Génétique des Spondylarthrites (GFEGS); Nord-Trøndelag Health Study (HUNT); Spondyloarthritis Research Consortium of Canada (SPARCC); Wellcome Trust Case Control Consortium 2 (WTCCC2); Bowness P Donnelly, K Gafney, H Gaston, DD Gladman, P Rahman, WP Maksymowych, H Xu, JB Crusius, der Horst-Bruinsma IE van, CT Chou, R Valle-Oñate, C Romero-Sánchez, IM Hansen, FM Pimentel-Santos, RD Inman, V Videm, J Martin, M Breban, JD Reveille, DM Evans, TH Kim, BP Wordsworth, MA Brown. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013; 45(7): 730–738
https://doi.org/10.1038/ng.2667
59 CD Langefeld, HC Ainsworth, Graham DS Cunninghame, JA Kelly, ME Comeau, MC Marion, TD Howard, PS Ramos, JA Croker, DL Morris, JK Sandling, JC Almlöf, EM Acevedo-Vásquez, GS Alarcón, AM Babini, V Baca, AA Bengtsson, GA Berbotto, M Bijl, EE Brown, HI Brunner, MH Cardiel, L Catoggio, R Cervera, JM Cucho-Venegas, SR Dahlqvist, S D’Alfonso, Silva BM Da, la Rúa Figueroa I de, A Doria, JC Edberg, E Endreffy, JA Esquivel-Valerio, PR Fortin, BI Freedman, J Frostegård, MA García, la Torre IG de, GS Gilkeson, DD Gladman, I Gunnarsson, JM Guthridge, JL Huggins, JA James, CGM Kallenberg, DL Kamen, DR Karp, KM Kaufman, LC Kottyan, L Kovács, H Laustrup, BR Lauwerys, QZ Li, MA Maradiaga-Ceceña, J Martín, JM McCune, DR McWilliams, JT Merrill, P Miranda, JF Moctezuma, SK Nath, TB Niewold, L Orozco, N Ortego-Centeno, M Petri, CA Pineau, BA Pons-Estel, J Pope, P Raj, R Ramsey-Goldman, JD Reveille, LP Russell, JM Sabio, CA Aguilar-Salinas, HR Scherbarth, R Scorza, MF Seldin, C Sjöwall, E Svenungsson, SD Thompson, SMA Toloza, L Truedsson, T Tusié-Luna, C Vasconcelos, LM Vilá, DJ Wallace, MH Weisman, JE Wither, T Bhangale, JR Oksenberg, JD Rioux, PK Gregersen, AC Syvänen, L Rönnblom, LA Criswell, CO Jacob, KL Sivils, BP Tsao, LE Schanberg, TW Behrens, ED Silverman, ME Alarcón-Riquelme, RP Kimberly, JB Harley, EK Wakeland, RR Graham, PM Gaffney, TJ Vyse. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 2017; 8(1): 16021
https://doi.org/10.1038/ncomms16021
60 K Kim, SY Bang, HS Lee, SK Cho, CB Choi, YK Sung, TH Kim, JB Jun, DH Yoo, YM Kang, SK Kim, CH Suh, SC Shim, SS Lee, J Lee, WT Chung, JY Choe, HD Shin, JY Lee, BG Han, SK Nath, S Eyre, J Bowes, DA Pappas, JM Kremer, MA Gonzalez-Gay, L Rodriguez-Rodriguez, L Ärlestig, Y Okada, D Diogo, KP Liao, EW Karlson, S Raychaudhuri, S Rantapää-Dahlqvist, J Martin, L Klareskog, L Padyukov, PK Gregersen, J Worthington, JD Greenberg, RM Plenge, SC Bae. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis 2015; 74(3): e13
https://doi.org/10.1136/annrheumdis-2013-204749
61 H Li, BS Hostager, T Arkee, GA Bishop. Multiple mechanisms for TRAF3-mediated regulation of the T cell costimulatory receptor GITR. J Biol Chem 2021; 297(3): 101097
https://doi.org/10.1016/j.jbc.2021.101097
62 WJ Astle, H Elding, T Jiang, D Allen, D Ruklisa, AL Mann, D Mead, H Bouman, F Riveros-Mckay, MA Kostadima, JJ Lambourne, S Sivapalaratnam, K Downes, K Kundu, L Bomba, K Berentsen, JR Bradley, LC Daugherty, O Delaneau, K Freson, SF Garner, L Grassi, J Guerrero, M Haimel, EM Janssen-Megens, A Kaan, M Kamat, B Kim, A Mandoli, J Marchini, JHA Martens, S Meacham, K Megy, J O’Connell, R Petersen, N Sharifi, SM Sheard, JR Staley, S Tuna, der Ent M van, K Walter, SY Wang, E Wheeler, SP Wilder, V Iotchkova, C Moore, J Sambrook, HG Stunnenberg, Angelantonio E Di, S Kaptoge, TW Kuijpers, E Carrillo-de-Santa-Pau, D Juan, D Rico, A Valencia, L Chen, B Ge, L Vasquez, T Kwan, D Garrido-Martín, S Watt, Y Yang, R Guigo, S Beck, DS Paul, T Pastinen, D Bujold, G Bourque, M Frontini, J Danesh, DJ Roberts, WH Ouwehand, AS Butterworth, N Soranzo. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016; 167(5): 1415–1429.e19
https://doi.org/10.1016/j.cell.2016.10.042
