. Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China . CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China . Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China . Sylvester Comprehensive Cancer Center and Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA . Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2−/− mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2−/−, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5′ Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.
Y Aubert, S Egolf, BC Capell. The unexpected noncatalytic roles of histone modifiers in development and disease. Trends Genet 2019; 35(9): 645–657 https://doi.org/10.1016/j.tig.2019.06.004
5
MAJ Morgan, A Shilatifard. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52(12): 1271–1281 https://doi.org/10.1038/s41588-020-00736-4
6
MAJ Morgan, A Shilatifard. Epigenetic moonlighting: catalytic-independent functions of histone modifiers in regulating transcription. Sci Adv 2023; 9(16): eadg6593 https://doi.org/10.1126/sciadv.adg6593
7
BD Strahl, PA Grant, SD Briggs, ZW Sun, JR Bone, JA Caldwell, S Mollah, RG Cook, J Shabanowitz, DF Hunt, CD Allis. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 2002; 22(5): 1298–1306 https://doi.org/10.1128/MCB.22.5.1298-1306.2002
8
XJ Sun, J Wei, XY Wu, M Hu, L Wang, HH Wang, QH Zhang, SJ Chen, QH Huang, Z Chen. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 2005; 280(42): 35261–35271 https://doi.org/10.1074/jbc.M504012200
9
KO Kizer, HP Phatnani, Y Shibata, H Hall, AL Greenleaf, BD Strahl. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 2005; 25(8): 3305–3316 https://doi.org/10.1128/MCB.25.8.3305-3316.2005
10
M Li, HP Phatnani, Z Guan, H Sage, AL Greenleaf, P Zhou. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci USA 2005; 102(49): 17636–17641 https://doi.org/10.1073/pnas.0506350102
11
E Vojnic, B Simon, BD Strahl, M Sattler, P Cramer. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J Biol Chem 2006; 281(1): 13–15 https://doi.org/10.1074/jbc.C500423200
12
PW Faber, GT Barnes, J Srinidhi, J Chen, JF Gusella, ME MacDonald. Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 1998; 7(9): 1463–1474 https://doi.org/10.1093/hmg/7.9.1463
13
LA Passani, MT Bedford, PW Faber, KM McGinnis, AH Sharp, JF Gusella, JP Vonsattel, ME MacDonald. Huntingtin’s WW domain partners in Huntington’s disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum Mol Genet 2000; 9(14): 2175–2182 https://doi.org/10.1093/hmg/9.14.2175
14
JR Hesselberth, JP Miller, A Golob, JE Stajich, GA Michaud, S Fields. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol 2006; 7(4): R30 https://doi.org/10.1186/gb-2006-7-4-r30
15
RNH Seervai, RK Jangid, M Karki, DN Tripathi, SY Jung, SE Kearns, KJ Verhey, MA Cianfrocco, BA Millis, MJ Tyska, FM Mason, WK Rathmell, IY Park, R Dere, CL Walker. The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. Sci Adv 2020; 6(40): eabb7854 https://doi.org/10.1126/sciadv.abb7854
16
W Yuan, J Xie, C Long, H Erdjument-Bromage, X Ding, Y Zheng, P Tempst, S Chen, B Zhu, D Reinberg. Heterogeneous nuclear ribonucleoprotein L Is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 2009; 284(23): 15701–15707 https://doi.org/10.1074/jbc.M808431200
