Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids
Liang Dong2,3, Wenwen Luo2, Skaldin Maksym2,4, Simon C. Robson5, Andrey V. Zavialov1,2()
. International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou 571199, China . Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China . Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China . Joint Biotechnology Laboratory, University of Turku, Turku 20520, Finland . Center for Inflammation Research, Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, USA
Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.
. [J]. Frontiers of Medicine, 2024, 18(5): 814-830.
Liang Dong, Wenwen Luo, Skaldin Maksym, Simon C. Robson, Andrey V. Zavialov. Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids. Front. Med., 2024, 18(5): 814-830.
HK Eltzschig, MV Sitkovsky, SC Robson. Purinergic signaling during inflammation. N Engl J Med 2012; 367(24): 2322–2333 https://doi.org/10.1056/NEJMra1205750
2
L Antonioli, R Colucci, C La Motta, M Tuccori, O Awwad, F Da Settimo, C Blandizzi, M Fornai. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. Curr Drug Targets 2012; 13(6): 842–862 https://doi.org/10.2174/138945012800564095
3
DB Kohn, C Booth, KL Shaw, J Xu-Bayford, E Garabedian, V Trevisan, DA Carbonaro-Sarracino, K Soni, D Terrazas, K Snell, A Ikeda, D Leon-Rico, TB Moore, KF Buckland, AJ Shah, KC Gilmour, S De Oliveira, C Rivat, GM Crooks, N Izotova, J Tse, S Adams, S Shupien, H Ricketts, A Davila, C Uzowuru, A Icreverzi, P Barman, B Campo Fernandez, RP Hollis, M Coronel, A Yu, KM Chun, CE Casas, R Zhang, S Arduini, F Lynn, M Kudari, A Spezzi, M Zahn, R Heimke, I Labik, R Parrott, RH Buckley, L Reeves, K Cornetta, R Sokolic, M Hershfield, M Schmidt, F Candotti, HL Malech, AJ Thrasher, HB Gaspar. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N Engl J Med 2021; 384(21): 2002–2013 https://doi.org/10.1056/NEJMoa2027675
4
AV Zavialov, A Engström. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 2005; 391(1): 51–57 https://doi.org/10.1042/BJ20050683
5
AV Zavialov, X Yu, D Spillmann, G Lauvau, AV Zavialov. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J Biol Chem 2010; 285(16): 12367–12377 https://doi.org/10.1074/jbc.M109.083527
6
R Dhanwani, M Takahashi, IT Mathews, C Lenzi, A Romanov, JD Watrous, B Pieters, CC Hedrick, CA Benedict, J Linden, R Nilsson, M Jain, S Sharma. Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. Sci Adv 2020; 6(30): eaba3688 https://doi.org/10.1126/sciadv.aba3688
7
AV Zavialov, E Gracia, N Glaichenhaus, R Franco, AV Zavialov, G Lauvau. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 2010; 88(2): 279–290 https://doi.org/10.1189/jlb.1109764
8
I Tsuboi, K Sagawa, S Shichijo, MM Yokoyama, DW Ou, MD Wiederhold. Adenosine deaminase isoenzyme levels in patients with human T-cell lymphotropic virus type 1 and human immunodeficiency virus type 1 infections. Clin Diagn Lab Immunol 1995; 2(5): 626–630 https://doi.org/10.1128/cdli.2.5.626-630.1995
9
JM Porcel, A Esquerda, S Bielsa. Diagnostic performance of adenosine deaminase activity in pleural fluid: a single-center experience with over 2100 consecutive patients. Eur J Intern Med 2010; 21(5): 419–423 https://doi.org/10.1016/j.ejim.2010.03.011
10
M Abdi, R Rahbari, Z Khatooni, N Naseri, A Najafi, I Khodadadi. Serum adenosine deaminase (ADA) activity: a novel screening test to differentiate HIV monoinfection from HIV-HBV and HIV-HCV coinfections. J Clin Lab Anal 2016; 30(3): 200–203 https://doi.org/10.1002/jcla.21836
11
W Luo, L Dong, F Chen, W Lei, L He, Q Zhou, T Lamy, AV Zavialov. ELISA based assays to measure adenosine deaminases concentration in serum and saliva for the diagnosis of ADA2 deficiency and cancer. Front Immunol 2022; 13: 928438 https://doi.org/10.3389/fimmu.2022.928438
12
ZW Gao, L Yang, C Liu, X Wang, WT Guo, HZ Zhang, K Dong. Distinct roles of adenosine deaminase isoenzymes ADA1 and ADA2: a pan-cancer analysis. Front Immunol 2022; 13: 903461 https://doi.org/10.3389/fimmu.2022.903461