63 S Jonsson, G Sveinbjornsson, Lapuente Portilla AL de, B Swaminathan, R Plomp, G Dekkers, R Ajore, M Ali, AEH Bentlage, E Elmér, GI Eyjolfsson, SA Gudjonsson, U Gullberg, A Gylfason, BV Halldorsson, M Hansson, H Holm, Å Johansson, E Johnsson, A Jonasdottir, BR Ludviksson, A Oddsson, I Olafsson, S Olafsson, O Sigurdardottir, A Sigurdsson, L Stefansdottir, G Masson, P Sulem, M Wuhrer, AK Wihlborg, G Thorleifsson, DF Gudbjartsson, U Thorsteinsdottir, G Vidarsson, I Jonsdottir, B Nilsson, K Stefansson. Identification of sequence variants influencing immunoglobulin levels. Nat Genet 2017; 49(8): 1182–1191
https://doi.org/10.1038/ng.3897
64 Å Johansson, M Rask-Andersen, T Karlsson, WE Ek. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum Mol Genet 2019; 28(23): 4022–4041
https://doi.org/10.1093/hmg/ddz175
65 P van der Harst, N Verweij. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res 2018; 122(3): 433–443
https://doi.org/10.1161/CIRCRESAHA.117.312086
66 M Vujkovic, JM Keaton, JA Lynch, DR Miller, J Zhou, C Tcheandjieu, JE Huffman, TL Assimes, K Lorenz, X Zhu, AT Hilliard, RL Judy, J Huang, KM Lee, D Klarin, S Pyarajan, J Danesh, O Melander, A Rasheed, NH Mallick, S Hameed, IH Qureshi, MN Afzal, U Malik, A Jalal, S Abbas, X Sheng, L Gao, KH Kaestner, K Susztak, YV Sun, SL DuVall, K Cho, JS Lee, JM Gaziano, LS Phillips, JB Meigs, PD Reaven, PW Wilson, TL Edwards, DJ Rader, SM Damrauer, CJ O'Donnell, PS; HPAP Consortium; Regeneron Genetics Center; VA Million Veteran Program; Chang KM Tsao, BF Voight, D Saleheen. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 2020; 52(7): 680–691
https://doi.org/10.1038/s41588-020-0637-y
67 M Murea, L Lu, L Ma, PJ Hicks, J Divers, CW McDonough, CD Langefeld, DW Bowden, BI Freedman. Genome-wide association scan for survival on dialysis in African-Americans with type 2 diabetes. Am J Nephrol 2011; 33(6): 502–509
https://doi.org/10.1159/000327985
68 UM Marigorta, A Navarro. High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet 2013; 9(6): e1003566
https://doi.org/10.1371/journal.pgen.1003566
69 G Orlando, PJ Law, K Palin, S Tuupanen, A Gylfe, UA Hänninen, T Cajuso, T Tanskanen, J Kondelin, E Kaasinen, AP Sarin, J Kaprio, JG Eriksson, H Rissanen, P Knekt, E Pukkala, P Jousilahti, V Salomaa, S Ripatti, A Palotie, H Järvinen, L Renkonen-Sinisalo, A Lepistö, J Böhm, JP Mecklin, NA Al-Tassan, C Palles, L Martin, E Barclay, A Tenesa, S Farrington, MN Timofeeva, BF Meyer, SM Wakil, H Campbell, CG Smith, S Idziaszczyk, TS Maughan, R Kaplan, R Kerr, D Kerr, DD Buchanan, AK Win, J Hopper, M Jenkins, NM Lindor, PA Newcomb, S Gallinger, D Conti, F Schumacher, G Casey, J Taipale, JP Cheadle, MG Dunlop, IP Tomlinson, LA Aaltonen, RS Houlston. Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Hum Mol Genet 2016; 25(11): 2349–2359
https://doi.org/10.1093/hmg/ddw087
70 LH Gregersen, R Mitter, AP Ugalde, T Nojima, NJ Proudfoot, R Agami, A Stewart, JQ Svejstrup. SCAF4 and SCAF8, mRNA anti-terminator proteins. Cell 2019; 177(7): 1797–1813
https://doi.org/10.1016/j.cell.2019.04.038
71 GA Bishop. TRAF3 as a powerful and multitalented regulator of lymphocyte functions. J Leukoc Biol 2016; 100(5): 919–926
https://doi.org/10.1189/jlb.2MR0216-063R
72 X Sun, H Zhang, D Wang, D Ma, Y Shen, Y Shang. DLP, a novel Dim1 family protein implicated in pre-mRNA splicing and cell cycle progression. J Biol Chem 2004; 279(31): 32839–32847
https://doi.org/10.1074/jbc.M402522200
73 X Yao, C Yan, L Zhang, Y Li, Q Wan. LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis. Medicine (Baltimore) 2018; 97(16): e0473
https://doi.org/10.1097/MD.0000000000010473
74 ZH Tian, C Yuan, K Yang, XL Gao. Systematic identification of key genes and pathways in clear cell renal cell carcinoma on bioinformatics analysis. Ann Transl Med 2019; 7(5): 89
https://doi.org/10.21037/atm.2019.01.18
[1] FMD-24028-OF-YXQ_suppl_1 Download
[2] FMD-24028-OF-YXQ_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed