Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (5): 831-849   https://doi.org/10.1007/s11684-024-1095-1
  本期目录
Catalytic activity of Setd2 is essential for embryonic development in mice: establishment of a mouse model harboring patient-derived Setd2 mutation
Shubei Chen1, Dianjia Liu1, Bingyi Chen2, Zijuan Li2, Binhe Chang2, Chunhui Xu2, Ningzhe Li1, Changzhou Feng1,3, Xibo Hu1, Weiying Wang1, Yuanliang Zhang1, Yinyin Xie1, Qiuhua Huang1, Yingcai Wang4,5, Stephen D. Nimer4, Saijuan Chen1, Zhu Chen1, Lan Wang2(), Xiaojian Sun1()
. Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
. CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
. Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
. Sylvester Comprehensive Cancer Center and Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
. Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
 全文: PDF(14879 KB)   HTML
Abstract

SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2−/− mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2−/−, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5′ Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.

Key wordsSetd2    H3K36 methylation    epigenetics    embryonic development    cancer
收稿日期: 2024-05-06      出版日期: 2024-10-29
Corresponding Author(s): Lan Wang,Xiaojian Sun   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(5): 831-849.
Shubei Chen, Dianjia Liu, Bingyi Chen, Zijuan Li, Binhe Chang, Chunhui Xu, Ningzhe Li, Changzhou Feng, Xibo Hu, Weiying Wang, Yuanliang Zhang, Yinyin Xie, Qiuhua Huang, Yingcai Wang, Stephen D. Nimer, Saijuan Chen, Zhu Chen, Lan Wang, Xiaojian Sun. Catalytic activity of Setd2 is essential for embryonic development in mice: establishment of a mouse model harboring patient-derived Setd2 mutation. Front. Med., 2024, 18(5): 831-849.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-024-1095-1
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I5/831
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 AP Bird. CpG-rich islands and the function of DNA methylation. Nature 1986; 321(6067): 209–213
https://doi.org/10.1038/321209a0
2 TH Bestor, GL Verdine. DNA methyltransferases. Curr Opin Cell Biol 1994; 6(3): 380–389
https://doi.org/10.1016/0955-0674(94)90030-2
3 T Jenuwein, CD Allis. Translating the histone code. Science 2001; 293(5532): 1074–1080
https://doi.org/10.1126/science.1063127
4 Y Aubert, S Egolf, BC Capell. The unexpected noncatalytic roles of histone modifiers in development and disease. Trends Genet 2019; 35(9): 645–657
https://doi.org/10.1016/j.tig.2019.06.004
5 MAJ Morgan, A Shilatifard. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52(12): 1271–1281
https://doi.org/10.1038/s41588-020-00736-4
6 MAJ Morgan, A Shilatifard. Epigenetic moonlighting: catalytic-independent functions of histone modifiers in regulating transcription. Sci Adv 2023; 9(16): eadg6593
https://doi.org/10.1126/sciadv.adg6593
7 BD Strahl, PA Grant, SD Briggs, ZW Sun, JR Bone, JA Caldwell, S Mollah, RG Cook, J Shabanowitz, DF Hunt, CD Allis. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 2002; 22(5): 1298–1306
https://doi.org/10.1128/MCB.22.5.1298-1306.2002
8 XJ Sun, J Wei, XY Wu, M Hu, L Wang, HH Wang, QH Zhang, SJ Chen, QH Huang, Z Chen. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 2005; 280(42): 35261–35271
https://doi.org/10.1074/jbc.M504012200
9 KO Kizer, HP Phatnani, Y Shibata, H Hall, AL Greenleaf, BD Strahl. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 2005; 25(8): 3305–3316
https://doi.org/10.1128/MCB.25.8.3305-3316.2005
