. State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China . Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
Identifying biomarkers for predicting radiotherapy efficacy is crucial for optimizing personalized treatments. We previously reported that rs1553867776 in the miR-4274 seed region can predict survival in patients with rectal cancer receiving postoperative chemoradiation therapy. Hence, to investigate the molecular mechanism of the genetic variation and its impact on the radiosensitivity of colorectal cancer (CRC), in this study, bioinformatics analysis is combined with functional experiments to confirm peroxisomal biogenesis factor 5 (PEX5) as a direct target of miR-4274. The miR-4274 rs1553867776 variant influences the binding of miR-4274 and PEX5 mRNA, which subsequently regulates PEX5 protein expression. The interaction between PEX5 and Ku70 was verified by co-immunoprecipitation and immunofluorescence. A xenograft tumor model was established to validate the effects of miR-4274 and PEX5 on CRC progression and radiosensitivity in vivo. The overexpression of PEX5 enhances radiosensitivity by preventing Ku70 from entering the nucleus and reducing the repair of ionizing radiation (IR)-induced DNA damage by the Ku70/Ku80 complex in the nucleus. In addition, the enhanced expression of PEX5 is associated with increased IR-induced ferroptosis. Thus, targeting this mechanism might effectively increase the radiosensitivity of CRC. These findings offer novel insights into the mechanism of cancer radioresistance and have important implications for clinical radiotherapy.
S Pucci, C Polidoro, A Joubert, F Mastrangeli, B Tolu, M Benassi, V Fiaschetti, L Greco, R Miceli, R Floris, G Novelli, A Orlandi, R Santoni. Ku70, Ku80, and sClusterin: acluster of predicting factors for response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 2017; 97(2): 381–388 https://doi.org/10.1016/j.ijrobp.2016.10.018
4
W Liu, C Miao, S Zhang, Y Liu, X Niu, Y Xi, W Guo, J Chu, A Lin, H Liu, X Yang, X Chen, C Zhong, Y Ma, Y Wang, S Zhu, S Liu, W Tan, D Lin, C Wu. VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther 2021; 6(1): 322 https://doi.org/10.1038/s41392-021-00735-9
DW Salzman, JB Weidhaas. SNPing cancer in the bud: microRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer. Pharmacol Ther 2013; 137(1): 55–63 https://doi.org/10.1016/j.pharmthera.2012.08.016
7
C Shen, T Yan, Z Wang, HC Su, X Zhu, X Tian, JY Fang, H Chen, J Hong. Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis 2018; 9(12): 1177 https://doi.org/10.1038/s41419-018-1222-5
8
W Wang, C Yang, H Nie, X Qiu, L Zhang, Y Xiao, W Zhou, Q Zeng, X Zhang, Y Wu, J Liu, M Ying. LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk. Int J Cancer 2019; 144(6): 1345–1355 https://doi.org/10.1002/ijc.31757
9
H Chen, L Yin, J Yang, N Ren, J Chen, Q Lu, Y Huang, Y Feng, W Wang, S Wang, Y Liu, Y Song, Y Li, J Jin, W Tan, D Lin. Genetic polymorphisms in genes regulating cell death and prognosis of patients with rectal cancer receiving postoperative chemoradiotherapy. Cancer Biol Med 2023; 20(4): 297–316 https://doi.org/10.20892/j.issn.2095-3941.2022.0711
10
Y Huang, Y Feng, H Ren, M Zhang, H Li, Y Qiao, T Feng, J Yang, W Wang, S Wang, Y Liu, Y Song, Y Li, J Jin, W Tan, D Lin. Associations of genetic variations in microRNA seed regions with acute adverse events and survival in patients with rectal cancer receiving postoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys 2018; 100(4): 1026–1033 https://doi.org/10.1016/j.ijrobp.2017.12.256
11
N Landeros, AH Corvalan, M Musleh, LA Quiñones, NM Varela, P Gonzalez-Hormazabal. Novel risk associations between microRNA polymorphisms and gastric cancer in a Chilean population. Int J Mol Sci 2021; 23(1): 467 https://doi.org/10.3390/ijms23010467
12