17
S Bhattacharya, MJ Levy, N Zhang, H Li, L Florens, MP Washburn, JL Workman. The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Nat Commun 2021; 12(1): 1443 https://doi.org/10.1038/s41467-021-21663-w
18
S Bhattacharya, S Wang, D Reddy, S Shen, Y Zhang, N Zhang, H Li, MP Washburn, L Florens, Y Shi, JL Workman, F Li. Structural basis of the interaction between SETD2 methyltransferase and hnRNP L paralogs for governing co-transcriptional splicing. Nat Commun 2021; 12(1): 6452 https://doi.org/10.1038/s41467-021-26799-3
19
S Bhattacharya, JJ Lange, M Levy, L Florens, MP Washburn, JL Workman. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297(3): 101075 https://doi.org/10.1016/j.jbc.2021.101075
20
J Li, D Moazed, SP Gygi. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 2002; 277(51): 49383–49388 https://doi.org/10.1074/jbc.M209294200
21
NJ Krogan, M Kim, A Tong, A Golshani, G Cagney, V Canadien, DP Richards, BK Beattie, A Emili, C Boone, A Shilatifard, S Buratowski, J Greenblatt. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 2003; 23(12): 4207–4218 https://doi.org/10.1128/MCB.23.12.4207-4218.2003
22
B Li, L Howe, S Anderson, JR 3rd Yates, JL Workman. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2003; 278(11): 8897–8903 https://doi.org/10.1074/jbc.M212134200
23
T Xiao, H Hall, KO Kizer, Y Shibata, MC Hall, CH Borchers, BD Strahl. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 2003; 17(5): 654–663 https://doi.org/10.1101/gad.1055503
24
D Schaft, A Roguev, KM Kotovic, A Shevchenko, M Sarov, A Shevchenko, KM Neugebauer, AF Stewart. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 2003; 31(10): 2475–2482 https://doi.org/10.1093/nar/gkg372
25
JW Edmunds, LC Mahadevan, AL Clayton. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008; 27(2): 406–420 https://doi.org/10.1038/sj.emboj.7601967
26
XJ Sun, PF Xu, T Zhou, M Hu, CT Fu, Y Zhang, Y Jin, Y Chen, SJ Chen, QH Huang, TX Liu, Z Chen. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes. PLoS One 2008; 3(1): e1499 https://doi.org/10.1371/journal.pone.0001499
27
M Hu, XJ Sun, YL Zhang, Y Kuang, CQ Hu, WL Wu, SH Shen, TT Du, H Li, F He, HS Xiao, ZG Wang, TX Liu, H Lu, QH Huang, SJ Chen, Z Chen. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci USA 2010; 107(7): 2956–2961 https://doi.org/10.1073/pnas.0915033107
28
A Barski, S Cuddapah, K Cui, TY Roh, DE Schones, Z Wang, G Wei, I Chepelev, K Zhao. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129(4): 823–837 https://doi.org/10.1016/j.cell.2007.05.009
29
GL Dalgliesh, K Furge, C Greenman, L Chen, G Bignell, A Butler, H Davies, S Edkins, C Hardy, C Latimer, J Teague, J Andrews, S Barthorpe, D Beare, G Buck, PJ Campbell, S Forbes, M Jia, D Jones, H Knott, CY Kok, KW Lau, C Leroy, ML Lin, DJ McBride, M Maddison, S Maguire, K McLay, A Menzies, T Mironenko, L Mulderrig, L Mudie, S O’Meara, E Pleasance, A Rajasingham, R Shepherd, R Smith, L Stebbings, P Stephens, G Tang, PS Tarpey, K Turrell, KJ Dykema, SK Khoo, D Petillo, B Wondergem, J Anema, RJ Kahnoski, BT Teh, MR Stratton, PA Futreal. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463(7279): 360–363 https://doi.org/10.1038/nature08672
30
C Kandoth, MD McLellan, F Vandin, K Ye, B Niu, C Lu, M Xie, Q Zhang, JF McMichael, MA Wyczalkowski, MDM Leiserson, CA Miller, JS Welch, MJ Walter, MC Wendl, TJ Ley, RK Wilson, BJ Raphael, L Ding. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502(7471): 333–339 https://doi.org/10.1038/nature12634
31
A Luscan, I Laurendeau, V Malan, C Francannet, S Odent, F Giuliano, D Lacombe, R Touraine, M Vidaud, E Pasmant, V Cormier-Daire. Mutations in SETD2 cause a novel overgrowth condition. J Med Genet 2014; 51(8): 512–517 https://doi.org/10.1136/jmedgenet-2014-102402
32
AM D’Gama, S Pochareddy, M Li, SS Jamuar, RE Reiff, AN Lam, N Sestan, CA Walsh. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 2015; 88(5): 910–917 https://doi.org/10.1016/j.neuron.2015.11.009
33
DJ Liu, F Zhang, Y Chen, Y Jin, YL Zhang, SB Chen, YY Xie, QH Huang, WL Zhao, L Wang, PF Xu, Z Chen, SJ Chen, B Li, A Zhang, XJ Sun. setd2 knockout zebrafish is viable and fertile: differential and developmental stress-related requirements for Setd2 and histone H3K36 trimethylation in different vertebrate animals. Cell Discov 2020; 6(1): 72 https://doi.org/10.1038/s41421-020-00203-8
34
IY Park, RT Powell, DN Tripathi, R Dere, TH Ho, TL Blasius, YC Chiang, IJ Davis, CC Fahey, KE Hacker, KJ Verhey, MT Bedford, E Jonasch, WK Rathmell, CL Walker. Dual chromatin and cytoskeletal remodeling by SETD2. Cell 2016; 166(4): 950–962 https://doi.org/10.1016/j.cell.2016.07.005
35
K Chen, J Liu, S Liu, M Xia, X Zhang, D Han, Y Jiang, C Wang, X Cao. Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity. Cell 2017; 170(3): 492–506.e14 https://doi.org/10.1016/j.cell.2017.06.042
36
BG Mar, SH Chu, JD Kahn, AV Krivtsov, R Koche, CA Castellano, JL Kotlier, RL Zon, ME McConkey, J Chabon, R Chappell, PV Grauman, JJ Hsieh, SA Armstrong, BL Ebert. SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood 2017; 130(24): 2631–2641 https://doi.org/10.1182/blood-2017-03-775569
37
AB Moffitt, SL Ondrejka, M McKinney, RE Rempel, JR Goodlad, CH Teh, S Leppa, S Mannisto, PE Kovanen, E Tse, RKH Au-Yeung, YL Kwong, G Srivastava, J Iqbal, J Yu, K Naresh, D Villa, RD Gascoyne, J Said, MB Czader, A Chadburn, KL Richards, D Rajagopalan, NS Davis, EC Smith, BC Palus, TJ Tzeng, JA Healy, PL Lugar, J Datta, C Love, S Levy, DB Dunson, Y Zhuang, ED Hsi, SS Dave. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med 2017; 214(5): 1371–1386 https://doi.org/10.1084/jem.20160894
38
YL Zhang, JW Sun, YY Xie, Y Zhou, P Liu, JC Song, CH Xu, L Wang, D Liu, AN Xu, Z Chen, SJ Chen, XJ Sun, QH Huang. Setd2 deficiency impairs hematopoietic stem cell self-renewal and causes malignant transformation. Cell Res 2018; 28(4): 476–490 https://doi.org/10.1038/s41422-018-0015-9
39
Y Zhou, X Yan, X Feng, J Bu, Y Dong, P Lin, Y Hayashi, R Huang, A Olsson, PR Andreassen, HL Grimes, QF Wang, T Cheng, Z Xiao, J Jin, G Huang. Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation. Haematologica 2018; 103(7): 1110–1123 https://doi.org/10.3324/haematol.2018.187708
40
X Zuo, B Rong, L Li, R Lv, F Lan, MH Tong. The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem 2018; 293(24): 9188–9197 https://doi.org/10.1074/jbc.RA118.002851
41
L Xu, Y Zheng, X Li, A Wang, D Huo, Q Li, S Wang, Z Luo, Y Liu, F Xu, X Wu, M Wu, Y Zhou. Abnormal neocortex arealization and Sotos-like syndrome-associated behavior in Setd2 mutant mice. Sci Adv 2021; 7(1): eaba1180 https://doi.org/10.1126/sciadv.aba1180
42
Y Xie, M Sahin, T Wakamatsu, A Inoue-Yamauchi, W Zhao, S Han, AM Nargund, S Yang, Y Lyu, JJ Hsieh, CS Leslie, EH Cheng. SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis. JCI Insight 2023; 8(4): e154120 https://doi.org/10.1172/jci.insight.154120
43
H Yuan, N Li, D Fu, J Ren, J Hui, J Peng, Y Liu, T Qiu, M Jiang, Q Pan, Y Han, X Wang, Q Li, J Qin. Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. J Clin Invest 2017; 127(9): 3375–3391 https://doi.org/10.1172/JCI94292
44
BY Chen, J Song, CL Hu, SB Chen, Q Zhang, CH Xu, JC Wu, D Hou, M Sun, YL Zhang, N Liu, PC Yu, P Liu, LJ Zong, JY Zhang, RF Dai, F Lan, QH Huang, SJ Zhang, SD Nimer, Z Chen, SJ Chen, XJ Sun, L Wang. SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood 2020; 135(25): 2271–2285 https://doi.org/10.1182/blood.2019001963
45
N Niu, P Lu, Y Yang, R He, L Zhang, J Shi, J Wu, M Yang, ZG Zhang, LW Wang, WQ Gao, A Habtezion, GG Xiao, Y Sun, L Li, J Xue. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut 2020; 69(4): 715–726 https://doi.org/10.1136/gutjnl-2019-318362
46
H Yuan, Y Han, X Wang, N Li, Q Liu, Y Yin, H Wang, L Pan, L Li, K Song, T Qiu, Q Pan, Q Chen, G Zhang, Y Zang, M Tan, J Zhang, Q Li, X Wang, J Jiang, J Qin. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell 2020; 38(3): 350–365.e7 https://doi.org/10.1016/j.ccell.2020.05.022
47
H Rao, X Li, M Liu, J Liu, W Feng, H Tang, J Xu, WQ Gao, L Li. Multilevel regulation of beta-catenin activity by SETD2 suppresses the transition from polycystic kidney disease to clear cell renal cell carcinoma. Cancer Res 2021; 81(13): 3554–3567 https://doi.org/10.1158/0008-5472.CAN-20-3960
48
H Rao, C Liu, A Wang, C Ma, Y Xu, T Ye, W Su, P Zhou, WQ Gao, L Li, X Ding. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer. Nat Commun 2023; 14(1): 7572 https://doi.org/10.1038/s41467-023-43378-w
49
J Song, L Du, P Liu, F Wang, B Zhang, Y Xie, J Lu, Y Jin, Y Zhou, G Lv, J Zhang, S Chen, Z Chen, X Sun, Y Zhang, Q Huang. Intra-heterogeneity in transcription and chemoresistant property of leukemia-initiating cells in murine Setd2−/− acute myeloid leukemia. Cancer Commun (Lond) 2021; 41(9): 867–888 https://doi.org/10.1002/cac2.12189
50
C Ma, M Liu, W Feng, H Rao, W Zhang, C Liu, Y Xu, Z Wang, Y Teng, X Yang, L Ni, J Xu, WQ Gao, B Lu, L Li. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Clin Transl Med 2023; 13(11): e1475 https://doi.org/10.1002/ctm2.1475
51
X Zheng, Y Luo, Y Xiong, X Liu, C Zeng, X Lu, X Wang, Y Cheng, S Wang, H Lan, K Wang, Z Weng, W Bi, X Gan, X Jia, L Wang, Y Wang. Tumor cell-intrinsic SETD2 inactivation sensitizes cancer cells to immune checkpoint blockade through the NR2F1-STAT1 pathway. J Immunother Cancer 2023; 11(12): e007678 https://doi.org/10.1136/jitc-2023-007678
52
XJ Sun, Z Wang, L Wang, Y Jiang, N Kost, TD Soong, WY Chen, Z Tang, T Nakadai, O Elemento, W Fischle, A Melnick, DJ Patel, SD Nimer, RG Roeder. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 2013; 500(7460): 93–97 https://doi.org/10.1038/nature12287
53
A Mortazavi, BA Williams, K McCue, L Schaeffer, B Wold. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5(7): 621–628 https://doi.org/10.1038/nmeth.1226
54
F Zhang, QY Zeng, H Xu, AN Xu, DJ Liu, NZ Li, Y Chen, Y Jin, CH Xu, CZ Feng, YL Zhang, D Liu, N Liu, YY Xie, SH Yu, H Yuan, K Xue, JY Shi, TX Liu, PF Xu, WL Zhao, Y Zhou, L Wang, QH Huang, Z Chen, SJ Chen, XL Zhou, XJ Sun. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discov 2021; 7(1): 98 https://doi.org/10.1038/s41421-021-00332-8
55
A Subramanian, P Tamayo, VK Mootha, S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy, TR Golub, ES Lander, JP Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550 https://doi.org/10.1073/pnas.0506580102
56
S Grosswendt, H Kretzmer, ZD Smith, AS Kumar, S Hetzel, L Wittler, S Klages, B Timmermann, S Mukherji, A Meissner. Epigenetic regulator function through mouse gastrulation. Nature 2020; 584(7819): 102–108 https://doi.org/10.1038/s41586-020-2552-x
57
CC Fahey, IJ Davis. SETting the stage for cancer development: SETD2 and the consequences of lost methylation. Cold Spring Harb Perspect Med 2017; 7(5): a026468 https://doi.org/10.1101/cshperspect.a026468
M Gerlinger, AJ Rowan, S Horswell, M Math, J Larkin, D Endesfelder, E Gronroos, P Martinez, N Matthews, A Stewart, P Tarpey, I Varela, B Phillimore, S Begum, NQ McDonald, A Butler, D Jones, K Raine, C Latimer, CR Santos, M Nohadani, AC Eklund, B Spencer-Dene, G Clark, L Pickering, G Stamp, M Gore, Z Szallasi, J Downward, PA Futreal, C Swanton. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366(10): 883–892 https://doi.org/10.1056/NEJMoa1113205
60
Cancer Genome Atlas Research Network The. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499(7456): 43–49 https://doi.org/10.1038/nature12222
61
N Kanu, E Gronroos, P Martinez, RA Burrell, X Yi Goh, J Bartkova, A Maya-Mendoza, M Mistrik, AJ Rowan, H Patel, A Rabinowitz, P East, G Wilson, CR Santos, N McGranahan, S Gulati, M Gerlinger, NJ Birkbak, T Joshi, LB Alexandrov, MR Stratton, T Powles, N Matthews, PA Bates, A Stewart, Z Szallasi, J Larkin, J Bartek, C Swanton. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 2015; 34(46): 5699–5708 https://doi.org/10.1038/onc.2015.24
62
P González-Rodríguez, P Engskog-Vlachos, H Zhang, AN Murgoci, I Zerdes, B Joseph. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis 2020; 11(1): 69 https://doi.org/10.1038/s41419-020-2266-x
63
Y Xie, M Sahin, S Sinha, Y Wang, AM Nargund, Y Lyu, S Han, Y Dong, JJ Hsieh, CS Leslie, EH Cheng. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Nat Cancer 2022; 3(2): 188–202 https://doi.org/10.1038/s43018-021-00316-3
64
XD Liu, YT Zhang, DJ McGrail, X Zhang, T Lam, A Hoang, E Hasanov, G Manyam, CB Peterson, H Zhu, SV Kumar, R Akbani, PG Pilie, NM Tannir, G Peng, E Jonasch. SETD2 loss and ATR inhibition synergize to promote cGAS signaling and immunotherapy response in renal cell carcinoma. Clin Cancer Res 2023; 29(19): 4002–4015 https://doi.org/10.1158/1078-0432.CCR-23-1003
65
S Yang, X Zheng, C Lu, GM Li, CD Allis, H Li. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev 2016; 30(14): 1611–1616 https://doi.org/10.1101/gad.284323.116
66