10 M Li, HP Phatnani, Z Guan, H Sage, AL Greenleaf, P Zhou. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci USA 2005; 102(49): 17636–17641
https://doi.org/10.1073/pnas.0506350102
11 E Vojnic, B Simon, BD Strahl, M Sattler, P Cramer. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J Biol Chem 2006; 281(1): 13–15
https://doi.org/10.1074/jbc.C500423200
12 PW Faber, GT Barnes, J Srinidhi, J Chen, JF Gusella, ME MacDonald. Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 1998; 7(9): 1463–1474
https://doi.org/10.1093/hmg/7.9.1463
13 LA Passani, MT Bedford, PW Faber, KM McGinnis, AH Sharp, JF Gusella, JP Vonsattel, ME MacDonald. Huntingtin’s WW domain partners in Huntington’s disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum Mol Genet 2000; 9(14): 2175–2182
https://doi.org/10.1093/hmg/9.14.2175
14 JR Hesselberth, JP Miller, A Golob, JE Stajich, GA Michaud, S Fields. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol 2006; 7(4): R30
https://doi.org/10.1186/gb-2006-7-4-r30
15 RNH Seervai, RK Jangid, M Karki, DN Tripathi, SY Jung, SE Kearns, KJ Verhey, MA Cianfrocco, BA Millis, MJ Tyska, FM Mason, WK Rathmell, IY Park, R Dere, CL Walker. The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. Sci Adv 2020; 6(40): eabb7854
https://doi.org/10.1126/sciadv.abb7854
16 W Yuan, J Xie, C Long, H Erdjument-Bromage, X Ding, Y Zheng, P Tempst, S Chen, B Zhu, D Reinberg. Heterogeneous nuclear ribonucleoprotein L Is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 2009; 284(23): 15701–15707
https://doi.org/10.1074/jbc.M808431200
17 S Bhattacharya, MJ Levy, N Zhang, H Li, L Florens, MP Washburn, JL Workman. The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Nat Commun 2021; 12(1): 1443
https://doi.org/10.1038/s41467-021-21663-w
18 S Bhattacharya, S Wang, D Reddy, S Shen, Y Zhang, N Zhang, H Li, MP Washburn, L Florens, Y Shi, JL Workman, F Li. Structural basis of the interaction between SETD2 methyltransferase and hnRNP L paralogs for governing co-transcriptional splicing. Nat Commun 2021; 12(1): 6452
https://doi.org/10.1038/s41467-021-26799-3
19 S Bhattacharya, JJ Lange, M Levy, L Florens, MP Washburn, JL Workman. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297(3): 101075
https://doi.org/10.1016/j.jbc.2021.101075
20 J Li, D Moazed, SP Gygi. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 2002; 277(51): 49383–49388
https://doi.org/10.1074/jbc.M209294200
21 NJ Krogan, M Kim, A Tong, A Golshani, G Cagney, V Canadien, DP Richards, BK Beattie, A Emili, C Boone, A Shilatifard, S Buratowski, J Greenblatt. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 2003; 23(12): 4207–4218
https://doi.org/10.1128/MCB.23.12.4207-4218.2003
22 B Li, L Howe, S Anderson, JR 3rd Yates, JL Workman. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2003; 278(11): 8897–8903
https://doi.org/10.1074/jbc.M212134200
23 T Xiao, H Hall, KO Kizer, Y Shibata, MC Hall, CH Borchers, BD Strahl. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 2003; 17(5): 654–663
https://doi.org/10.1101/gad.1055503
24 D Schaft, A Roguev, KM Kotovic, A Shevchenko, M Sarov, A Shevchenko, KM Neugebauer, AF Stewart. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 2003; 31(10): 2475–2482
https://doi.org/10.1093/nar/gkg372
25 JW Edmunds, LC Mahadevan, AL Clayton. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008; 27(2): 406–420
https://doi.org/10.1038/sj.emboj.7601967
26 XJ Sun, PF Xu, T Zhou, M Hu, CT Fu, Y Zhang, Y Jin, Y Chen, SJ Chen, QH Huang, TX Liu, Z Chen. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes. PLoS One 2008; 3(1): e1499
https://doi.org/10.1371/journal.pone.0001499
27 M Hu, XJ Sun, YL Zhang, Y Kuang, CQ Hu, WL Wu, SH Shen, TT Du, H Li, F He, HS Xiao, ZG Wang, TX Liu, H Lu, QH Huang, SJ Chen, Z Chen. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci USA 2010; 107(7): 2956–2961
https://doi.org/10.1073/pnas.0915033107
28 A Barski, S Cuddapah, K Cui, TY Roh, DE Schones, Z Wang, G Wei, I Chepelev, K Zhao. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129(4): 823–837
https://doi.org/10.1016/j.cell.2007.05.009
29 GL Dalgliesh, K Furge, C Greenman, L Chen, G Bignell, A Butler, H Davies, S Edkins, C Hardy, C Latimer, J Teague, J Andrews, S Barthorpe, D Beare, G Buck, PJ Campbell, S Forbes, M Jia, D Jones, H Knott, CY Kok, KW Lau, C Leroy, ML Lin, DJ McBride, M Maddison, S Maguire, K McLay, A Menzies, T Mironenko, L Mulderrig, L Mudie, S O’Meara, E Pleasance, A Rajasingham, R Shepherd, R Smith, L Stebbings, P Stephens, G Tang, PS Tarpey, K Turrell, KJ Dykema, SK Khoo, D Petillo, B Wondergem, J Anema, RJ Kahnoski, BT Teh, MR Stratton, PA Futreal. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463(7279): 360–363
https://doi.org/10.1038/nature08672
30 C Kandoth, MD McLellan, F Vandin, K Ye, B Niu, C Lu, M Xie, Q Zhang, JF McMichael, MA Wyczalkowski, MDM Leiserson, CA Miller, JS Welch, MJ Walter, MC Wendl, TJ Ley, RK Wilson, BJ Raphael, L Ding. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502(7471): 333–339
https://doi.org/10.1038/nature12634
31 A Luscan, I Laurendeau, V Malan, C Francannet, S Odent, F Giuliano, D Lacombe, R Touraine, M Vidaud, E Pasmant, V Cormier-Daire. Mutations in SETD2 cause a novel overgrowth condition. J Med Genet 2014; 51(8): 512–517
https://doi.org/10.1136/jmedgenet-2014-102402
32 AM D’Gama, S Pochareddy, M Li, SS Jamuar, RE Reiff, AN Lam, N Sestan, CA Walsh. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 2015; 88(5): 910–917
https://doi.org/10.1016/j.neuron.2015.11.009
33 DJ Liu, F Zhang, Y Chen, Y Jin, YL Zhang, SB Chen, YY Xie, QH Huang, WL Zhao, L Wang, PF Xu, Z Chen, SJ Chen, B Li, A Zhang, XJ Sun. setd2 knockout zebrafish is viable and fertile: differential and developmental stress-related requirements for Setd2 and histone H3K36 trimethylation in different vertebrate animals. Cell Discov 2020; 6(1): 72
https://doi.org/10.1038/s41421-020-00203-8
34 IY Park, RT Powell, DN Tripathi, R Dere, TH Ho, TL Blasius, YC Chiang, IJ Davis, CC Fahey, KE Hacker, KJ Verhey, MT Bedford, E Jonasch, WK Rathmell, CL Walker. Dual chromatin and cytoskeletal remodeling by SETD2. Cell 2016; 166(4): 950–962
https://doi.org/10.1016/j.cell.2016.07.005
35 K Chen, J Liu, S Liu, M Xia, X Zhang, D Han, Y Jiang, C Wang, X Cao. Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity. Cell 2017; 170(3): 492–506.e14
https://doi.org/10.1016/j.cell.2017.06.042
36 BG Mar, SH Chu, JD Kahn, AV Krivtsov, R Koche, CA Castellano, JL Kotlier, RL Zon, ME McConkey, J Chabon, R Chappell, PV Grauman, JJ Hsieh, SA Armstrong, BL Ebert. SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood 2017; 130(24): 2631–2641
https://doi.org/10.1182/blood-2017-03-775569
37 AB Moffitt, SL Ondrejka, M McKinney, RE Rempel, JR Goodlad, CH Teh, S Leppa, S Mannisto, PE Kovanen, E Tse, RKH Au-Yeung, YL Kwong, G Srivastava, J Iqbal, J Yu, K Naresh, D Villa, RD Gascoyne, J Said, MB Czader, A Chadburn, KL Richards, D Rajagopalan, NS Davis, EC Smith, BC Palus, TJ Tzeng, JA Healy, PL Lugar, J Datta, C Love, S Levy, DB Dunson, Y Zhuang, ED Hsi, SS Dave. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med 2017; 214(5): 1371–1386
https://doi.org/10.1084/jem.20160894
38 YL Zhang, JW Sun, YY Xie, Y Zhou, P Liu, JC Song, CH Xu, L Wang, D Liu, AN Xu, Z Chen, SJ Chen, XJ Sun, QH Huang. Setd2 deficiency impairs hematopoietic stem cell self-renewal and causes malignant transformation. Cell Res 2018; 28(4): 476–490
https://doi.org/10.1038/s41422-018-0015-9
39 Y Zhou, X Yan, X Feng, J Bu, Y Dong, P Lin, Y Hayashi, R Huang, A Olsson, PR Andreassen, HL Grimes, QF Wang, T Cheng, Z Xiao, J Jin, G Huang. Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation. Haematologica 2018; 103(7): 1110–1123
https://doi.org/10.3324/haematol.2018.187708
40 X Zuo, B Rong, L Li, R Lv, F Lan, MH Tong. The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem 2018; 293(24): 9188–9197
https://doi.org/10.1074/jbc.RA118.002851
41 L Xu, Y Zheng, X Li, A Wang, D Huo, Q Li, S Wang, Z Luo, Y Liu, F Xu, X Wu, M Wu, Y Zhou. Abnormal neocortex arealization and Sotos-like syndrome-associated behavior in Setd2 mutant mice. Sci Adv 2021; 7(1): eaba1180
https://doi.org/10.1126/sciadv.aba1180
42 Y Xie, M Sahin, T Wakamatsu, A Inoue-Yamauchi, W Zhao, S Han, AM Nargund, S Yang, Y Lyu, JJ Hsieh, CS Leslie, EH Cheng. SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis. JCI Insight 2023; 8(4): e154120
https://doi.org/10.1172/jci.insight.154120
43 H Yuan, N Li, D Fu, J Ren, J Hui, J Peng, Y Liu, T Qiu, M Jiang, Q Pan, Y Han, X Wang, Q Li, J Qin. Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. J Clin Invest 2017; 127(9): 3375–3391
https://doi.org/10.1172/JCI94292
44 BY Chen, J Song, CL Hu, SB Chen, Q Zhang, CH Xu, JC Wu, D Hou, M Sun, YL Zhang, N Liu, PC Yu, P Liu, LJ Zong, JY Zhang, RF Dai, F Lan, QH Huang, SJ Zhang, SD Nimer, Z Chen, SJ Chen, XJ Sun, L Wang. SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood 2020; 135(25): 2271–2285
https://doi.org/10.1182/blood.2019001963
45 N Niu, P Lu, Y Yang, R He, L Zhang, J Shi, J Wu, M Yang, ZG Zhang, LW Wang, WQ Gao, A Habtezion, GG Xiao, Y Sun, L Li, J Xue. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut 2020; 69(4): 715–726
https://doi.org/10.1136/gutjnl-2019-318362
46 H Yuan, Y Han, X Wang, N Li, Q Liu, Y Yin, H Wang, L Pan, L Li, K Song, T Qiu, Q Pan, Q Chen, G Zhang, Y Zang, M Tan, J Zhang, Q Li, X Wang, J Jiang, J Qin. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell 2020; 38(3): 350–365.e7
https://doi.org/10.1016/j.ccell.2020.05.022
47 H Rao, X Li, M Liu, J Liu, W Feng, H Tang, J Xu, WQ Gao, L Li. Multilevel regulation of beta-catenin activity by SETD2 suppresses the transition from polycystic kidney disease to clear cell renal cell carcinoma. Cancer Res 2021; 81(13): 3554–3567
https://doi.org/10.1158/0008-5472.CAN-20-3960
48 H Rao, C Liu, A Wang, C Ma, Y Xu, T Ye, W Su, P Zhou, WQ Gao, L Li, X Ding. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer. Nat Commun 2023; 14(1): 7572
https://doi.org/10.1038/s41467-023-43378-w
49 J Song, L Du, P Liu, F Wang, B Zhang, Y Xie, J Lu, Y Jin, Y Zhou, G Lv, J Zhang, S Chen, Z Chen, X Sun, Y Zhang, Q Huang. Intra-heterogeneity in transcription and chemoresistant property of leukemia-initiating cells in murine Setd2−/− acute myeloid leukemia. Cancer Commun (Lond) 2021; 41(9): 867–888
https://doi.org/10.1002/cac2.12189
50 C Ma, M Liu, W Feng, H Rao, W Zhang, C Liu, Y Xu, Z Wang, Y Teng, X Yang, L Ni, J Xu, WQ Gao, B Lu, L Li. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Clin Transl Med 2023; 13(11): e1475
https://doi.org/10.1002/ctm2.1475