M Shkurnikov, S Nikulin, S Nersisyan, A Poloznikov, S Zaidi, A Baranova, U Schumacher, D Wicklein, A Tonevitsky. LAMA4-regulating miR-4274 and its host gene SORCS2 play a role in IGFBP6-dependent effects on phenotype of basal-like breast cancer. Front Mol Biosci 2019; 6: 122 https://doi.org/10.3389/fmolb.2019.00122
13
S Liu, HL Zhang, J Li, ZP Ye, T Du, LC Li, YQ Guo, D Yang, ZL Li, JH Cao, BX Hu, YH Chen, GK Feng, ZM Li, R Deng, JJ Huang, XF Zhu. Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol 2023; 62: 102677 https://doi.org/10.1016/j.redox.2023.102677
14
G Lei, C Mao, Y Yan, L Zhuang, B Gan. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021; 12(11): 836–857 https://doi.org/10.1007/s13238-021-00841-y
Y Zou, WS Henry, EL Ricq, ET Graham, VV Phadnis, P Maretich, S Paradkar, N Boehnke, AA Deik, F Reinhardt, JK Eaton, B Ferguson, W Wang, J Fairman, HR Keys, V Dančík, CB Clish, PA Clemons, PT Hammond, LA Boyer, RA Weinberg, SL Schreiber. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020; 585(7826): 603–608 https://doi.org/10.1038/s41586-020-2732-8
17
R Ravindran, IOL Bacellar, X Castellanos-Girouard, HM Wahba, Z Zhang, JG Omichinski, L Kisley, SW Michnick. Peroxisome biogenesis initiated by protein phase separation. Nature 2023; 617(7961): 608–615 https://doi.org/10.1038/s41586-023-06044-1
Y Fujiki, K Okumoto, M Honsho, Y Abe. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. Biochim Biophys Acta Mol Cell Res 2022; 1869(11): 119330 https://doi.org/10.1016/j.bbamcr.2022.119330
20
H Yan, R Talty, O Aladelokun, M Bosenberg, CH Johnson. Ferroptosis in colorectal cancer: a future target. Br J Cancer 2023; 128(8): 1439–1451 https://doi.org/10.1038/s41416-023-02149-6
21
C Sticht, C De La Torre, A Parveen, N Gretz. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One 2018; 13(10): e0206239 https://doi.org/10.1371/journal.pone.0206239
22
S Bandyopadhyay, R Mitra. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 2009; 25(20): 2625–2631 https://doi.org/10.1093/bioinformatics/btp503
23
A Bhattacharya, JD Ziebarth, Y Cui. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 2014; 42(Database issue): D86–D91 https://doi.org/10.1093/nar/gkt1028
24
MD Paraskevopoulou, G Georgakilas, N Kostoulas, IS Vlachos, T Vergoulis, M Reczko, C Filippidis, T Dalamagas, AG Hatzigeorgiou. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 2013; 41(W1): W169–W173 https://doi.org/10.1093/nar/gkt393
25
Y Chen, X Wang. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127–D131 https://doi.org/10.1093/nar/gkz757
DS Chandrashekar, SK Karthikeyan, PK Korla, H Patel, AR Shovon, M Athar, GJ Netto, ZS Qin, S Kumar, U Manne, CJ Creighton, S Varambally. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022; 25: 18–27 https://doi.org/10.1016/j.neo.2022.01.001
28
T Li, J Fu, Z Zeng, D Cohen, J Li, Q Chen, B Li, XS Liu. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 2020; 48(W1): W509–W514 https://doi.org/10.1093/nar/gkaa407
29
Y Zhou, B Zhou, L Pache, M Chang, AH Khodabakhshi, O Tanaseichuk, C Benner, SK Chanda. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523 https://doi.org/10.1038/s41467-019-09234-6
30
S Huang, D Fantini, BJ Merrill, S Bagchi, G Guzman, P Raychaudhuri. DDB2 is a novel regulator of Wnt signaling in colon cancer. Cancer Res 2017; 77(23): 6562–6575 https://doi.org/10.1158/0008-5472.CAN-17-1570
31
S Burdak-Rothkamm, K Rothkamm, K McClelland, ST Al Rashid, KM Prise. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2015; 356(2 2 Pt B): 454–461 https://doi.org/10.1016/j.canlet.2014.09.043
32
C Han, Z Liu, Y Zhang, A Shen, C Dong, A Zhang, C Moore, Z Ren, C Lu, X Cao, CL Zhang, J Qiao, YX Fu. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat Immunol 2020; 21(5): 546–554 https://doi.org/10.1038/s41590-020-0641-5
33