13
PY Lee, GS Schulert, SW Canna, Y Huang, J Sundel, Y Li, KJ Hoyt, RB Blaustein, A Wactor, T Do, O Halyabar, MH Chang, F Dedeoglu, SM Case, E Meidan, MS Lo, RP Sundel, ET Richardson, JW Newburger, MS Hershfield, MB Son, LA Henderson, PA Nigrovic. Adenosine deaminase 2 as a biomarker of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann Rheum Dis 2020; 79(2): 225–231 https://doi.org/10.1136/annrheumdis-2019-216030
14
Q Zhou, D Yang, AK Ombrello, AV Zavialov, C Toro, AV Zavialov, DL Stone, JJ Chae, SD Rosenzweig, K Bishop, KS Barron, HS Kuehn, P Hoffmann, A Negro, WL Tsai, EW Cowen, W Pei, JD Milner, C Silvin, T Heller, DT Chin, NJ Patronas, JS Barber, CC Lee, GM Wood, A Ling, SJ Kelly, DE Kleiner, JC Mullikin, NJ Ganson, HH Kong, S Hambleton, F Candotti, MM Quezado, KR Calvo, H Alao, BK Barham, A Jones, JF Meschia, BB Worrall, SE Kasner, SS Rich, R Goldbach-Mansky, M Abinun, E Chalom, AC Gotte, M Punaro, V Pascual, JW Verbsky, TR Torgerson, NG Singer, TR Gershon, S Ozen, O Karadag, TA Fleisher, EF Remmers, SM Burgess, SL Moir, M Gadina, R Sood, MS Hershfield, M Boehm, DL Kastner, I Aksentijevich. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 2014; 370(10): 911–920 https://doi.org/10.1056/NEJMoa1307361
15
P Navon Elkan, SB Pierce, R Segel, T Walsh, J Barash, S Padeh, A Zlotogorski, Y Berkun, JJ Press, M Mukamel, I Voth, PJ Hashkes, L Harel, V Hoffer, E Ling, F Yalcinkaya, O Kasapcopur, MK Lee, RE Klevit, P Renbaum, A Weinberg-Shukron, EF Sener, B Schormair, S Zeligson, D Marek-Yagel, TM Strom, M Shohat, A Singer, A Rubinow, E Pras, J Winkelmann, M Tekin, Y Anikster, MC King, E Levy-Lahad. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 2014; 370(10): 921–931 https://doi.org/10.1056/NEJMoa1307362
16
S Signa, A Bertoni, F Penco, R Caorsi, A Cafaro, G Cangemi, S Volpi, M Gattorno, F Schena. Adenosine deaminase 2 deficiency (DADA2): a crosstalk between innate and adaptive immunity. Front Immunol 2022; 13: 935957 https://doi.org/10.3389/fimmu.2022.935957
17
Y Kaljas, C Liu, M Skaldin, C Wu, Q Zhou, Y Lu, I Aksentijevich, AV Zavialov. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell Mol Life Sci 2017; 74(3): 555–570 https://doi.org/10.1007/s00018-016-2357-0
18
C Carmona-Rivera, SS Khaznadar, KW Shwin, JA Irizarry-Caro, LJ O’Neil, Y Liu, KA Jacobson, AK Ombrello, DL Stone, WL Tsai, DL Kastner, I Aksentijevich, MJ Kaplan, PC Grayson. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood 2019; 134(4): 395–406 https://doi.org/10.1182/blood.2018892752
19
NT Deuitch, D Yang, PY Lee, X Yu, NS Moura, O Schnappauf, AK Ombrello, D Stone, HS Kuehn, SD Rosenzweig, P Hoffmann, C Cudrici, DM Levy, E Kessler, JB Soep, AD Hay, A Dalrymple, Y Zhang, L Sun, Q Zhang, X Tang, Y Wu, K Rao, H Li, H Luo, Y Zhang, JM Burnham, M Boehm, K Barron, DL Kastner, I Aksentijevich, Q Zhou. TNF inhibition in vasculitis management in adenosine deaminase 2 deficiency (DADA2). J Allergy Clin Immunol 2022; 149(5): 1812–1816.e6
20
PY Lee, I Aksentijevich, Q Zhou. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin Immunopathol 2022; 44(3): 269–280 https://doi.org/10.1007/s00281-022-00918-8
21
L Karapetyan, JJ Luke, D Davar. Toll-like receptor 9 agonists in cancer. OncoTargets Ther 2020; 13: 10039–10060 https://doi.org/10.2147/OTT.S247050
22
J Pohar, D Lainšček, K Ivičak-Kocjan, MM Cajnko, R Jerala, M Benčina. Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nat Commun 2017; 8(1): 15363 https://doi.org/10.1038/ncomms15363
23
U Ohto, H Ishida, T Shibata, R Sato, K Miyake, T Shimizu. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity 2018; 48(4): 649–658.e4 https://doi.org/10.1016/j.immuni.2018.03.013
RM Van der Sluis, CK Holm, MR Jakobsen. Plasmacytoid dendritic cells during COVID-19: ally or adversary. Cell Rep 2022; 40(4): 111148 https://doi.org/10.1016/j.celrep.2022.111148
27
M Swiecki, M Colonna. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15(8): 471–485 https://doi.org/10.1038/nri3865
28
D Bencze, T Fekete, K Pázmándi. Type I interferon production of plasmacytoid dendritic cells under control. Int J Mol Sci 2021; 22(8): 4190 https://doi.org/10.3390/ijms22084190
29
M Kerkmann, S Rothenfusser, V Hornung, A Towarowski, M Wagner, A Sarris, T Giese, S Endres, G Hartmann. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J Immunol 2003; 170(9): 4465–4474 https://doi.org/10.4049/jimmunol.170.9.4465
30
A Combes, V Camosseto, P N’Guessan, RJ Argüello, J Mussard, C Caux, N Bendriss-Vermare, P Pierre, E Gatti. BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells. Nat Commun 2017; 8(1): 913 https://doi.org/10.1038/s41467-017-00695-1
31
L Marongiu, L Gornati, I Artuso, I Zanoni, F Granucci. Below the surface: the inner lives of TLR4 and TLR9. J Leukoc Biol 2019; 106(1): 147–160 https://doi.org/10.1002/JLB.3MIR1218-483RR
32
C Liu, M Skaldin, C Wu, Y Lu, AV Zavialov. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes. Sci Rep 2016; 6(1): 31370 https://doi.org/10.1038/srep31370
33
PC Trivedi, JJ Bartlett, T Pulinilkunnil. Lysosomal biology and function: modern view of cellular debris bin. Cells 2020; 9(5): 1131 https://doi.org/10.3390/cells9051131
34
T Haas, J Metzger, F Schmitz, A Heit, T Müller, E Latz, H Wagner. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 2008; 28(3): 315–323 https://doi.org/10.1016/j.immuni.2008.01.013
35
S Kim, V Kaiser, E Beier, M Bechheim, M Guenthner-Biller, A Ablasser, M Berger, S Endres, G Hartmann, V Hornung. Self-priming determines high type I IFN production by plasmacytoid dendritic cells. Eur J Immunol 2014; 44(3): 807–818 https://doi.org/10.1002/eji.201343806
36
V Hornung, M Guenthner-Biller, C Bourquin, A Ablasser, M Schlee, S Uematsu, A Noronha, M Manoharan, S Akira, A de Fougerolles, S Endres, G Hartmann. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11(3): 263–270 https://doi.org/10.1038/nm1191
37
DE Sleat, H Zheng, M Qian, P Lobel. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol Cell Proteomics 2006; 5(4): 686–701 https://doi.org/10.1074/mcp.M500343-MCP200
38
CM Niemeyer, CA Sieff, B Mathey-Prevot, JZ Wimperis, BE Bierer, SC Clark, DG Nathan. Expression of human interleukin-3 (multi-CSF) is restricted to human lymphocytes and T-cell tumor lines. Blood 1989; 73(4): 945–951 https://doi.org/10.1182/blood.V73.4.945.945
39
M Janke, EJ Witsch, HW Mages, A Hutloff, RA Kroczek. Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 2006; 118(3): 353–360 https://doi.org/10.1111/j.1365-2567.2006.02379.x
40
A Bénard, A Jacobsen, M Brunner, C Krautz, B Klösch, I Swierzy, E Naschberger, MJ Podolska, D Kouhestani, P David, T Birkholz, I Castellanos, D Trufa, H Sirbu, M Vetter, AE Kremer, K Hildner, A Hecker, F Edinger, M Tenbusch, P Mühl-Zürbes, A Steinkasserer, E Richter, H Streeck, MM Berger, T Brenner, MA Weigand, FK Swirski, G Schett, R Grützmann, GF Weber. Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun 2021; 12(1): 1112 https://doi.org/10.1038/s41467-021-21310-4
41
J Vollmer, R Weeratna, P Payette, M Jurk, C Schetter, M Laucht, T Wader, S Tluk, M Liu, HL Davis, AM Krieg. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 2004; 34(1): 251–262 https://doi.org/10.1002/eji.200324032
42
G Hartmann, J Battiany, H Poeck, M Wagner, M Kerkmann, N Lubenow, S Rothenfusser, S Endres. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol 2003; 33(6): 1633–1641 https://doi.org/10.1002/eji.200323813
43
XZ Zhong, Y Zou, X Sun, G Dong, Q Cao, A Pandey, JK Rainey, X Zhu, XP Dong. Inhibition of transient receptor potential channel mucolipin-1 (TRPML1) by lysosomal adenosine involved in severe combined immunodeficiency diseases. J Biol Chem 2017; 292(8): 3445–3455 https://doi.org/10.1074/jbc.M116.743963