51 X Zheng, Y Luo, Y Xiong, X Liu, C Zeng, X Lu, X Wang, Y Cheng, S Wang, H Lan, K Wang, Z Weng, W Bi, X Gan, X Jia, L Wang, Y Wang. Tumor cell-intrinsic SETD2 inactivation sensitizes cancer cells to immune checkpoint blockade through the NR2F1-STAT1 pathway. J Immunother Cancer 2023; 11(12): e007678
https://doi.org/10.1136/jitc-2023-007678
52 XJ Sun, Z Wang, L Wang, Y Jiang, N Kost, TD Soong, WY Chen, Z Tang, T Nakadai, O Elemento, W Fischle, A Melnick, DJ Patel, SD Nimer, RG Roeder. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 2013; 500(7460): 93–97
https://doi.org/10.1038/nature12287
53 A Mortazavi, BA Williams, K McCue, L Schaeffer, B Wold. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5(7): 621–628
https://doi.org/10.1038/nmeth.1226
54 F Zhang, QY Zeng, H Xu, AN Xu, DJ Liu, NZ Li, Y Chen, Y Jin, CH Xu, CZ Feng, YL Zhang, D Liu, N Liu, YY Xie, SH Yu, H Yuan, K Xue, JY Shi, TX Liu, PF Xu, WL Zhao, Y Zhou, L Wang, QH Huang, Z Chen, SJ Chen, XL Zhou, XJ Sun. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discov 2021; 7(1): 98
https://doi.org/10.1038/s41421-021-00332-8
55 A Subramanian, P Tamayo, VK Mootha, S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy, TR Golub, ES Lander, JP Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550
https://doi.org/10.1073/pnas.0506580102
56 S Grosswendt, H Kretzmer, ZD Smith, AS Kumar, S Hetzel, L Wittler, S Klages, B Timmermann, S Mukherji, A Meissner. Epigenetic regulator function through mouse gastrulation. Nature 2020; 584(7819): 102–108
https://doi.org/10.1038/s41586-020-2552-x
57 CC Fahey, IJ Davis. SETting the stage for cancer development: SETD2 and the consequences of lost methylation. Cold Spring Harb Perspect Med 2017; 7(5): a026468
https://doi.org/10.1101/cshperspect.a026468
58 MM Patnaik, O Abdel-Wahab. SETD2—linking stem cell survival and transformation. Cell Res 2018; 28(4): 393–394
https://doi.org/10.1038/s41422-018-0025-7
59 M Gerlinger, AJ Rowan, S Horswell, M Math, J Larkin, D Endesfelder, E Gronroos, P Martinez, N Matthews, A Stewart, P Tarpey, I Varela, B Phillimore, S Begum, NQ McDonald, A Butler, D Jones, K Raine, C Latimer, CR Santos, M Nohadani, AC Eklund, B Spencer-Dene, G Clark, L Pickering, G Stamp, M Gore, Z Szallasi, J Downward, PA Futreal, C Swanton. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366(10): 883–892
https://doi.org/10.1056/NEJMoa1113205
60 Cancer Genome Atlas Research Network The. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499(7456): 43–49
https://doi.org/10.1038/nature12222
61 N Kanu, E Gronroos, P Martinez, RA Burrell, X Yi Goh, J Bartkova, A Maya-Mendoza, M Mistrik, AJ Rowan, H Patel, A Rabinowitz, P East, G Wilson, CR Santos, N McGranahan, S Gulati, M Gerlinger, NJ Birkbak, T Joshi, LB Alexandrov, MR Stratton, T Powles, N Matthews, PA Bates, A Stewart, Z Szallasi, J Larkin, J Bartek, C Swanton. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 2015; 34(46): 5699–5708
https://doi.org/10.1038/onc.2015.24
62 P González-Rodríguez, P Engskog-Vlachos, H Zhang, AN Murgoci, I Zerdes, B Joseph. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis 2020; 11(1): 69
https://doi.org/10.1038/s41419-020-2266-x
63 Y Xie, M Sahin, S Sinha, Y Wang, AM Nargund, Y Lyu, S Han, Y Dong, JJ Hsieh, CS Leslie, EH Cheng. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Nat Cancer 2022; 3(2): 188–202
https://doi.org/10.1038/s43018-021-00316-3
64 XD Liu, YT Zhang, DJ McGrail, X Zhang, T Lam, A Hoang, E Hasanov, G Manyam, CB Peterson, H Zhu, SV Kumar, R Akbani, PG Pilie, NM Tannir, G Peng, E Jonasch. SETD2 loss and ATR inhibition synergize to promote cGAS signaling and immunotherapy response in renal cell carcinoma. Clin Cancer Res 2023; 29(19): 4002–4015