Y Liu, Y Zhang, H Xue, M Cao, G Bai, Z Mu, Y Yao, S Sun, D Fang, J Huang. Cryo-EM structure of SETD2/Set2 methyltransferase bound to a nucleosome containing oncohistone mutations. Cell Discov 2021; 7(1): 32 https://doi.org/10.1038/s41421-021-00261-6
67
K Zhu, PJ Lei, LG Ju, X Wang, K Huang, B Yang, C Shao, Y Zhu, G Wei, XD Fu, L Li, M Wu. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res 2017; 45(1): 92–105 https://doi.org/10.1093/nar/gkw814
68
S Bhattacharya, JJ Lange, M Levy, L Florens, MP Washburn, JL Workman. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297(3): 101075 https://doi.org/10.1016/j.jbc.2021.101075
69
T Gallardo, L Shirley, GB John, DH Castrillon. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 2007; 45(6): 413–417 https://doi.org/10.1002/dvg.20310
70
A Liberzon, C Birger, H Thorvaldsdottir, M Ghandi, JP Mesirov, P Tamayo. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015; 1(6): 417–425 https://doi.org/10.1016/j.cels.2015.12.004
71
Ontology Consortium; Aleksander SA Gene, J Balhoff, S Carbon, JM Cherry, HJ Drabkin, D Ebert, M Feuermann, P Gaudet, NL Harris, DP Hill, R Lee, H Mi, S Moxon, CJ Mungall, A Muruganugan, T Mushayahama, PW Sternberg, PD Thomas, Auken K Van, J Ramsey, DA Siegele, RL Chisholm, P Fey, MC Aspromonte, MV Nugnes, F Quaglia, S Tosatto, M Giglio, S Nadendla, G Antonazzo, H Attrill, Santos G Dos, S Marygold, V Strelets, CJ Tabone, J Thurmond, P Zhou, SH Ahmed, P Asanitthong, Buitrago D Luna, MN Erdol, MC Gage, Kadhum M Ali, KYC Li, M Long, A Michalak, A Pesala, A Pritazahra, SCC Saverimuttu, R Su, KE Thurlow, RC Lovering, C Logie, S Oliferenko, J Blake, K Christie, L Corbani, ME Dolan, HJ Drabkin, DP Hill, L Ni, D Sitnikov, C Smith, A Cuzick, J Seager, L Cooper, J Elser, P Jaiswal, P Gupta, P Jaiswal, S Naithani, M Lera-Ramirez, K Rutherford, V Wood, Pons JL De, MR Dwinell, GT Hayman, ML Kaldunski, AE Kwitek, SJF Laulederkind, MA Tutaj, M Vedi, SJ Wang, P D'Eustachio, L Aimo, K Axelsen, A Bridge, N Hyka-Nouspikel, A Morgat, SA Aleksander, JM Cherry, SR Engel, K Karra, SR Miyasato, RS Nash, MS Skrzypek, S Weng, ED Wong, E Bakker, TZ Berardini, L Reiser, A Auchincloss, K Axelsen, G Argoud-Puy, MC Blatter, E Boutet, L Breuza, A Bridge, C Casals-Casas, E Coudert, A Estreicher, Famiglietti M Livia, M Feuermann, A Gos, N Gruaz-Gumowski, C Hulo, N Hyka-Nouspikel, F Jungo, Mercier P Le, D Lieberherr, P Masson, A Morgat, I Pedruzzi, L Pourcel, S Poux, C Rivoire, S Sundaram, A Bateman, E Bowler-Barnett, H Bye-A-Jee, P Denny, A Ignatchenko, R Ishtiaq, A Lock, Y Lussi, M Magrane, MJ Martin, S Orchard, P Raposo, E Speretta, N Tyagi, K Warner, R Zaru, AD Diehl, R Lee, J Chan, S Diamantakis, D Raciti, M Zarowiecki, M Fisher, C James-Zorn, V Ponferrada, A Zorn, S Ramachandran, L Ruzicka, M Westerfield. The Gene Ontology knowledgebase in 2023. Genetics 2023; 224(1): iyad031 https://doi.org/10.1093/genetics/iyad031
ML Chu. Structural Proteins: Genes for Collagen. Encyclopedia of Life Sciences. 2011
74
CA Shaut, DR Keene, LK Sorensen, DY Li, HS Stadler. HOXA13 is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet 2008; 4(5): e1000073 https://doi.org/10.1371/journal.pgen.1000073
75
M Scotti, M Kmita. Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development 2012; 139(4): 731–739 https://doi.org/10.1242/dev.075408
76
KM Dorighi, T Swigut, T Henriques, NV Bhanu, BS Scruggs, N Nady, CD 2nd Still, BA Garcia, K Adelman, J Wysocka. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol Cell 2017; 66(4): 568–576.e4 https://doi.org/10.1016/j.molcel.2017.04.018
77
R Rickels, HM Herz, CC Sze, K Cao, MA Morgan, CK Collings, M Gause, YH Takahashi, L Wang, EJ Rendleman, SA Marshall, A Krueger, ET Bartom, A Piunti, ER Smith, NA Abshiru, NL Kelleher, D Dorsett, A Shilatifard. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat Genet 2017; 49(11): 1647–1653 https://doi.org/10.1038/ng.3965
78
R Rickels, L Wang, M Iwanaszko, PA Ozark, MA Morgan, A Piunti, N Khalatyan, SHA Soliman, EJ Rendleman, JN Savas, ER Smith, A Shilatifard. A small UTX stabilization domain of Trr is conserved within mammalian MLL3–4/COMPASS and is sufficient to rescue loss of viability in null animals. Genes Dev 2020; 34(21–22): 1493–1502 https://doi.org/10.1101/gad.339762.120
79
F Ciabrelli, L Rabbani, F Cardamone, F Zenk, E Loser, MA Schachtle, M Mazina, V Loubiere, N Iovino. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. Sci Adv 2023; 9(16): eadf2687 https://doi.org/10.1126/sciadv.adf2687
80
S Takebayashi, T Tamura, C Matsuoka, M Okano. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Mol Cell Biol 2007; 27(23): 8243–8258 https://doi.org/10.1128/MCB.00899-07
81
SL McDaniel, BD Strahl. Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74(18): 3317–3334 https://doi.org/10.1007/s00018-017-2517-x
82
J Li, JH Ahn, GG Wang. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76(15): 2899–2916 https://doi.org/10.1007/s00018-019-03144-y
83
B Li, M Gogol, M Carey, SG Pattenden, C Seidel, JL Workman. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 2007; 21(11): 1422–1430 https://doi.org/10.1101/gad.1539307
84
CR Lickwar, B Rao, AA Shabalin, AB Nobel, BD Strahl, JD Lieb. The Set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency. PLoS One 2009; 4(3): e4886 https://doi.org/10.1371/journal.pone.0004886
85
K Finogenova, J Bonnet, S Poepsel, IB Schafer, K Finkl, K Schmid, C Litz, M Strauss, C Benda, J Muller. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 2020; 9: e61964 https://doi.org/10.7554/eLife.61964
86
JH Kim, BB Lee, YM Oh, C Zhu, LM Steinmetz, Y Lee, WK Kim, SB Lee, S Buratowski, T Kim. Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat Commun 2016; 7(1): 13534 https://doi.org/10.1038/ncomms13534
87
S Venkatesh, H Li, MM Gogol, JL Workman. Selective suppression of antisense transcription by Set2-mediated H3K36 methylation. Nat Commun 2016; 7(1): 13610 https://doi.org/10.1038/ncomms13610
88
JP Adelman, CT Bond, J Douglass, E Herbert. Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 1987; 235(4795): 1514–1517 https://doi.org/10.1126/science.3547652
89
W Rosikiewicz, Y Suzuki, I Makalowska. OverGeneDB: a database of 5′ end protein coding overlapping genes in human and mouse genomes. Nucleic Acids Res 2018; 46(D1): D186–D193 https://doi.org/10.1093/nar/gkx948
90
D Liu, C Xu, Y Liu, W Ouyang, S Lin, A Xu, Y Zhang, Y Xie, Q Huang, W Zhao, Z Chen, L Wang, S Chen, J Huang, ZB Wu, X Sun. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17(3): 458–475 https://doi.org/10.1007/s11684-022-0968-4