N Sándor, B Schilling-Tóth, E Kis, L Fodor, F Mucsányi, G Sáfrány, H Hegyesi. TP53inp1 gene is implicated in early radiation response in human fibroblast cells. Int J Mol Sci 2015; 16(10): 25450–25465 https://doi.org/10.3390/ijms161025450
34
TU Bracker, A Sommer, I Fichtner, H Faus, B Haendler, H Hess-Stumpp. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol 2009; 35(4): 909–920
35
Genome Atlas Network Cancer. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330–337 https://doi.org/10.1038/nature11252
36
D Huang, C Du, D Ji, J Xi, J Gu. Overexpression of LAMC2 predicts poor prognosis in colorectal cancer patients and promotes cancer cell proliferation, migration, and invasion. Tumour Biol 2017; 39(6): 1010428317705849 https://doi.org/10.1177/1010428317705849
37
AM Vasilogianni, ZM Al-Majdoub, B Achour, SA Peters, A Rostami-Hodjegan, J Barber. Proteomic quantification of receptor tyrosine kinases involved in the development and progression of colorectal cancer liver metastasis. Front Oncol 2023; 13: 1010563 https://doi.org/10.3389/fonc.2023.1010563
38
Y Liu, Y Deguchi, R Tian, D Wei, L Wu, W Chen, W Xu, M Xu, F Liu, S Gao, JC Jaoude, SP Chrieki, MJ Moussalli, M Gagea, J Morris, RR Broaddus, X Zuo, I Shureiqi. Pleiotropic effects of PPARD accelerate colorectal tumorigenesis, progression, and invasion. Cancer Res 2019; 79(5): 954–969 https://doi.org/10.1158/0008-5472.CAN-18-1790
39
B Köse, RV Laar, HV Beekhuizen, FV Kemenade, AT Baykal, T Luider, C Güzel. Quantitative proteomic analysis of MCM3 in ThinPrep samples of patients with cervical preinvasive cancer. Int J Mol Sci 2023; 24(13): 10473 https://doi.org/10.3390/ijms241310473
40
J Lou, L Wei, H Wang. SCNN1A overexpression correlates with poor prognosis and immune infiltrates in ovarian cancer. Int J Gen Med 2022; 15: 1743–1763 https://doi.org/10.2147/IJGM.S351976
41
WL Cheng, PH Feng, KY Lee, KY Chen, WL Sun, N Van Hiep, CS Luo, SM Wu. The role of EREG/EGFR pathway in tumor progression. Int J Mol Sci 2021; 22(23): 12828 https://doi.org/10.3390/ijms222312828
42
H Sui, M Hao, W Chang, T Imamichi. The role of Ku70 as a cytosolic DNA sensor in innate immunity and beyond. Front Cell Infect Microbiol 2021; 11: 761983 https://doi.org/10.3389/fcimb.2021.761983
43
MD Yang, CW Tsai, WS Chang, YA Tsou, CN Wu, DT Bau. Predictive role of XRCC5/XRCC6 genotypes in digestive system cancers. World J Gastrointest Oncol 2011; 3(12): 175–181 https://doi.org/10.4251/wjgo.v3.i12.175
44
P Liao, W Wang, W Wang, I Kryczek, X Li, Y Bian, A Sell, S Wei, S Grove, JK Johnson, PD Kennedy, M Gijón, YM Shah, W Zou. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 2022; 40(4): 365–378.e6 https://doi.org/10.1016/j.ccell.2022.02.003
45
J Quan, AM Bode, X Luo. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol 2021; 909: 174397 https://doi.org/10.1016/j.ejphar.2021.174397
46
G Lei, Y Zhang, P Koppula, X Liu, J Zhang, SH Lin, JA Ajani, Q Xiao, Z Liao, H Wang, B Gan. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 2020; 30(2): 146–162 https://doi.org/10.1038/s41422-019-0263-3
47
X Lang, MD Green, W Wang, J Yu, JE Choi, L Jiang, P Liao, J Zhou, Q Zhang, A Dow, AL Saripalli, I Kryczek, S Wei, W Szeliga, L Vatan, EM Stone, G Georgiou, M Cieslik, DR Wahl, MA Morgan, AM Chinnaiyan, TS Lawrence, W Zou. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 2019; 9(12): 1673–1685 https://doi.org/10.1158/2159-8290.CD-19-0338
48
M Cai, X Sun, W Wang, Z Lian, P Wu, S Han, H Chen, P Zhang. Disruption of peroxisome function leads to metabolic stress, mTOR inhibition, and lethality in liver cancer cells. Cancer Lett 2018; 421: 82–93 https://doi.org/10.1016/j.canlet.2018.02.021
49
H Zhu, Y Lin, D Lu, S Wang, Y Liu, L Dong, Q Meng, J Gao, Y Wang, N Song, Y Suo, L Ding, P Wang, B Zhang, D Gao, J Fan, Q Gao, H Zhou. Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma. Natl Sci Rev 2023; 10(8): nwad167 https://doi.org/10.1093/nsr/nwad167