https://doi.org/10.1158/1078-0432.CCR-23-1003
65 S Yang, X Zheng, C Lu, GM Li, CD Allis, H Li. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev 2016; 30(14): 1611–1616
https://doi.org/10.1101/gad.284323.116
66 Y Liu, Y Zhang, H Xue, M Cao, G Bai, Z Mu, Y Yao, S Sun, D Fang, J Huang. Cryo-EM structure of SETD2/Set2 methyltransferase bound to a nucleosome containing oncohistone mutations. Cell Discov 2021; 7(1): 32
https://doi.org/10.1038/s41421-021-00261-6
67 K Zhu, PJ Lei, LG Ju, X Wang, K Huang, B Yang, C Shao, Y Zhu, G Wei, XD Fu, L Li, M Wu. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res 2017; 45(1): 92–105
https://doi.org/10.1093/nar/gkw814
68 S Bhattacharya, JJ Lange, M Levy, L Florens, MP Washburn, JL Workman. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297(3): 101075
https://doi.org/10.1016/j.jbc.2021.101075
69 T Gallardo, L Shirley, GB John, DH Castrillon. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 2007; 45(6): 413–417
https://doi.org/10.1002/dvg.20310
70 A Liberzon, C Birger, H Thorvaldsdottir, M Ghandi, JP Mesirov, P Tamayo. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015; 1(6): 417–425
https://doi.org/10.1016/j.cels.2015.12.004
71 Ontology Consortium; Aleksander SA Gene, J Balhoff, S Carbon, JM Cherry, HJ Drabkin, D Ebert, M Feuermann, P Gaudet, NL Harris, DP Hill, R Lee, H Mi, S Moxon, CJ Mungall, A Muruganugan, T Mushayahama, PW Sternberg, PD Thomas, Auken K Van, J Ramsey, DA Siegele, RL Chisholm, P Fey, MC Aspromonte, MV Nugnes, F Quaglia, S Tosatto, M Giglio, S Nadendla, G Antonazzo, H Attrill, Santos G Dos, S Marygold, V Strelets, CJ Tabone, J Thurmond, P Zhou, SH Ahmed, P Asanitthong, Buitrago D Luna, MN Erdol, MC Gage, Kadhum M Ali, KYC Li, M Long, A Michalak, A Pesala, A Pritazahra, SCC Saverimuttu, R Su, KE Thurlow, RC Lovering, C Logie, S Oliferenko, J Blake, K Christie, L Corbani, ME Dolan, HJ Drabkin, DP Hill, L Ni, D Sitnikov, C Smith, A Cuzick, J Seager, L Cooper, J Elser, P Jaiswal, P Gupta, P Jaiswal, S Naithani, M Lera-Ramirez, K Rutherford, V Wood, Pons JL De, MR Dwinell, GT Hayman, ML Kaldunski, AE Kwitek, SJF Laulederkind, MA Tutaj, M Vedi, SJ Wang, P D'Eustachio, L Aimo, K Axelsen, A Bridge, N Hyka-Nouspikel, A Morgat, SA Aleksander, JM Cherry, SR Engel, K Karra, SR Miyasato, RS Nash, MS Skrzypek, S Weng, ED Wong, E Bakker, TZ Berardini, L Reiser, A Auchincloss, K Axelsen, G Argoud-Puy, MC Blatter, E Boutet, L Breuza, A Bridge, C Casals-Casas, E Coudert, A Estreicher, Famiglietti M Livia, M Feuermann, A Gos, N Gruaz-Gumowski, C Hulo, N Hyka-Nouspikel, F Jungo, Mercier P Le, D Lieberherr, P Masson, A Morgat, I Pedruzzi, L Pourcel, S Poux, C Rivoire, S Sundaram, A Bateman, E Bowler-Barnett, H Bye-A-Jee, P Denny, A Ignatchenko, R Ishtiaq, A Lock, Y Lussi, M Magrane, MJ Martin, S Orchard, P Raposo, E Speretta, N Tyagi, K Warner, R Zaru, AD Diehl, R Lee, J Chan, S Diamantakis, D Raciti, M Zarowiecki, M Fisher, C James-Zorn, V Ponferrada, A Zorn, S Ramachandran, L Ruzicka, M Westerfield. The Gene Ontology knowledgebase in 2023. Genetics 2023; 224(1): iyad031
https://doi.org/10.1093/genetics/iyad031
72 J Myllyharju, KI Kivirikko. Collagens and collagen-related diseases. Ann Med 2001; 33(1): 7–21
https://doi.org/10.3109/07853890109002055
73 ML Chu. Structural Proteins: Genes for Collagen. Encyclopedia of Life Sciences. 2011
74 CA Shaut, DR Keene, LK Sorensen, DY Li, HS Stadler. HOXA13 is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet 2008; 4(5): e1000073
https://doi.org/10.1371/journal.pgen.1000073
75 M Scotti, M Kmita. Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development 2012; 139(4): 731–739
https://doi.org/10.1242/dev.075408
76 KM Dorighi, T Swigut, T Henriques, NV Bhanu, BS Scruggs, N Nady, CD 2nd Still, BA Garcia, K Adelman, J Wysocka. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol Cell 2017; 66(4): 568–576.e4
https://doi.org/10.1016/j.molcel.2017.04.018
77 R Rickels, HM Herz, CC Sze, K Cao, MA Morgan, CK Collings, M Gause, YH Takahashi, L Wang, EJ Rendleman, SA Marshall, A Krueger, ET Bartom, A Piunti, ER Smith, NA Abshiru, NL Kelleher, D Dorsett, A Shilatifard. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat Genet 2017; 49(11): 1647–1653
https://doi.org/10.1038/ng.3965
78 R Rickels, L Wang, M Iwanaszko, PA Ozark, MA Morgan, A Piunti, N Khalatyan, SHA Soliman, EJ Rendleman, JN Savas, ER Smith, A Shilatifard. A small UTX stabilization domain of Trr is conserved within mammalian MLL3–4/COMPASS and is sufficient to rescue loss of viability in null animals. Genes Dev 2020; 34(21–22): 1493–1502
https://doi.org/10.1101/gad.339762.120
79 F Ciabrelli, L Rabbani, F Cardamone, F Zenk, E Loser, MA Schachtle, M Mazina, V Loubiere, N Iovino. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. Sci Adv 2023; 9(16): eadf2687
https://doi.org/10.1126/sciadv.adf2687
80 S Takebayashi, T Tamura, C Matsuoka, M Okano. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Mol Cell Biol 2007; 27(23): 8243–8258
https://doi.org/10.1128/MCB.00899-07
81 SL McDaniel, BD Strahl. Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74(18): 3317–3334
https://doi.org/10.1007/s00018-017-2517-x
82 J Li, JH Ahn, GG Wang. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76(15): 2899–2916
https://doi.org/10.1007/s00018-019-03144-y
83 B Li, M Gogol, M Carey, SG Pattenden, C Seidel, JL Workman. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 2007; 21(11): 1422–1430
https://doi.org/10.1101/gad.1539307
84 CR Lickwar, B Rao, AA Shabalin, AB Nobel, BD Strahl, JD Lieb. The Set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency. PLoS One 2009; 4(3): e4886
https://doi.org/10.1371/journal.pone.0004886
85 K Finogenova, J Bonnet, S Poepsel, IB Schafer, K Finkl, K Schmid, C Litz, M Strauss, C Benda, J Muller. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 2020; 9: e61964
https://doi.org/10.7554/eLife.61964
86 JH Kim, BB Lee, YM Oh, C Zhu, LM Steinmetz, Y Lee, WK Kim, SB Lee, S Buratowski, T Kim. Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat Commun 2016; 7(1): 13534
https://doi.org/10.1038/ncomms13534
87 S Venkatesh, H Li, MM Gogol, JL Workman. Selective suppression of antisense transcription by Set2-mediated H3K36 methylation. Nat Commun 2016; 7(1): 13610
https://doi.org/10.1038/ncomms13610
88 JP Adelman, CT Bond, J Douglass, E Herbert. Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 1987; 235(4795): 1514–1517
https://doi.org/10.1126/science.3547652
89 W Rosikiewicz, Y Suzuki, I Makalowska. OverGeneDB: a database of 5′ end protein coding overlapping genes in human and mouse genomes. Nucleic Acids Res 2018; 46(D1): D186–D193
https://doi.org/10.1093/nar/gkx948
90 D Liu, C Xu, Y Liu, W Ouyang, S Lin, A Xu, Y Zhang, Y Xie, Q Huang, W Zhao, Z Chen, L Wang, S Chen, J Huang, ZB Wu, X Sun. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17(3): 458–475
https://doi.org/10.1007/s11684-022-0968-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed